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A precise static method is used to measure vapor pressures of 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol
from 298.15 up to the boiling points of these alcohols. The vapor pressure data are correlated with the Antoine
and Wagner equations. From the measured vapor pressures, the enthalpies of vaporization are calculated. The
results are compared with literature values.

Introduction
The vapor pressure of a pure substance is an important

thermodynamic property that is essential in chemical process
design and fate analysis of environmental contaminants. Ex-
perimental data over a wide temperature range, however, are
scarce, especially for the alcohols with a higher boiling point.
Besides, the available results on vapor pressures and enthalpies
of vaporization1-4 are not always as consistent as they should
be when these data are used for comparison with predictive
calculations. In our previous works,5,6 the vaporization enthalpies
and vapor pressures of methanol, ethanol, 1-propanol, 2-pro-
panol, 1-butanol, 2-butanol, propylene carbonate, andN,N-
dimethylformamide were measured by a static method. As a
continuation, the vapor pressures and the standard molar
enthalpies of 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol
are studied in this work.

Experimental Section
Materials. The purity of the alcohols after distillation under

dry nitrogen and drying with molecular sieves was checked with
gas chromatography (HP-6890) equipped with a flame ionization
detector (FID). The purities were determined with GC as
follows: for 1-pentanol (Fluka, min 99 %) 99.97 %, 1-hexanol
(Lancaster, min 99 %) 99.81 %, 1-heptanol (Merck, min 99 %)
99.90 %, and 1-octanol (Aldrich, min 99 %, anhydrous) 99.95
%. The water content detected by Karl Fischer titration (mci,
model CA-02) was less than 0.011 %, 0.014 %, 0.013 %, and
0.007 % for 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol,
respectively. All alcohols were degassed prior to making the
measurements.

Vapor Pressure Measurements.The vapor pressure measure-
ments were performed with a precise vapor pressure apparatus
that yields total vapor pressure of solutions. The apparatus was
designed especially for vapor pressure measurements of pure
fluids and of electrolyte solutions over a wide temperature range
from T ) (278.15 to 473.15) K with an overall uncertainty in
temperature of 0.01 K and a reproducibility of 0.1 % in pressure.
Due to uncertainties of the zero point pressure of the manometer,
volatile impurities, incomplete degassing of the samples, and
leakage, an overall uncertainty of at least 5 Pa can be estimated.
The temperature is based on the international temperature scale

ITS-90. The apparatus and the measuring method as well as
the degassing procedure are described in detail elsewhere.5
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Table 1. Experimental Vapor Pressures of 1-Pentanol, 1-Hexanol,
1-Heptanol, and 1-Octanol at Different Temperatures

p/kPa

T/K 1-pentanol 1-hexanol 1-heptanol 1-octanol

298.15 0.337a 0.115a 0.029a 0.011a
303.15 0.488a 0.171a 0.045a 0.017a
308.15 0.694a 0.250a 0.069a 0.027a
313.15 0.969a 0.362a 0.104a 0.041a
318.15 1.359 0.517a 0.156a 0.063a
323.15 1.866 0.729a 0.230a 0.093a
328.15 2.528 1.015 0.335a 0.138a
333.15 3.381 1.395 0.481a 0.200a
338.15 4.467 1.895 0.681a 0.287a
343.15 5.873 2.544 0.951a 0.406a
348.15 7.633 3.377 1.312 0.569a

353.15 9.828 4.433 1.787 0.786a

358.15 12.520 5.759 2.403 1.072
363.15 15.808 7.408 3.194 1.446
368.15 19.861 9.436 4.196 1.929
373.15 24.685 11.911 5.451 2.544
378.15 30.467 14.905 7.005 3.319
383.15 37.357 18.500 8.910 4.285
388.15 45.451 22.786 11.223 5.479
393.15 54.875 27.863 14.002 6.938
398.15 65.845 33.842 17.315 8.706
403.15 78.450 40.846 21.230 10.830
408.15 49.015 25.822 13.362
413.15 58.504 31.170 16.357
418.15 69.487 37.361 19.876
423.15 82.163 44.485 23.986
428.15 52.641 28.758
433.15 61.936 34.271
438.15 72.487 40.612
443.15 84.398 47.876
448.15 56.167
453.15 65.454
458.15 75.948
463.15 87.733

a Data not used for fitting.

Table 2. Constants of the Antoine Equation ln(p/kPa) ) A - B/(T/K
+ C)

compound
temp

range/K A B C SDa/kPa

1-pentanol 318-403 14.9571 3231.225 -98.138 0.043
1-hexanol 328-423 15.1869 3545.833 -94.190 0.032
1-heptanol 348-443 13.2516 2604.808 -147.696 0.014
1-octanol 358-463 13.6860 2985.671 -139.026 0.014

a SD ) [∑(p - pcalc)2/(n - 3)]0.5, wheren is the number of experimental
points.
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Results and Discussion

The temperature-dependent vapor pressure of pure 1-pentanol,
1-hexanol, 1-heptanol, and 1-octanol were measured fromT )
(298.15 to 403.15) K for 1-pentanol,T ) (298.15 to 423.15)
for 1-hexanol,T ) (298.15 to 443.15) for 1-heptanol, andT )
(298.15 to 453.15) K for 1-octanol in 5 K intervals. The results
are reported in Table 1.

The data of Table 1 are fitted with the help of the Antoine
equation:

wherep is pressure;T is temperature; andA, B, andC are the
Antoine constants. These constants are given in Table 2. To
obtain reliable fitting parameters, all vapor pressures below 1
kPa were excluded from the calculations.

For the Wagner equation,7 the fitting parameters were derived
by a nonlinear least-squares fit of the vapor pressures listed in
Table 1 using the formulation given by Poling et al.:7

where pr is the reduced vapor pressure,pr ) p/pc; Tr is the
reduced temperature,Tr ) T/Tc; and τ is 1 - Tr. The critical

Table 3. Constants of the Wagner Equation (ln(pr) ) (1/Tr)(aτ + bτ1.5 + cτ2.5 + dτ5)

compound
temp

range/K pc
a/MPa Tc

a/K a b c d SDb/kPa

1-pentanol 318-403 3.897 588.1 -11.806 12.0699 -20.477 13.884 0.014
1-hexanol 328-423 3.417 610.3 -10.738 8.9016 -15.725 4.070 0.137
1-heptanol 348-443 3.058 632.6 -10.255 6.7106 -10.331 -15.240 0.022
1-octanol 358-463 2.777 652.5 -8.413 1.6281 -5.078 -17.052 0.015

a Ref 8. b SD ) [∑(p - pcalc)2/(n - 4)]0.5, wheren is the number of experimental points.

Figure 1. Comparison of literature vapor pressures for 1-pentanol with
those obtained using the Wagner equation and the parameters listed in Table
3: O, our experimental data;×, data from Kemme and Kreps;9 b, Ambrose
and Sprake;10 - - -, calculated with the Antoine correlation of Wilhoit and
Zwolinski.11

Figure 2. Comparison of literature vapor pressures for 1-hexanol with those
obtained using the Wagner equation and the parameters listed in Table 3:
O, our experimental data;×, data from Kemme and Kreps;9 - - -, calculated
from the Antoine correlation of Wilhoit and Zwolinski;11 s, calculated from
the Antoine correlation of Stephenson and Malanowski;12 b, Hovorka et
al.;13 2, Rose and Supina;14 *, Wieczorek and Stecki;15 +, N’Guimbi et
al.;16 1, Reddy et al.28

Figure 3. Comparison of literature vapor pressures for 1-heptanol with
those obtained using the Wagner equation and the parameters listed in Table
3: O, our experimental data;×, data from Kemme and Kreps;9 - - -,
calculated from the Antoine correlation of Wilhoit and Zwolinski;11 s,
calculated from the Antoine correlation of Stephenson and Malanowski;12

2, N’Guimbi et al.16

Figure 4. Comparison of literature vapor pressures for 1-octanol with those
obtained using the Wagner equation and the parameters listed in Table 3:
O, our experimental data;×, data from Kemme and Kreps;9 b, Ambrose
and Sprake;10 - - -, calculated from the Antoine correlation of Wilhoit and
Zwolinski;11 s, calculated from the Antoine correlation of Stephenson and
Malanowski;12 2, N’Guimbi et al.16

ln(p/kPa)) A - B/(T/K + C) (1)

ln(pr) ) (1/Tr)(aτ + bτ1.5 + cτ2.5 + dτ5) (2)
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temperatures and critical pressures for the alcohols studied are
taken from Gude and Teja8 and are presented in Table 3 together
with the Wagner parameters.

For all alcohols studied, we compared the experimental data
of this work with literature data in the appropriate temperature
range:

(1) In the case of 1-pentanol, our results are lower than the
vapor pressure data of Wilhoit and Zwolinski11 but higher than
the data of Kemme and Kreps9 and of Ambrose and Sprake,10

especially at lower temperatures. Figure 1 shows the comparison
of literature vapor pressure values for 1-pentanol with our
experimental values and with their fit using the Wagner equation
and the parameters listed in Table 3.

(2) In the case of 1-hexanol, our results are in medium
agreement with the literature data,11-18 as can be seen in Figure
2. Best agreement is found with the data reported by Hovorka
et al.13 and by Reddy et al.28 It seems that Stephenson and
Malanowski12 used the data of Kemme and Kreps9 when
reporting their Antoine constants. We note that 8 % relative

deviation is equal to about 9 Pa in vapor pressure for 1-hexanol
at 298.15 K.

(3) Concerning 1-heptanol, precise temperature-dependent
literature data over all the temperature range studied are rare.
Figure 3 shows the comparison of relative deviation of literature
vapor pressures values for 1-heptanol with those obtained using
the Wagner equation and the parameters listed in Table 3. For
temperatures higher than 360 K, there is good agreement
between our data and values calculated from the Antoine
constants of Wilhoit and Zwolinski.11 At temperatures lower
than 360 K, there are larger deviations from literature val-
ues.9,11,12,16It appears again that Stephenson and Malanowski12

used the data of Kemme and Kreps9 when reporting the Antoine
constants for 1-heptanol.

(4) For 1-octanol, several vapor-pressure measurements are
reported in the literature. As shown in Figure 4, there is good
agreement between our measurements and literature values9-12

in the given temperature range.
The Clapeyron equation is a general equation originally

relating vapor pressure, temperature, volume change, and
enthalpy of vaporization of a pure liquid in equilibrium with
the gas phase. If the volume of the liquid is much smaller than
that of the gas and therefore is neglected and the gas-phase
behavior is treated as ideal, then this equation becomes19

where p is the vapor pressure,∆vapH is the enthalpy of
vaporization,T is the absolute temperature, andR is the gas
constant. A linear relationship between ln(p) and 1/T as we
found in our measurements shows that the enthalpy of vaporiza-
tion is only weakly temperature-dependent in the temperature
range studied. The corresponding values for the alcohols studied
are given in Table 4 together with a comparison with literature
values. Some of the values compared are from calorimetric
measurements,18,21-27 and there is good agreement between our
calculated data and literatures values at some temperatures.
Enthalpy of vaporization or sufficient data in the literature for
the calculation of the enthalpy of vaporization is not available
at some temperatures.
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