Vapor Pressure Measurements of Binary Solutions of CaCl₂ with Methanol and Ethanol at T = (298.15 to 323.15) K Using a Static Method

Javid T. Safarov*

Heat and Refrigeration Techniques Department, Azerbaijan Technical University, H. Javid Avn. 25, AZ1073 Baku, Azerbaijan

Vapor pressures p of CaCl₂ + CH₃OH and CaCl₂ + C₂H₅OH at T = (298.15 to 323.15) K were measured, osmotic (ϕ) and activity (γ) coefficients and activity of solvent (a_s) have been evaluated. The experiments were carried out for CaCl₂ + CH₃OH solutions in a molality range $m = (0.10402 \text{ to } 2.59613) \text{ mol} \cdot \text{kg}^{-1}$ and for CaCl₂ + C₂H₅OH solutions in a molality range $m = (0.12359 \text{ to } 2.12091) \text{ mol} \cdot \text{kg}^{-1}$. The Antoine equation for the empirical description of the experimental vapor pressure results and the Pitzer–Mayorga model with inclusion of ionic strength dependence of the third virial coefficient for the description of calculated osmotic coefficients were used. The parameters of Pitzer–Mayorga model were used for evaluation of activity coefficients.

Introduction

The search of new refrigerant and heat transfer fluids for absorption refrigeration machines and absorption heat pumps and the development of efficient processes of their use become scientifically and practically important and have received growing attention in recent years from the refrigeration and airconditioning industry, especially the aspects of energy-saving and protection of the environment. The efficiency of an absorption refrigeration machine and heat pump cycles are largely dependent on the physical and chemical properties of the heat transfer fluids. The application of CaCl₂ solutions of alcohols in absorption systems were discussed in refs 1 and 2.

The present study is an effort to extend the information of the vapor pressure of CaCl₂ + CH₃OH and CaCl₂ + C₂H₅OH solutions as potential refrigerants and heat transfer fluids. Previous investigations³⁻⁸ on the vapor pressure of these solutions are tabulated in Table 1. The experiments were carried out in the temperature range T = (298.15 to 323.15) K and at molalities of CaCl₂ $m = (0.10402 \text{ to } 2.59613) \text{ mol·kg}^{-1}$ in methanol and $m = (0.12359 \text{ to } 2.12091) \text{ mol·kg}^{-1}$ in ethanol. From the data the osmotic and activity coefficients (γ and ϕ) and activity of solvent (a_s) have been evaluated.

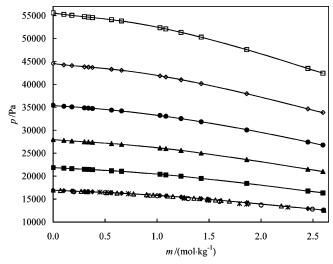
Experimental Section

The experiments to determine the vapor pressure of CaCl₂ + CH₃OH and CaCl₂ + C₂H₅OH solutions were performed in a glass cell by using a static method.⁹ The experimental set up consisted of a bolted-top cell with an internal volume of 95.64 cm³ surrounded by a water bath, which was kept at constant temperature (\pm 0.02 K) using a thermostat. The temperature inside the cell was measured by a platinum resistance thermometer PT-100 (type 42441-V100), connected to the signal conditioner Kelvimat type 4303, with an accuracy of \pm 0.01 K. The pressure was measured using a calibrated high accuracy sensor head (type 615A, MKS Baratron) connected to the signal conditioner (type 670A, MKS Baratron) attached to the top of the cell. The sensor head and the connecting line from the cell to the sensor were thermostated at 333.15 \pm 0.01 K. This temperature is always kept above the temperatures of the

* Tel: +994 12 4391445. Fax: +994 12 4383280. E-mail: javids@azdata.net or javid_safarov@yahoo.com.

measuring cell in order to avoid any condensation in the pressure head. The cell is kept at room temperature under vacuum for ca. 12 h (until the pressure sensor indicate zero point). Exactly known amounts of the solution were injected stepwise into the thermostated equilibrium cell with the help of special glass injectors. Phase equilibrium was reached in each step by using a magnetic stirrer with a Teflon-coated magnet inside the cell. Equilibration in the cell is a rapid process, and a constant pressure was reached within 15 min. Equilibrium pressure readings were registered in 10 min intervals. The concentrations of solutions were changed by adding certain amount of pure solvent to a starting solution placed in the cell. Prior to injection into the measuring cell, the pure solvent is degassed in the special designed cell using the rotary vane vacuum pump. The injection cell is weighed before and after injection. The experimental uncertainties were $\Delta T = \pm 0.01$ K for temperature and $\Delta p = \pm 10$ Pa for pressure. The measured vapor pressures are reliable to within an average uncertainty ± 0.05 % according to test measurements.9-10

Methanol (w > 0.998), ethanol (w > 0.998), and CaCl₂ (w > 0.998) were purchased from Merck, Germany. CaCl₂ was used without further purification; however, the salt was dried in a special cell at 413.15 K and under vacuum using a TRIVAC rotary vane vacuum pump for 24 h prior to use. The cell was kept at room temperature under vacuum for 12 h. The solutions were prepared by mass using a BP 221 S electronic scale (Sartorius AG) with a resolution of 0.0001 g.


Results and Discussion

In this work, the vapor pressure of CaCl₂ + CH₃OH solutions in the molality range $m = (0.10402 \text{ to } 2.59613) \text{ mol} \cdot \text{kg}^{-1}$ and of CaCl₂ + C₂H₅OH solutions in the molality range m = $(0.12359 \text{ to } 2.12091) \text{ mol} \cdot \text{kg}^{-1}$ at T = (298.15 to 323.15) Kwere measured. From the data the osmotic and activity coefficients (γ and ϕ) and activity of solvent (a_s) have been evaluated. The measured vapor pressures are listed in Table 2. The plot of the vapor pressure results of CaCl₂ + CH₃OH and of CaCl₂ + C₂H₅OH solutions against molality (m) of CaCl₂ together with literature values at T = 298.15 K are shown in Figures 1 and 2.

The experimental vapor pressure results were compared with the available literature results at 298.15 K. The average deviation

first author	reference	year	method ^a	properties	uncertainty	temperature/K	concentration, $m/(\text{mol}\cdot\text{kg}^{-1})$
				$CaCl_2 + CH_3$	OH		
Bixon	3	1979	OS	p	$\pm 0.1 \text{ mmHg}$	298.05	0.3186 to 2.6345
Uchizono	4	1983	FM	a	$\pm 0.5 \text{ mmHg}$	298.15	0.200 to 2.726
Hongo	5	1990	FM	p, a	<2 %	298.15	0.200 to 2.603
Yamamoto	6	1995	SM	p, a	±0.01 %	298.15	0.328 to 2.258
Zafarani-Moattar	7	2002	IP	ϕ, p	± 0.0002	298.15	0 to 3.7250
				$CaCl_2 + C_2H$	5OH		
Uchizono	4	1983	FM	а	$\pm 0.5 \text{ mmHg}$	298.15	0.200 to 2.201
Hongo	5	1990	FM	p, a	<2 %	298.15	0.301 to 2.205
Yamamoto	6	1995	SM	p, a	± 0.01 %	298.15	0.311 to 1.879
Zafarani-Moattar	8	2000	IP	p, ϕ, a	± 0.0002	298.15	0.1362 to 2.3717

^{*a*} OS, Othmer still; FM, flow method; SM, static method; IP, isopiestic method; *p*, vapor pressure; *a*, activity of solvent; ϕ , osmotic coefficient; *m*, molality.

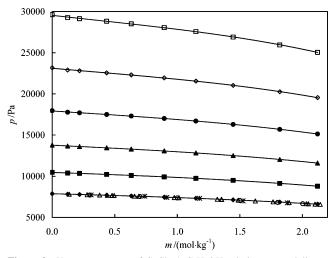

Figure 1. Vapor pressure *p* of CaCl₂ + CH₃OH solutions vs molality *m* of CaCl₂: \blacklozenge , 298.15 K; \blacksquare , 303.15 K; \blacklozenge , 308.15 K; \diamondsuit , 313.15 K; \diamondsuit , 318.15 K; \Box , 323.15 K; \bigcirc , Hongo et al.⁵ at *T* = 298.15 K; *, Yamamoto et al.⁶ at *T* = 298.15 K; \triangle , Zafarani-Moattar et al.⁷ at *T* = 298.15 K; \neg , Antoine equation.

 Table 2. Experimental Vapor Pressure Values of the Investigated

 Solutions

	p/Pa								
<i>m</i> /	T =	T =	T =	T =	T =	T =			
$(mol \cdot kg^{-1})$	298.15 K	303.15 K	308.15 K	313.15 K	318.15 K	323.15 K			
		$CaCl_2 + CH_3OH$							
0.10402	16849	21742	27785	35232	44270	55265			
0.18097	16774	21649	27670	35093	44100	55059			
0.30129	16663	21509	27501	34888	43850	54764			
0.34007	16625	21465	27444	34818	43771	54665			
0.37895	16589	21418	27388	34752	43695	54576			
0.56187	16400	21185	27104	34417	43301	54126			
0.65834	16293	21053	26944	34223	43069	53843			
1.02825	15778	20406	26144	33236	41865	52354			
1.08516	15689	20289	25997	33061	41637	52102			
1.23112	15448	19990	25608	32555	41022	51355			
1.42494	15093	19523	25018	31863	40162	50307			
1.86317	14212	18411	23617	30068	37970	47575			
2.45128	12939	16770	21527	27435	34672	43479			
2.59613	12635	16360	21011	26778	33887	42429			
		CaC	$Cl_2 + C_2H_5C$	ΟH					
0.12359	7820	10391	13666	17777	22902	29257			
0.21856	7785	10345	13607	17701	22806	29137			
0.43590	7691	10223	13450	17501	22555	28823			
0.63208	7600	10103	13296	17306	22306	28516			
0.89583	7464	9928	13070	17013	21942	28060			
1.14832	7321	9743	12830	16706	21549	27566			
1.44645	7132	9496	12509	16296	21031	26909			
1.81882	6856	9131	12036	15693	20263	25943			
2.12091	6602	8793	11599	15133	19552	25057			

of the vapor pressure results of CaCl₂ + CH₃OH solutions with the results of Hongo et al.⁵ was \pm 0.92 %; with the results of Yamamoto et al.,⁶ it was \pm 0.99 %; and with the results of

Figure 2. Vapor pressure *p* of CaCl₂ + C₂H₅OH solutions vs molality *m* of CaCl₂: \blacklozenge , 298.15 K; \blacksquare , 303.15 K; \blacklozenge , 308.15 K; \diamondsuit , 313.15 K; \diamondsuit , 318.15 K; \Box , 323.15 K; \bigcirc , Hongo et al.⁵ at *T* = 298.15 K; *, Yamamoto et al.⁶ at *T* = 298.15 K; \bigtriangleup , Zafarani-Moattar et al.⁷ at *T* = 298.15 K; \neg , Antoine equation.

Zafarani-Moattar et al.,⁷ it was ± 0.05 %. The vapor pressure results of CaCl₂ + C₂H₅OH solutions were presented by Yamamoto et al.⁶ at m = (0.311 to 1.879) mol·kg⁻¹. We compared our values with those from ref 6, and ± 0.43 % average deviation between two sets of results were found. The vapor pressure results of CaCl₂ + C₂H₅OH solutions of Zafarani-Moattar and Jahanbir-Sardroodi⁸ are presented at m = (0.1362 to 2.3717) mol·kg⁻¹. The average deviation of these results from our results was ± 0.16 %.

The activity of the solvent (a_s) and osmotic coefficients (ϕ) were calculated from the experimental vapor pressure values using the following equations:

$$\ln a_{s} = \ln(p/p^{*}) + (B_{s} - V_{s}^{*})(p - p^{*})/RT$$
(1)

$$\phi = -\ln a_{\rm s} / (\nu m M_{\rm s}) \tag{2}$$

The parameters of eqs 1 and 2 (the values of p^* , B_s , and V_s^*) for both solvents were presented in refs 9 and 10. The obtained values of activity of the solvent (a_s) and osmotic coefficients (ϕ) are tabulated in Table 3.

The experimental vapor pressure results of the investigated solutions were fitted to the Antoine equation:

$$\ln p = A - B/(T+C) \tag{3}$$

Table 3. Calculated Activity of Solvent a_s and Osmotic Coefficients ϕ of the Investigated Solutions

$m/(\text{mol}\cdot\text{kg}^{-1})$	as	ϕ	as	ϕ	as	ϕ		
CaCl ₂ + CH ₃ OH								
	T = 298	.15 K	T = 303	.15 K	T = 308.15 K			
0.10402	0.993669	0.635	0.993801	0.622	0.993862	0.616		
0.18097	0.989312	0.618	0.989622	0.600	0.989828	0.588		
0.30129	0.982863	0.597	0.983331	0.580	0.983899	0.560		
0.34007	0.980655	0.598	0.981353	0.576	0.981899	0.559		
0.37895	0.978563	0.595	0.979241	0.576	0.979933	0.556		
0.56187	0.967577	0.610	0.968766	0.588	0.969964	0.565		
0.65834	0.961356	0.623	0.962829	0.599	0.964346	0.574		
1.02825	0.931397	0.719	0.933715	0.694	0.936236	0.667		
1.08516	0.926217	0.735	0.928447	0.712	0.931067	0.685		
1.23112	0.912185	0.777	0.91498	0.751	0.917384	0.729		
1.42494	0.891506	0.838	0.893933	0.819	0.896617	0.797		
1.86317	0.840128	0.973	0.843753	0.949	0.847235	0.926		
2.45128	0.765746	1.133	0.769542	1.112	0.773386	1.091		
2.59613	0.747958	1.164	0.75097	1.148	0.755119	1.126		
	T = 313	.15 K	T = 318	.15 K	T = 323	.15 K		
0.10402	0.993985	0.603	0.994088	0.593	0.994194	0.582		
0.18097	0.990149	0.569	0.990364	0.557	0.990591	0.543		
0.30129	0.984491	0.540	0.984887	0.526	0.98543	0.507		
0.34007	0.982559	0.538	0.983156	0.520	0.983697	0.503		
0.37895	0.980736	0.534	0.981491	0.513	0.98214	0.495		
0.56187	0.971485	0.536	0.972855	0.510	0.974262	0.483		
0.65834	0.966125	0.545	0.967768	0.518	0.969306	0.493		
1.02825	0.938839	0.639	0.941346	0.612	0.943206	0.592		
1.08516	0.933997	0.655	0.936338	0.631	0.938785	0.606		
1.23112	0.919992	0.705	0.922825	0.679	0.925673	0.653		
1.42494	0.900824	0.763	0.903912	0.738	0.907261	0.711		
1.86317	0.851027	0.901	0.855623	0.871	0.85917	0.848		
2.45128	0.777777	1.067	0.782745	1.040	0.786818	1.018		
2.59613	0.759462	1.103	0.765358	1.072	0.768222	1.057		
	T = 298	-	$+ C_2H_5OH$ T = 303.	15 V	T = 308	15 V		
0.12359	1 - 298 0.992679	0.430	1 - 303. 0.992789	0.424	1 - 508. 0.992867	0.419		
0.21856	0.988261	0.391	0.988424	0.385	0.988616	0.379		
0.43590	0.976394	0.397	0.976845	0.389	0.977301	0.381		
0.63208	0.964905	0.409	0.965455	0.402	0.966201	0.394		
0.89583	0.947731	0.434	0.948841	0.424	0.949908	0.415		
1.14832	0.929669	0.460	0.931274	0.449	0.932600	0.440		
1.44645	0.905792	0.495	0.907812	0.484	0.909443	0.475		
1.81882	0.870911	0.550	0.873128	0.540	0.875304	0.530		
2.12091	0.838799	0.600	0.840994	0.591	0.843746	0.580		
	T = 313	.15 K	T = 318	.15 K	T = 323	.15 K		
0.12359	0.992922	0.416	0.993016	0.410	0.993105	0.405		
0.21856	0.988718	0.376	0.988901	0.369	0.989087	0.363		
0.43590	0.977655	0.375	0.978143	0.367	0.978573	0.360		
0.63208	0.966866	0.386	0.967467	0.379	0.96829	0.369		
0.89583	0.950651	0.409	0.951857	0.399	0.95301	0.389		
1.14832	0.933655	0.433	0.934995	0.424	0.93645	0.414		
1.44645	0.910948	0.467	0.912761	0.457	0.914414	0.448		
1 01000	0.055504	0.500	0.050554	0 510	0.001000	0 500		

The evaluated constants A, B, and C for the investigated solutions are tabulated in Table 4. The standard mean percent deviation is given by

0.879774

0.849212 0.558

0.510

0.881989

0.852223

0.500

0.546

0.520

1.81882

2.12091

0.877534

0.846482 0.569

$$\delta p/p~(\%) = \left(\frac{\sum_{i=1}^{n} (p_{\exp} - p_{cal})/p_{\exp}}{n}\right) \times 100$$
 (4)

The Antoine equation fits our experimental results with standard deviation of less than \pm 0.019 % for the CaCl₂ + CH₃OH and \pm 0.012 % for the CaCl₂ + C₂H₅OH solutions. The average absolute deviation Δ_{AAD} , bias Δ_{Bias} , root-mean-square deviation

Table 4. Constants of the Antoine Equation $\ln(p/Pa) = A - B/(T/K + C)$ and Standard Percent Deviations of the Investigated Solutions

(C) und Stun	uuru rercent	Deviations of	ine myesugatea	Solutions
<i>m</i>				$\delta p/p$
mol•kg ⁻¹	Α	В	С	%
	С	$aCl_2 + CH_3OH$		
0.10402	23.8674	3852.81	-25.5824	0.021
0.18097	23.8549	3845.63	-25.9357	0.022
0.30129	23.8767	3857.33	-25.6560	0.021
0.34007	23.8681	3852.10	-25.9033	0.021
0.37895	23.9234	3882.83	-24.8422	0.020
0.56187	24.0887	3972.92	-21.9367	0.022
0.65834	24.0729	3962.84	-22.4606	0.020
1.02825	23.9273	3882.46	-25.9053	0.015
1.08516	24.0848	3973.12	-22.7011	0.019
1.23112	24.2026	4047.81	-20.0881	0.026
1.42494	24.5162	4233.56	-13.9133	0.032
1.86317	24.4323	4204.28	-15.4231	0.014
2.45128	24.5956	4342.36	-11.1021	0.017
2.59613	24.6546	4391.03	-9.4714	0.050
	Ca	$aCl_2 + C_2H_5OH$	[
0.12359	23.6023	3692.44	-45.8972	0.015
0.21856	23.6752	3729.41	-44.7097	0.016
0.43590	23.6940	3735.54	-44.8273	0.015
0.63208	23.7237	3747.64	-44.7270	0.019
0.89583	23.6254	3692.22	-47.1133	0.018
1.14832	23.8101	3788.86	-44.0578	0.018
1.44645	23.7492	3756.18	-45.6599	0.019
1.81882	23.6935	3723.24	-47.6069	0.017
2.12091	23.5605	3648.99	-51.0334	0.031

 Δ_{RMS} , standard deviation Δ_{STD} , and maximum absolute deviation Δ_{Max} were calculated using the following equations:

$$\Delta_{AAD}/Pa = \frac{\sum_{i=1}^{n} |p_{exp} - p_{cal}|}{n}$$
(5)

$$\Delta_{\text{Bias}}/\text{Pa} = \frac{\sum_{i=1}^{n} (p_{\text{exp}} - p_{\text{cal}})}{n}$$
(6)

$$\Delta_{\rm RMS} / {\rm Pa} = \left[\frac{\sum_{i=1}^{n} (p_{\rm exp} - p_{\rm cal})^2}{n} \right]^{1/2}$$
(7)

$$\Delta_{\rm STD} / Pa = \sqrt{\frac{\sum_{i=1}^{n} (p_{\rm exp} - p_{\rm cal})^2}{n(n-1)}}$$
(8)

$$\Delta_{\text{Max}}/\text{Pa} = \max|p_{\text{exp}} - p_{\text{cal}}| \tag{9}$$

where p_{cal} is the vapor pressure calculated from an Antoine equation and *n* is the number of experimental points considered. The deviations were for the CaCl₂ + CH₃OH solutions: $\Delta_{AAD} = 6.155 \text{ Pa}, \Delta_{Bias} = 0.356 \text{ Pa}, \Delta_{RMS} = 9.370 \text{ Pa}, \Delta_{STD} = 1.201 \text{ Pa}, \Delta_{Max} = 27.721 \text{ Pa}$ and for the CaCl₂ + C₂H₅OH solutions: $\Delta_{AAD} = 3.423 \text{ Pa}, \Delta_{Bias} = 0.126 \text{ Pa}, \Delta_{RMS} = 4.533 \text{ Pa}, \Delta_{STD} = 0.623 \text{ Pa}, \Delta_{Max} = 12.111 \text{ Pa}$, respectively.

Table 5. Parameters for the Pitzer-Mayorga Model of the Investigated Solutions^a

Т	m	A_{ϕ}					
K	mol·kg ⁻¹	$kg^{1/2} \cdot mol^{-1/2}$	$eta^{(0)}$	$eta^{(1)}$	$eta^{(2)}$	С	$s(\phi)$
			$CaCl_2 + CH_3$	OH			
298.15	0.10402 to 2.59613	1.29430	0.581407	8.819294	-4.480378	-0.036800	0.004
303.15	0.10402 to 2.59613	1.31502	0.586744	9.012059	-4.720061	-0.037368	0.004
308.15	0.10402 to 2.59613	1.33639	0.642396	10.52050	-5.854351	-0.046334	0.003
313.15	0.10402 to 2.59613	1.35832	0.639884	10.84376	-6.167041	-0.045435	0.003
318.15	0.10402 to 2.59613	1.38074	0.651690	11.35983	-6.603508	-0.047835	0.004
323.15	0.10402 to 2.59613	1.40356	0.654333	11.65454	-6.892988	-0.047990	0.005
			$CaCl_2 + C_2H_2$	5OH			
298.15	0.12359 to 2.12091	2.00527	0.406514	6.315487	-0.713057	-0.022114	0.006
303.15	0.12359 to 2.12091	2.04555	0.416036	6.762805	-0.844427	-0.022678	0.007
308.15	0.12359 to 2.12091	2.08720	0.468627	7.820267	-1.464017	-0.031963	0.007
313.15	0.12359 to 2.12091	2.13077	0.472306	8.243073	-1.495554	-0.031310	0.007
318.15	0.12359 to 2.12091	2.17629	0.493980	8.837304	-1.725356	-0.034238	0.008
323.15	0.12359 to 2.12091	2.22424	0.523688	9.708257	-2.119328	-0.038232	0.008

^{*a*} $b = 3.2 \text{ kg}^{1/2} \cdot \text{mol}^{-1/2}$; $\alpha_1 = 2 \text{ kg}^{1/2} \cdot \text{mol}^{-1/2}$, $\alpha_2 = 1.4 \text{ kg}^{1/2} \cdot \text{mol}^{-1/2}$.

The experimental osmotic coefficient ϕ data were correlated with the model of Pitzer and Mayorga.¹¹ This model for the 2:1 electrolytes has the following form:

$$\phi - 1 = 2f^{\phi} + (4/3)mB^{\phi}_{\rm MX} + m^2 \frac{2^{5/2}}{3} C^{\phi}_{\rm MX}$$
(10)

where

$$f^{\phi} = -A_{\phi}(I)^{1/2} / (1 + b(I)^{1/2})$$
(11)

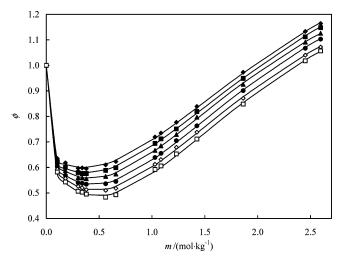
$$A_{\phi} = (1/3)(2\pi N_{\rm A}d_{\rm s})^{1/2} [e^{2}/(4\pi\epsilon_0\epsilon_{\rm r}kT)]^{3/2}$$
(12)

and

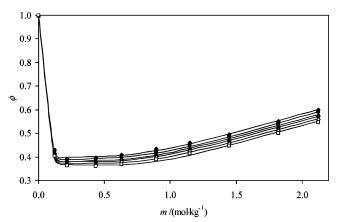
$$B_{\rm MX}^{\phi} = \beta_{\rm MX}^{(0)} + \beta_{\rm MX}^{(1)} \exp[-\alpha_{(1)}(I)^{1/2}]$$
(13)

For some data on aqueous and nonaqueous electrolyte solutions, it was found that, by adding a $\beta_{MX}^{(2)}$ term to eq 13, better agreement with the experimental results can be obtained with the Pitzer and Mayorga model^{11–13} given by

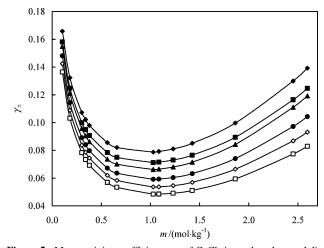
$$B_{\rm MX}^{\phi} = \beta_{\rm MX}^{(0)} + \beta_{\rm MX}^{(1)} \exp[-\alpha_{(1)}(I)^{1/2}] + \beta_{\rm MX}^{(2)} \exp[-\alpha_{(2)}(I)^{1/2}]$$
(14)


In eqs 10 to 14, $\beta_{MX}^{(0)}$, $\beta_{MX}^{(1)}$, $\beta_{MX}^{(2)}$, and C_{MX}^{ϕ} are Pitzer's ionic interaction parameters; $\alpha_{(1)}$, $\alpha_{(2)}$, and *b* are adjustable parameters. The parameters of eq 12 were discussed in ref 9. The term *I* is the ionic strength on a molality basis:

$$I = 0.5 \sum m_j z_j^2 \tag{15}$$


where m_j is the molality of *j*th ion and z_j is the absolute value for the *j*th ionic charge. The remaining symbols have their usual meaning. For the 2:1 electrolytes, I = 3m.

From the analysis of the experimental osmotic coefficient data, we found that the values of adjustable parameters as $b = 3.2 \text{ kg}^{1/2} \cdot \text{mol}^{-1/2}$, $\alpha_1 = 2 \text{ kg}^{1/2} \cdot \text{mol}^{-1/2}$, and $\alpha_2 = 1.4 \text{ kg}^{1/2} \cdot \text{mol}^{-1/2}$ proposed in the literature^{7.8} for the methanol and ethanol solutions of CaCl₂ were satisfactory for the calculations. The values of *b* and α_1 were recommended by Barthel et al.¹⁴ for methanol and ethanol electrolyte solutions in correlations with the Pitzer–Mayorga equation. Ion interaction parameters obtained from fitting of experimental osmotic coefficient data for


the investigated solutions are shown in Table 5 together with the Debye–Hückel limiting law slope for the osmotic coefficient in molality $A_{\phi}/(\text{kg}^{1/2} \cdot \text{mol}^{-1/2})$ of pure solvent and standard deviation obtained for the osmotic coefficients. The calculated osmotic coefficients ϕ against molality *m* of CaCl₂ are shown in Figures 3 and 4 together the results of the Pitzer–Mayorga model.

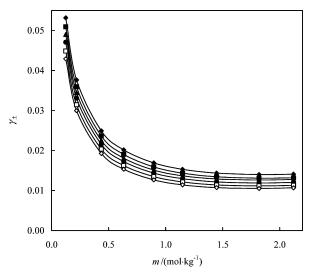

Figure 3. Osmotic coefficients ϕ of CaCl₂ + CH₃OH solutions vs molality *m* of CaCl₂: \blacklozenge , 298.15 K; \blacksquare , 303.15 K; \blacklozenge , 308.15 K; \diamondsuit , 313.15 K; \diamondsuit , 318.15 K; \Box , 323.15 K; -, Pitzer-Mayorga model.

Figure 4. Osmotic coefficients ϕ of CaCl₂ + C₂H₅OH solutions vs molality *m* of CaCl₂: \blacklozenge , 298.15 K; \blacksquare , 303.15 K; \blacklozenge , 308.15 K; \diamondsuit , 313.15 K; \diamondsuit , 318.15 K; \Box , 323.15 K; -, Pitzer-Mayorga model.

Figure 5. Mean activity coefficients γ_{\pm} of CaCl₂ in methanol vs molality *m* of CaCl₂: \blacklozenge , 298.15 K; \blacksquare , 303.15 K; \blacktriangle , 308.15 K; \diamondsuit , 313.15 K; \diamondsuit , 318.15 K; \Box , 323.15 K.

Figure 6. Mean activity coefficients γ_{\pm} of CaCl₂ in ethanol vs molality *m* of CaCl₂: \blacklozenge , 298.15 K; \blacksquare , 303.15 K; \blacktriangle , 308.15 K; \diamondsuit , 313.15 K; \diamondsuit , 318.15 K; \Box , 323.15 K.

The mean molal activity coefficient of CaCl₂ in solution γ_{\pm} was calculated using the Pitzer equation¹¹ and presented in Table 6. The equation used for the 2:1 electrolytes is given by

$$\ln \gamma_{\pm} = 2f^{\gamma} + (4/3)mB^{\gamma}_{\rm MX} + m^2(2^{5/2}/3)C^{\gamma}_{\rm MX}$$
(16)

where

$$f^{\gamma} = -A_{\phi}[I^{1/2}/(1+bI^{1/2}) + (2/b)\ln(1+bI^{1/2})] \qquad (17)$$

$$B_{\rm MX}^{\gamma} = 2\beta_{\rm MX}^{(0)} + A_1 + A_2 \tag{18}$$

$$C_{\rm MX}^{\gamma} = (3/2)C_{\rm MX}^{\phi} \tag{19}$$

where

$$A_{1} = (2\beta_{\text{MX}}^{(1)}/\alpha_{(1)}^{2}I)[1 - \exp(-\alpha_{(1)}I^{1/2})(1 + \alpha_{(1)}I^{1/2} - \alpha_{(1)}^{2}I/2)]$$
(20)
$$A_{2} = (2\beta_{\text{MX}}^{(2)}/\alpha_{(2)}^{2}I)[1 - \exp(-\alpha_{(2)}I^{1/2})(1 + \alpha_{(2)}I^{1/2} - \alpha_{(2)}^{2}I/2)]$$
(21)

The validity of the mean molal activity coefficient of $CaCl_2$ in solution γ_{\pm} calculations depends on how well the model

Table 6. Mean Molal Activity Coefficient γ_{\pm} of CaCl₂ in Solvents Calculated from the Pitzer–Mayorga Model

	γ±								
<i>m</i> /	T =	T =	T =	T =	T =	T =			
$(mol \cdot kg^{-1})$	298.15 K	303.15 K	308.15 K	313.15 K	318.15 K	323.15 K			
		$CaCl_2 + CH_3OH$							
0.10402	0.16581	0.15820	0.15487	0.14815	0.14241	0.13644			
0.18097	0.13230	0.12480	0.12108	0.11444	0.10884	0.10314			
0.30129	0.10724	0.09994	0.09568	0.08916	0.08373	0.07835			
0.34007	0.10216	0.09491	0.09053	0.08404	0.07865	0.07336			
0.37895	0.09794	0.09074	0.08625	0.07978	0.07444	0.06922			
0.56187	0.08551	0.07842	0.07364	0.06719	0.06195	0.05696			
0.65834	0.08205	0.07495	0.07008	0.06359	0.05835	0.05340			
1.02825	0.07874	0.07122	0.06622	0.05916	0.05364	0.04848			
1.08516	0.07916	0.07153	0.06651	0.05932	0.05371	0.04849			
1.23112	0.08104	0.07307	0.06803	0.06043	0.05457	0.04912			
1.42494	0.08508	0.07655	0.07148	0.06324	0.05695	0.05110			
1.86317	0.09969	0.08945	0.08431	0.07411	0.06646	0.05938			
2.45128	0.12996	0.11645	0.11105	0.09723	0.08685	0.07738			
2.59613	0.13924	0.12475	0.11922	0.10433	0.09311	0.08292			
		CaC	$Cl_2 + C_2H_5C$	ΟH					
0.12359	0.05316	0.05092	0.04900	0.04707	0.04487	0.04291			
0.21856	0.03765	0.03594	0.03446	0.03307	0.03142	0.02995			
0.43590	0.02491	0.02364	0.02252	0.02155	0.02035	0.01928			
0.63208	0.02016	0.01905	0.01810	0.01726	0.01625	0.01532			
0.89583	0.01691	0.0159	0.01512	0.01436	0.01348	0.01267			
1.14832	0.01530	0.01435	0.01369	0.01296	0.01215	0.01141			
1.44645	0.01436	0.01344	0.01289	0.01216	0.01140	0.01072			
1.81882	0.01399	0.01308	0.01263	0.01189	0.01116	0.01052			
2.12091	0.01409	0.01317	0.01277	0.01202	0.01129	0.01067			

describes the osmotic coefficients ϕ in the dilute region. The activity coefficient γ_{\pm} values of the investigated systems from the Pitzer-Mayorga model are shown in Figures 5 and 6.

Conclusions

Experimental vapor pressure data were reported for CaCl₂ + CH₃OH solutions in molality range m = (0.10402 to 2.59613) mol·kg⁻¹ and for CaCl₂ + C₂H₅OH solutions in molality range $m = (0.12359 \text{ to } 2.12091) \text{ mol·kg}^{-1}$ at T = (298.15 to 323.15) K. Experimental vapor pressure data are satisfactorily correlated using the Antoine equation. Experimental osmotic coefficients are correlated using the Pitzer–Mayorga model were used to calculate the mean molal activity coefficient of CaCl₂ in solution. For the Pitzer–Mayorga model, data analysis shows that the values b = 3.2, $\alpha_1 = 2$, and $\alpha_2 = 1.4$ give the best overall results for the investigated systems. For this model, the $\beta^{(2)}$ parameter, which is related to the second virial coefficient, is negative. This shows the existence of ion association in these systems.

Acknowledgment

Prof. Andreas Heintz, Prof. Egon Hassel, Dr. Sergey Verevkin, and Dr. Eckard Bich (Rostock University, Germany) are thanked for their support of the experimental and theoretical work.

Literature Cited

- Lai, H.; Li, Ch.; Zheng, D.; Fu, J. Modeling of cycling process of CaCl₂/CH₃OH solid-vapor chemical heat pump. *Proceedings of the International Absorption Heat Pump Conference*; AES Vol. 31; ASME: Fairfield, NJ, 1993; pp 419–423.
- (2) Offenhartz, P. O'D.; Schwartz, D.; Malsberger, R. E.; Rye, T. V. Engineering prototype studies on the CaCl₂-CH₃OH chemical heat pump for solar air conditioning, heating, and storage. *Proceedings of the 15th Intersociety Energy Conversion Engineering Conference*, 1980, Seattle, WA.
- (3) Bixon, E.; Guerry, R.; Tassios, D. Salt effect on the vapor pressure of pure solvents: methanol with seven salts at 24.9 °C. J. Chem. Eng. Data 1979, 24, 9–11.
- (4) Uchizono, Y. Activity of some alcohols in alcohol solutions containing calcium chloride. Kagaku-Kogaku-Ronbun-Shu 1983, 9, 485–490.

- (5) Hongo, M.; Kusunoki, M.; Mishima, K.; Arai, Y. Vapor pressure of alcohol-calcium chloride binary systems at 298.15 K. Kagaku-Kogaku-Ronbun-Shu 1990, 16, 1263–1265.
- (6) Yamamoto, H.; Terano, T.; Nishi, Y.; Tokunaga, J. Vapor-liquid equilibria for methanol + ethanol + calcium chloride, + ammonium iodide, and + sodium iodide at 298.15 K. J. Chem. Eng. Data 1995, 40, 472-477.
- (7) Zafarani-Moattar, M. T.; Jahanbin-Sardroodi, J.; Nasirzadeh, K. Isopiestic determination of osmotic coefficients and evaluation of vapor pressures for solutions of calcium chloride and calcium nitrate in methanol at 298.15 K. *Fluid Phase Equilib.* 2002, 200, 173–185.
- (8) Zafarani-Moattar, M. T.; Jahanbin-Sardroodi, J. Measurement and correlation of osmotic coefficients and evaluation of vapor pressures for solutions of CaCl₂ and Ca(NO₃)₂ in ethanol at 298 K. *Fluid Phase Equilib.* **2000**, *172*, 221–235.
- (9) Safarov, J. T. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: binary solutions of lithium nitrate with methanol. J. Chem. Thermodyn. 2005, 37, 1261–1267.
- (10) Safarov, J. T. Vapor pressure measurements of LiI + C₂H₅OH solutions. Z. Phys. Chem. 2005, 219, 1133-1144.

- (11) Pitzer, K. S.; Mayorga, G. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 1973, 77, 2300–2308.
- (12) Pitzer, K. S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268–277.
- (13) Pitzer, K. S. Activity Coefficient in Electrolyte solutions, 2nd ed.; CRC Press: Boca Roton, FL, 1991.
- (14) Barthel, J.; Neueder, R.; Poepke, H.; Wittmann, H. Osmotic and activity coefficients of nonaqueous electrolyte solutions. 1. Lithium perchlorate in the protic solvents methanol, ethanol, and 2-propanol. *J. Solution Chem.* **1998**, *27*, 1055.

Received for review May 26, 2005. Accepted December 2, 2005. The author thanks the Alexander von Humboldt Foundation of Germany for the support of his research stay at the Rostock University of Germany.

JE0502086