Vapor-Liquid Equilibria on Seven Binary Systems: Ethylene Oxide + 2-Methylpropane; Acetophenone + Phenol; cis-1,3-Dichloropropene + 1,2-Dichloropropane; 1,5-Hexadiene + Allyl Chloride; Isopropyl Acetate + Acetonitrile; Vinyl Chloride + Methyl Chloride; and 1,4-Butanediol + γ-Butyrolactone ${ }^{\dagger}$

Neil F. Giles* and Grant M. Wilson
Wiltec Research Co., Inc., 488 South 500 West, Provo, Utah 84601

Abstract

Vapor-liquid equilibria are reported for the following seven binary systems: ethylene oxide +2 -methylpropane; acetophenone + phenol; cis-1,3-dichloropropene $+1,2$-dichloropropane; 1,5-hexadiene + allyl chloride; isopropyl acetate + acetonitrile; vinyl chloride + methyl chloride; and 1,4-butanediol $+\gamma$-butyrolactone. The system pressure and temperature were measured at several charge compositions along two or three isotherms for the first six systems and along one isotherm for the seventh system. Equilibrium vapor- and liquid-phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the Redlich-Kister activity coefficient model to represent the liquid phase. Additional vapor-liquid equilibrium studies were performed on the 1,4-butanediol $+\gamma$-butyrolactone system at six compositions by directly analyzing samples that were withdrawn from the equilibrium vapor and liquid phases.

Introduction

This work is part of an ongoing investigation of the phase equilibria for systems of industrial interest sponsored by Project 805 of the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers. This paper reports experimental measurements that have been made under Project 805/97 and Project 805/98 to obtain vapor-liquid equilibrium data on seven binary systems. These systems and their measurement conditions are as follows:

1. Ethylene oxide +2 -methylpropane at $25^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$.
2. Acetophenone + phenol at $100^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$.
3. cis-1,3-Dichloropropene $+1,2$-dichloropropane at $60^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$.
4. 1,5-Hexadiene + allyl chloride at $60^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
5. Isopropyl acetate + acetonitrile at $60^{\circ} \mathrm{C}, 120^{\circ} \mathrm{C}$, and 180 ${ }^{\circ} \mathrm{C}$.
6. Vinyl chloride + methyl chloride at $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.
7. 1,4-Butanediol $+\gamma$-butyrolactone at $110^{\circ} \mathrm{C}$.

Vapor-liquid equilibria (VLE) were determined for each of the binary systems from total pressure-temperature-composition (PTx) measurements. With accurate pressure measurements and equations to model the vapor and liquid phases, PTx data can yield reliable phase composition information. An equation of state was used to represent the nonidealities in the vapor phase, and an activity coefficient equation was used to represent the nonidealities in the liquid phase.

Additional vapor-liquid equilibrium studies were performed on the 1,4-butanediol $+\gamma$-butyrolactone system at six composi-

[^0]tions by directly analyzing samples that were withdrawn from the equilibrium vapor and liquid phases. The results of these measurements were used in conjunction with the PTx data to determine the VLE behavior of this system.

Experimental Section

The apparatus and procedures used for the PTx measurements have been described earlier. ${ }^{1}$ Temperatures were measured using ITS-90 with platinum resistance thermometers. These thermometers were calibrated using ice and steam points and referenced to a standard platinum resistance thermometer with a NIST traceable calibration. Temperatures were measured with a precision of $\pm 0.01 \mathrm{~K}$ and an uncertainty of less than ± 0.05 K.

The PTx measurements for both isotherms of systems 1, 4, and 6 and for the $120^{\circ} \mathrm{C}$ and $180^{\circ} \mathrm{C}$ isotherms of system 5 were performed using a stainless steel apparatus. Pressures were measured using a calibrated Paroscientific pressure transducer with an estimated uncertainty of $\pm 0.5 \mathrm{kPa}$.

PTx measurements were performed in a glass still apparatus for systems 2 and 7. Pressures measured using this apparatus have an estimated uncertainty of $\pm 0.03 \mathrm{kPa}$.

A glass cell apparatus with an attached mercury manometer was used to measure PTx data for both isotherms of system 3 and for the $60^{\circ} \mathrm{C}$ isotherm of system 5. Pressures were measured with this apparatus with an estimated uncertainty of $\pm 0.05 \mathrm{kPa}$.

Txy measurements on system 7 were performed at approximate liquid mole fractions of $(0.101,0.306,0.516$, and 0.707) 1,4-butanediol using a glass still apparatus identical to the one used for the PTx measurements. Two additional Txy points were measured at liquid mole fractions of (0.411 and 0.609) 1,4-butanediol using a glass cell apparatus similar to the one used for the PTx measurements. The internal volume of

Table 1. PTx Measurement Results on Ethylene Oxide (A) + 2-Methylpropane (B)

$\begin{gathered} \text { run } \\ \text { no. } \end{gathered}$	$100 z_{\text {A }}$	$100 x_{\text {A }}$	$100 y_{\text {A }}$	P/kPa		$\gamma_{\text {A }}$	$\gamma_{\text {B }}$	$\phi_{\text {A }}$	$\phi_{\text {B }}$	$P F_{\text {A }}$	$P F_{\text {B }}$	$\alpha_{\text {BA }}$
				measd	calcd							
$t=25^{\circ} \mathrm{C}^{a}$												
1	100.00	100.00	100.00	174.71	174.71	1.000	4.700	0.969	0.960	1.0000	0.9925	8.988
1	94.65	95.04	72.67	231.87	232.48	1.006	3.770	0.959	0.946	1.0012	0.9949	7.208
1	89.14	89.70	59.91	273.45	272.75	1.022	3.086	0.952	0.936	1.0020	0.9966	5.826
1	81.53	82.11	50.76	308.20	308.36	1.062	2.442	0.945	0.927	1.0028	0.9981	4.452
1	67.56	67.94	42.26	343.70	343.66	1.182	1.762	0.939	0.919	1.0035	0.9996	2.895
1	59.47	59.72	38.98	356.18	355.77	1.281	1.528	0.937	0.916	1.0037	1.0001	2.321
2	52.20	52.38	36.32	364.46	363.99	1.390	1.377	0.936	0.914	1.0039	1.0005	1.928
1	46.14	46.22	34.10	369.77	369.53	1.500	1.279	0.935	0.913	1.0040	1.0007	1.661
2	44.90	45.06	33.67	371.01	370.44	1.523	1.263	0.935	0.913	1.0040	1.0008	1.616
2	38.14	38.26	31.02	375.21	375.07	1.671	1.181	0.934	0.911	1.0041	1.0010	1.378
2	25.75	25.76	25.09	379.21	379.48	2.030	1.078	0.934	0.910	1.0042	1.0012	1.036
2	11.20	11.11	14.38	371.97	373.39	2.659	1.014	0.935	0.912	1.0041	1.0009	0.744
2	4.30	4.24	6.51	361.91	362.84	3.075	1.002	0.937	0.914	1.0039	1.0004	0.635
2	0.00	0.00	0.00	352.39	352.39	3.386	1.000	0.939	0.917	1.0037	1.0000	0.576
$t=75{ }^{\circ} \mathrm{C}^{b}$												
1	100.00	100.00	100.00	766.7	766.7	1.000	3.235	0.911	0.887	1.0000	0.9816	4.627
1	94.65	95.35	83.91	890.7	890.6	1.004	2.733	0.897	0.868	1.0024	0.9866	3.928
1	89.14	90.19	73.38	988.9	989.5	1.016	2.333	0.886	0.853	1.0043	0.9907	3.336
1	81.53	82.68	63.85	1089.3	1089.5	1.047	1.931	0.874	0.838	1.0063	0.9949	2.701
1	67.56	68.31	52.77	1205.5	1204.7	1.138	1.486	0.862	0.820	1.0085	0.9997	1.929
1	59.48	59.93	47.82	1248.3	1247.9	1.210	1.331	0.857	0.813	1.0094	1.0015	1.632
2	52.20	52.51	43.66	1276.7	1276.7	1.285	1.232	0.854	0.809	1.0099	1.0027	1.427
1	46.15	46.25	40.12	1295.3	1295.2	1.357	1.169	0.852	0.806	1.0103	1.0034	1.284
2	44.90	45.16	39.50	1297.3	1297.8	1.370	1.159	0.852	0.806	1.0104	1.0036	1.261
2	38.14	38.30	35.40	1309.7	1310.8	1.460	1.108	0.851	0.803	1.0106	1.0041	1.133
2	25.75	25.67	26.79	1314.5	1315.3	1.654	1.044	0.851	0.802	1.0107	1.0043	0.944
2	11.20	10.96	13.68	1279.5	1279.2	1.937	1.007	0.856	0.808	1.0100	1.0028	0.777
2	4.30	4.15	5.73	1241.7	1242.6	2.093	1.001	0.861	0.813	1.0093	1.0012	0.713
2	0.00	0.00	0.00	1212.7	1212.7	2.196	1.000	0.865	0.817	1.0087	1.0000	0.678

${ }^{a}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.5810 ; \Lambda_{\mathrm{BA}}=0.3235 .{ }^{b}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.8706 ; \Lambda_{\mathrm{BA}}=0.3518$.

Table 2. PTx Measurement Results on Acetophenone (A) + Phenol (B)

$\begin{gathered} \text { run } \\ \text { no. } \end{gathered}$	$100 z_{\text {A }}$	$100 x_{\text {A }}$	$100 y_{\text {A }}$	P / kPa		$\gamma_{\text {A }}$	$\gamma_{\text {B }}$	$\phi_{\text {A }}$	ϕ_{B}	$P F_{\text {A }}$	$P F_{\text {B }}$	$\alpha_{\text {BA }}$
				measd	calcd							
$t=100{ }^{\circ} \mathrm{C}^{a}$												
1	100.00	100.00	100.00	3.573	3.573	1.000	0.328	0.998	0.999	1.0000	0.9999	0.506
1	95.62	95.62	97.60	3.508	3.496	0.999	0.348	0.998	0.999	1.0000	0.9999	0.536
1	89.56	89.55	93.59	3.412	3.391	0.992	0.378	0.998	0.999	1.0000	0.9999	0.587
1	79.36	79.36	84.63	3.232	3.234	0.965	0.438	0.998	0.999	1.0000	0.9999	0.698
1	69.24	69.23	72.52	3.118	3.126	0.917	0.508	0.998	0.999	1.0000	0.9999	0.853
1	58.88	58.88	57.03	3.098	3.106	0.842	0.590	0.998	0.999	1.0000	0.9999	1.079
2	50.91	50.92	43.98	3.172	3.178	0.769	0.659	0.998	0.999	1.0000	0.9999	1.321
1	49.11	49.11	41.03	3.222	3.207	0.750	0.676	0.998	0.999	1.0000	0.9999	1.387
2	40.74	40.74	28.08	3.408	3.409	0.658	0.752	0.998	0.999	1.0000	0.9999	1.761
2	31.41	31.42	16.27	3.774	3.765	0.545	0.835	0.998	0.999	1.0000	0.9999	2.359
2	20.95	20.97	7.26	4.305	4.307	0.417	0.918	0.997	0.998	1.0000	1.0000	3.387
2	10.29	10.30	2.21	4.904	4.940	0.296	0.978	0.997	0.998	1.0001	1.0000	5.090
2	4.82	4.83	0.79	5.229	5.255	0.240	0.995	0.997	0.998	1.0001	1.0000	6.373
2	0.00	0.00	0.00	5.506	5.506	0.196	1.000	0.997	0.998	1.0001	1.0000	7.840
$t=160{ }^{\circ} \mathrm{C}^{b}$												
1	100.00	100.00	100.00	32.024	32.024	1.000	0.515	0.987	0.993	1.0000	0.9994	0.850
1	94.57	94.56	95.37	31.801	31.751	1.000	0.511	0.987	0.993	1.0000	0.9994	0.844
1	89.84	89.83	91.18	31.477	31.513	0.999	0.517	0.987	0.993	1.0000	0.9994	0.855
1	79.42	79.41	80.57	31.084	31.093	0.986	0.555	0.987	0.993	1.0000	0.9994	0.930
1	68.98	68.99	67.38	31.064	31.087	0.948	0.618	0.987	0.993	1.0000	0.9994	1.077
1	68.97	68.98	67.36	31.145	31.087	0.948	0.619	0.987	0.993	1.0000	0.9994	1.078
1	59.63	59.66	53.64	31.779	31.768	0.892	0.690	0.987	0.992	1.0000	0.9994	1.278
2	58.94	58.95	52.56	31.817	31.855	0.887	0.696	0.987	0.992	1.0000	0.9994	1.296
1	54.32	54.36	45.53	32.487	32.553	0.852	0.734	0.987	0.992	1.0000	0.9994	1.424
2	52.11	52.13	42.17	33.001	32.979	0.833	0.753	0.987	0.992	1.0000	0.9994	1.494
2	42.85	42.89	29.10	35.425	35.372	0.748	0.829	0.986	0.991	1.0001	0.9995	1.830
2	32.30	32.36	17.15	39.191	39.195	0.647	0.905	0.984	0.990	1.0003	0.9996	2.311
2	21.43	21.50	8.65	43.860	43.902	0.549	0.962	0.983	0.989	1.0004	0.9997	2.893
2	10.83	10.88	3.39	48.676	48.651	0.470	0.992	0.981	0.988	1.0006	0.9999	3.482
2	6.01	6.04	1.70	50.709	50.734	0.441	0.998	0.980	0.987	1.0007	0.9999	3.728
2	0.00	0.00	0.00	53.234	53.234	0.413	1.000	0.979	0.987	1.0008	1.0000	3.989

${ }^{a}$ Redlich-Kister parameters: $\mathrm{A}=-1.3588 ; \mathrm{B}=0.2571 ; \mathrm{C}=-0.0120 .{ }^{b}$ Redlich-Kister parameters: $\mathrm{A}=-0.9317 ; \mathrm{B}=0.1099 ; \mathrm{C}=0.1578$.
the glass cell used for the Txy measurements was about 1200 cm^{3}. Temperatures were measured with a precision of ± 0.01 K and an uncertainty of less than $\pm 0.05 \mathrm{~K}$.

The Txy measurements were made by charging the cell with the desired amount of each compound. After achieving equilibrium at the desired temperature, the system was degassed.

Table 3. PTX Measurement Results on cis-1,3-Dichloropropene (A) + 1,2-Dichloropropane (B)

$\begin{gathered} \text { run } \\ \text { no. } \end{gathered}$	$100 z_{\text {A }}$	$100 x_{\text {A }}$	$100 y_{\text {A }}$	P / kPa		$\gamma_{\text {A }}$	$\gamma_{\text {B }}$	$\phi_{\text {A }}$	$\phi_{\text {B }}$	$P F_{\text {A }}$	$P F_{\text {B }}$	$\alpha_{\text {BA }}$
				measd	calcd							
$t=60{ }^{\circ} \mathrm{C}^{a}$												
1	100.00	100.00	100.00	22.605	22.605	1.000	1.012	0.991	0.991	1.0000	0.9997	1.345
1	94.69	94.69	93.00	23.074	23.022	1.000	1.011	0.991	0.991	1.0000	0.9997	1.343
1	89.15	89.16	85.98	23.433	23.453	1.000	1.010	0.991	0.991	1.0000	0.9998	1.341
1	79.23	79.24	74.05	24.085	24.221	1.001	1.007	0.991	0.990	1.0001	0.9998	1.338
1	69.55	69.57	63.14	24.826	24.961	1.001	1.006	0.990	0.990	1.0001	0.9998	1.335
1	58.18	58.19	51.12	25.835	25.825	1.002	1.004	0.990	0.990	1.0001	0.9998	1.331
2	51.54	51.56	44.47	26.218	26.324	1.003	1.003	0.990	0.990	1.0001	0.9999	1.329
1	46.30	46.31	39.39	26.731	26.717	1.004	1.002	0.990	0.989	1.0001	0.9999	1.327
2	41.26	41.27	34.65	27.068	27.094	1.004	1.002	0.989	0.989	1.0002	0.9999	1.326
2	30.78	30.80	25.17	27.903	27.872	1.006	1.001	0.989	0.989	1.0002	0.9999	1.323
2	20.69	20.70	16.51	28.688	28.618	1.007	1.000	0.989	0.989	1.0002	0.9999	1.320
2	10.10	10.11	7.87	29.387	29.397	1.009	1.000	0.989	0.988	1.0002	1.0000	1.317
2	4.34	4.34	3.34	29.835	29.820	1.010	1.000	0.988	0.988	1.0002	1.0000	1.316
2	0.00	0.00	0.00	30.138	30.138	1.011	1.000	0.988	0.988	1.0003	1.0000	1.315
$t=80{ }^{\circ} \mathrm{C}^{b}$												
1	100.00	100.00	100.00	47.292	47.292	1.000	1.011	0.984	0.984	1.0000	0.9995	1.299
1	94.30	94.31	92.75	48.105	48.107	1.000	1.010	0.984	0.984	1.0000	0.9995	1.297
1	88.83	88.84	86.01	48.912	48.886	1.000	1.009	0.984	0.983	1.0001	0.9996	1.295
1	79.36	79.39	74.87	50.232	50.223	1.001	1.007	0.983	0.983	1.0001	0.9996	1.292
1	69.13	69.16	63.49	51.765	51.654	1.001	1.005	0.983	0.982	1.0001	0.9997	1.289
1	58.95	58.97	52.77	53.089	53.067	1.002	1.003	0.982	0.982	1.0002	0.9997	1.287
2	52.54	52.56	46.30	54.036	53.951	1.002	1.003	0.982	0.982	1.0002	0.9997	1.285
1	49.03	49.05	42.85	54.441	54.433	1.003	1.002	0.982	0.982	1.0002	0.9998	1.284
1	44.73	44.75	38.70	54.933	55.023	1.003	1.002	0.982	0.981	1.0003	0.9998	1.283
2	41.72	41.74	35.85	55.565	55.433	1.004	1.002	0.981	0.981	1.0003	0.9998	1.282
2	31.59	31.62	26.55	56.878	56.810	1.005	1.001	0.981	0.981	1.0003	0.9998	1.280
2	22.20	22.23	18.29	58.185	58.081	1.006	1.000	0.981	0.980	1.0004	0.9999	1.277
2	11.29	11.31	9.09	59.451	59.553	1.008	1.000	0.980	0.980	1.0004	0.9999	1.275
2	6.13	6.14	4.89	60.259	60.246	1.009	1.000	0.980	0.980	1.0004	1.0000	1.274
2	0.00	0.00	0.00	61.068	61.068	1.010	1.000	0.980	0.979	1.0005	1.0000	1.272

${ }^{a}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=1.102 ; \Lambda_{\mathrm{BA}}=0.892 .{ }^{b}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=1.1010 ; \Lambda_{\mathrm{BA}}=0.8940$.
Table 4. PTx Measurement Results on 1,5-Hexadiene (A) + Allyl Chloride (B)

$\begin{gathered} \text { run } \\ \text { no. } \end{gathered}$	$100 z_{\text {A }}$	$100 x_{\text {A }}$	$100 y_{\text {A }}$	P / kPa		$\gamma_{\text {A }}$	$\gamma_{\text {B }}$	$\phi_{\text {A }}$	$\phi_{\text {B }}$	$P F_{\text {A }}$	$P F_{\text {B }}$	$\alpha_{\text {BA }}$
				measd	calcd							
$t=60{ }^{\circ} \mathrm{C}^{a}$												
1	100.00	100.00	100.00	103.15	103.15	1.000	1.170	0.963	0.975	1.0000	0.9981	1.832
1	94.02	94.06	89.74	108.11	108.39	1.000	1.158	0.961	0.974	1.0002	0.9982	1.811
1	87.23	87.30	79.38	113.90	114.14	1.002	1.143	0.959	0.972	1.0005	0.9984	1.786
1	77.31	77.39	66.23	122.45	122.14	1.006	1.123	0.957	0.970	1.0009	0.9987	1.745
1	68.35	68.43	55.99	128.93	128.92	1.012	1.104	0.954	0.968	1.0012	0.9989	1.704
1	57.84	57.91	45.47	136.38	136.31	1.024	1.082	0.952	0.966	1.0015	0.9991	1.650
2	50.93	50.98	39.25	141.41	140.82	1.035	1.068	0.950	0.965	1.0017	0.9993	1.610
1	47.17	47.22	36.05	142.93	143.16	1.043	1.060	0.950	0.964	1.0018	0.9993	1.587
2	41.23	41.29	31.23	146.31	146.66	1.057	1.049	0.948	0.963	1.0020	0.9994	1.549
2	30.83	30.89	23.27	152.17	152.28	1.091	1.031	0.947	0.962	1.0022	0.9996	1.474
2	21.13	21.18	16.16	157.06	156.91	1.136	1.016	0.945	0.961	1.0024	0.9998	1.395
2	10.39	10.42	8.24	161.48	161.30	1.209	1.004	0.944	0.959	1.0026	0.9999	1.295
2	5.34	5.35	4.35	162.92	163.05	1.255	1.001	0.944	0.959	1.0027	1.0000	1.243
2	0.00	0.00	0.00	164.65	164.65	1.315	1.000	0.943	0.959	1.0028	1.0000	1.185
$t=100{ }^{\circ} \mathrm{C}^{b}$												
1	100.00	100.00	100.00	316.61	316.61	1.000	1.155	0.918	0.944	1.0000	0.9948	1.710
1	94.02	94.11	90.48	330.74	331.01	1.000	1.137	0.914	0.941	1.0006	0.9953	1.682
1	87.23	87.39	80.77	346.05	346.63	1.002	1.119	0.911	0.938	1.0013	0.9957	1.650
1	77.31	77.50	68.23	368.52	368.12	1.007	1.094	0.905	0.934	1.0022	0.9964	1.604
1	68.34	68.54	58.24	386.11	386.19	1.014	1.074	0.901	0.930	1.0030	0.9969	1.562
1	57.84	57.99	47.71	406.51	405.86	1.025	1.054	0.896	0.926	1.0039	0.9975	1.513
2	50.93	51.03	41.30	417.68	417.99	1.035	1.042	0.893	0.924	1.0044	0.9979	1.481
1	47.17	47.27	37.98	425.27	424.29	1.041	1.036	0.892	0.922	1.0047	0.9981	1.464
2	41.23	41.36	32.93	432.71	433.81	1.051	1.028	0.890	0.920	1.0051	0.9983	1.437
2	30.83	30.98	24.41	448.78	449.53	1.073	1.016	0.886	0.917	1.0058	0.9988	1.390
2	21.13	21.26	16.71	463.26	463.12	1.098	1.008	0.883	0.915	1.0064	0.9992	1.346
2	10.39	10.48	8.27	477.53	477.00	1.132	1.002	0.880	0.912	1.0070	0.9996	1.298
2	5.34	5.38	4.27	483.18	483.11	1.150	1.000	0.879	0.911	1.0072	0.9998	1.276
2	0.00	0.00	0.00	489.25	489.25	1.171	1.000	0.878	0.910	1.0075	1.0000	1.252

[^1]The vapor line was further purged by withdrawing additional material through the vapor line into a weighed, evacuated sample
vial. Three or more vapor samples were then withdrawn into weighed, evacuated sample vials. The system was allowed to

Table 5. PTx Measurement Results on Isopropyl Acetate (A) + Acetonitrile (B)

run				P / kPa		$\gamma_{\text {A }}$	$\gamma_{\text {B }}$	$\phi_{\text {A }}$	$\phi_{\text {B }}$	$P F_{\text {A }}$	$P F_{\text {B }}$	$\alpha_{\text {BA }}$
no.	$100 z_{\text {A }}$	$100 x_{\text {A }}$	$100 y_{\text {A }}$	measd	calcd							
$t=60{ }^{\circ} \mathrm{C}^{a}$												
1	100.00	100.00	100.00	37.733	37.733	1.000	1.662	0.983	0.988	1.0000	0.9998	2.156
1	94.05	94.07	88.59	40.125	40.178	1.002	1.578	0.982	0.987	1.0001	0.9998	2.043
1	88.43	88.46	79.81	42.087	42.173	1.006	1.506	0.981	0.987	1.0002	0.9999	1.940
1	79.24	79.28	68.26	45.100	44.868	1.020	1.401	0.980	0.986	1.0003	0.9999	1.779
1	70.23	70.26	59.18	46.879	46.936	1.043	1.312	0.979	0.985	1.0004	1.0000	1.630
1	58.68	58.70	49.50	48.893	48.911	1.087	1.217	0.978	0.984	1.0005	1.0000	1.450
1	50.47	50.49	43.40	49.877	49.926	1.131	1.161	0.978	0.984	1.0005	1.0000	1.330
1	40.01	40.02	36.01	50.856	50.809	1.204	1.102	0.978	0.984	1.0006	1.0000	1.185
2	35.77	35.78	33.03	50.945	51.040	1.241	1.082	0.977	0.984	1.0006	1.0000	1.129
1	31.92	31.93	30.28	51.369	51.185	1.278	1.066	0.977	0.984	1.0006	1.0000	1.080
2	30.57	30.57	29.29	51.164	51.221	1.292	1.061	0.977	0.984	1.0006	1.0000	1.063
2	20.38	20.38	21.42	51.277	51.215	1.418	1.028	0.977	0.984	1.0006	1.0000	0.939
2	10.62	10.61	12.54	50.595	50.655	1.578	1.008	0.978	0.984	1.0006	1.0000	0.828
2	4.68	4.68	6.04	49.995	49.957	1.700	1.002	0.978	0.984	1.0005	1.0000	0.764
2	0.00	0.00	0.00	49.155	49.155	1.813	1.000	0.979	0.984	1.0005	1.0000	0.715
$t=120{ }^{\circ} \mathrm{C}^{b}$												
1	100.00	100.00	100.00	249.59	249.59	1.000	1.502	0.931	0.952	1.0000	0.9991	1.766
1	94.63	94.72	91.32	260.90	260.02	1.001	1.453	0.928	0.950	1.0004	0.9993	1.706
1	89.29	89.44	83.72	270.07	269.38	1.004	1.407	0.926	0.948	1.0008	0.9995	1.646
1	78.63	78.82	70.92	285.17	285.08	1.016	1.322	0.922	0.944	1.0015	0.9998	1.526
1	69.98	70.15	62.18	294.82	295.17	1.033	1.259	0.919	0.942	1.0019	1.0000	1.429
1	58.98	59.10	52.50	304.47	304.86	1.066	1.189	0.917	0.940	1.0023	1.0001	1.307
1	49.05	49.12	44.61	310.40	310.85	1.109	1.135	0.915	0.938	1.0026	1.0003	1.198
1	39.06	39.08	37.04	313.37	314.37	1.169	1.089	0.915	0.938	1.0027	1.0003	1.090
2	36.21	36.23	34.89	315.09	314.90	1.190	1.077	0.914	0.937	1.0027	1.0003	1.060
1	29.15	29.14	29.46	314.68	315.31	1.251	1.051	0.915	0.937	1.0027	1.0003	0.985
2	25.67	25.66	26.69	315.43	314.99	1.286	1.041	0.915	0.937	1.0027	1.0003	0.948
2	15.53	15.50	17.86	312.61	311.74	1.412	1.016	0.916	0.938	1.0026	1.0003	0.843
2	10.39	10.35	12.74	308.68	308.49	1.494	1.007	0.917	0.938	1.0025	1.0002	0.791
2	5.09	5.06	6.74	304.20	303.70	1.594	1.002	0.919	0.939	1.0023	1.0001	0.738
2	0.00	0.00	0.00	297.37	297.37	1.709	1.000	0.920	0.941	1.0020	1.0000	0.688
$t=180{ }^{\circ} \mathrm{C}^{c}$												
1	100.00	100.00	100.00	939.9	939.9	1.000	1.332	0.835	0.885	1.0000	0.9971	1.504
1	94.63	94.85	92.62	972.5	970.6	1.001	1.304	0.829	0.880	1.0013	0.9976	1.469
1	89.29	89.65	85.81	1001.1	999.1	1.002	1.277	0.824	0.876	1.0025	0.9982	1.433
1	78.63	79.11	73.57	1049.7	1049.2	1.010	1.225	0.816	0.868	1.0045	0.9991	1.360
1	69.98	70.42	64.71	1082.1	1082.9	1.022	1.185	0.810	0.863	1.0059	0.9997	1.298
1	58.98	59.29	54.46	1114.7	1116.4	1.044	1.138	0.805	0.858	1.0073	1.0004	1.218
1	49.05	49.22	45.87	1136.2	1137.5	1.075	1.100	0.802	0.855	1.0082	1.0008	1.144
1	39.06	39.11	37.58	1147.2	1150.1	1.117	1.067	0.800	0.853	1.0087	1.0010	1.067
2	36.21	36.24	35.23	1151.2	1152.0	1.132	1.058	0.800	0.852	1.0088	1.0010	1.045
1	29.15	29.14	29.35	1153.0	1153.5	1.175	1.039	0.800	0.852	1.0089	1.0011	0.990
2	25.67	25.65	26.38	1152.5	1152.5	1.200	1.031	0.801	0.852	1.0088	1.0010	0.962
2	15.53	15.45	17.18	1142.7	1141.7	1.290	1.012	0.804	0.853	1.0084	1.0008	0.881
2	10.39	10.30	12.04	1133.1	1131.2	1.348	1.006	0.806	0.854	1.0080	1.0006	0.839
2	5.09	5.02	6.23	1117.3	1116.1	1.418	1.001	0.809	0.856	1.0073	1.0004	0.796
2	0.00	0.00	0.00	1096.9	1096.9	1.497	1.000	0.813	0.859	1.0065	1.0000	0.755

${ }^{a}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.6244 ; \Lambda_{\mathrm{BA}}=0.8760 .{ }^{b}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.5737 ; \Lambda_{\mathrm{BA}}=1.0198$. ${ }^{c}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.5772 ; \Lambda_{\mathrm{BA}}=1.1458$.
re-equilibrate to the run temperature between each of the vapor samples. The stirrer was then turned off, and the liquid line was purged. Three or more liquid samples were then withdrawn into weighed, evacuated sample vials.

The vapor and liquid samples were analyzed using gas chromatography to determine their compositions. A flame ionization detector was used to quantify the results. Each sample was injected three or more times onto the GC column in order to accurately determine the composition of each sample. The average of the analysis results from the three or more replicate samples was then used to determine the vapor and liquid compositions from each run. The standard deviations obtained from the three replicate vapor samples were typically less than $\pm 2 \%$ of the reported composition of the minor component while the standard deviations obtained from the replicate liquid samples were always less than $\pm 0.5 \%$ of the reported composition of the minor component.

Multiple calibration standards were prepared on a regular basis during the Txy measurements covering the composition ranges of interest. These standards were analyzed by GC on a daily basis and the resulting information was used to determine accurate GC response factors. The estimated overall accuracy of the relative volatilities obtained from these Txy measurements is conservatively estimated to be within $\pm 3 \%$ of the reported values. The relative volatilities obtained from the measured $T x y$ data using the glass cell apparatus and the glass still apparatus were consistent with one another.

PTx Data Reduction Procedure

The results of the PTx measurements, which are total pressure as a function of charge composition at constant temperature, were reduced to equilibrium phase compositions and activity and fugacity coefficients. The Wilson ${ }^{2}$ and three-parameter Redlich-Kister ${ }^{3}$ activity coefficient models were used to represent the liquid-phase nonidealities. The three-parameter

Table 6. PTx Measurement Results on Vinyl Chloride (A) + Methyl Chloride (B)

$\begin{gathered} \text { run } \\ \text { no. } \end{gathered}$	$100 z_{\text {A }}$	$100 x_{\text {A }}$	$100 y_{\text {A }}$	P / kPa		γ_{A}	γ_{B}	$\phi_{\text {A }}$	ϕ_{B}	$P F_{\text {A }}$	$P F_{\text {B }}$	$\alpha_{B A}$
				measd	calcd							
$t=0^{\circ}{ }^{\text {a }}$												
1	100.00	100.00	100.00	172.0	172.0	1.000	0.994	0.963	0.971	1.0000	0.9980	1.476
1	94.07	94.11	91.54	176.8	177.0	1.000	0.995	0.962	0.970	1.0001	0.9981	1.477
1	89.83	89.89	85.75	180.7	180.6	1.000	0.995	0.961	0.969	1.0003	0.9982	1.478
1	79.50	79.60	72.51	189.2	189.5	1.000	0.996	0.959	0.968	1.0005	0.9984	1.479
1	67.94	68.05	58.99	199.4	199.6	0.999	0.997	0.957	0.966	1.0008	0.9986	1.480
2	62.86	62.92	53.40	203.9	204.1	0.999	0.998	0.956	0.965	1.0009	0.9987	1.481
1	57.63	57.73	47.97	208.3	208.7	0.999	0.998	0.955	0.964	1.0011	0.9988	1.482
1	51.98	52.07	42.29	213.3	213.6	0.999	0.998	0.954	0.963	1.0012	0.9989	1.482
2	51.56	51.66	41.89	213.9	214.0	0.999	0.998	0.954	0.963	1.0012	0.9989	1.482
2	44.72	44.84	35.40	220.1	220.0	0.998	0.999	0.953	0.962	1.0014	0.9991	1.483
1	42.79	42.86	33.58	222.2	221.8	0.998	0.999	0.952	0.962	1.0015	0.9991	1.483
2	37.55	37.68	28.94	227.0	226.4	0.998	0.999	0.951	0.961	1.0016	0.9992	1.484
2	26.15	26.28	19.35	236.0	236.5	0.997	1.000	0.949	0.959	1.0019	0.9995	1.485
2	20.92	21.04	15.20	241.0	241.2	0.996	1.000	0.948	0.959	1.0020	0.9996	1.486
2	9.57	9.64	6.70	251.1	251.4	0.995	1.000	0.946	0.957	1.0023	0.9998	1.487
2	5.05	5.09	3.48	255.5	255.5	0.995	1.000	0.945	0.956	1.0024	0.9999	1.488
2	0.00	0.00	0.00	260.1	260.1	0.994	1.000	0.945	0.955	1.0026	1.0000	1.489
$t=40{ }^{\circ} \mathrm{C}^{\text {b }}$												
1	100.00	100.00	100.00	601.5	601.5	1.000	0.999	0.910	0.931	1.0000	0.9941	1.386
1	94.07	94.17	92.10	617.8	616.8	1.000	0.999	0.907	0.929	1.0004	0.9944	1.386
1	89.83	89.99	86.64	628.7	627.9	1.000	0.999	0.906	0.927	1.0007	0.9947	1.386
1	79.50	79.75	73.98	655.2	655.0	1.000	0.999	0.902	0.924	1.0015	0.9953	1.385
1	67.93	68.22	60.79	685.5	685.7	1.000	0.999	0.897	0.920	1.0023	0.9959	1.384
2	62.87	63.01	55.18	700.1	699.6	1.000	1.000	0.895	0.918	1.0027	0.9962	1.384
1	57.63	57.89	49.84	712.6	713.3	1.000	1.000	0.893	0.916	1.0031	0.9965	1.383
1	51.98	52.21	44.13	727.7	728.6	1.000	1.000	0.891	0.915	1.0035	0.9969	1.383
2	51.56	51.81	43.74	728.7	729.7	1.000	1.000	0.891	0.914	1.0035	0.9969	1.383
2	44.72	45.02	37.20	747.9	748.0	1.000	1.000	0.889	0.912	1.0040	0.9973	1.382
1	42.79	42.96	35.27	753.6	753.6	1.000	1.000	0.888	0.912	1.0042	0.9974	1.382
2	37.55	37.88	30.62	767.2	767.3	1.000	1.000	0.886	0.910	1.0046	0.9977	1.382
2	26.15	26.49	20.69	796.5	798.3	0.999	1.000	0.882	0.906	1.0054	0.9984	1.381
2	20.92	21.23	16.33	812.0	812.6	0.999	1.000	0.880	0.904	1.0058	0.9987	1.381
2	9.57	9.76	7.27	843.2	844.1	0.999	1.000	0.875	0.901	1.0067	0.9994	1.380
2	5.05	5.16	3.79	856.0	856.7	0.999	1.000	0.874	0.899	1.0070	0.9997	1.379
2	0.00	0.00	0.00	870.9	870.9	0.999	1.000	0.872	0.898	1.0074	1.0000	1.379

${ }^{a}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=1.0029 ; \Lambda_{\mathrm{BA}}=1.0029$. ${ }^{b}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=1.0006 ; \Lambda_{\mathrm{BA}}=1.0006$.
Table 7. PTx Measurement Results on 1,4-Butanediol (A) $+\gamma$-Butyrolactone (B)

$\begin{gathered} \text { run } \\ \text { no. } \end{gathered}$	$100 z_{\text {A }}$		$100 y_{\text {A }}$	P / kPa		$\gamma_{\text {A }}$	$\gamma_{\text {B }}$	$\phi_{\text {A }}$	ϕ_{B}	$P F_{\text {A }}$	$P F_{\text {B }}$	$\alpha_{\text {BA }}$
		$100 x_{\text {A }}$		measd	calcd							
$t=110{ }^{\circ} \mathrm{C}^{a}$												
1	100.00	100.00	100.00	0.664	0.664	1.000	2.611	1.000	1.000	1.0000	0.9999	20.211
1	92.94	92.96	42.44	1.452	1.461	1.004	2.322	0.999	0.999	1.0000	0.9999	17.899
1	88.09	88.11	31.05	1.917	1.909	1.012	2.152	0.999	0.999	1.0000	0.9999	16.457
1	77.34	77.37	20.06	2.694	2.682	1.046	1.842	0.998	0.999	1.0001	0.9999	13.629
1	66.00	66.03	14.90	3.265	3.267	1.108	1.590	0.998	0.999	1.0001	1.0000	11.104
1	56.99	57.01	12.39	3.610	3.619	1.183	1.433	0.998	0.998	1.0001	1.0000	9.376
2	55.51	55.53	12.05	3.658	3.671	1.198	1.410	0.998	0.998	1.0001	1.0000	9.111
2	49.83	49.84	10.87	3.833	3.852	1.263	1.330	0.998	0.998	1.0001	1.0000	8.150
1	45.41	45.42	10.04	3.993	3.981	1.323	1.275	0.998	0.998	1.0001	1.0000	7.455
2	41.98	42.00	9.44	4.068	4.074	1.377	1.236	0.998	0.998	1.0001	1.0000	6.943
1	40.73	40.75	9.23	4.110	4.107	1.398	1.222	0.998	0.998	1.0001	1.0000	6.763
2	34.16	34.17	8.13	4.268	4.274	1.529	1.159	0.998	0.998	1.0001	1.0000	5.863
2	20.21	20.22	5.69	4.632	4.612	1.949	1.059	0.997	0.998	1.0001	1.0000	4.204
2	10.91	10.91	3.62	4.892	4.847	2.414	1.018	0.997	0.998	1.0001	1.0000	3.264
2	5.49	5.49	2.05	5.048	4.993	2.803	1.005	0.997	0.998	1.0001	1.0000	2.773
2	0.00	0.00	0.00	5.150	5.150	3.340	1.000	0.997	0.998	1.0001	1.0000	2.316

${ }^{a}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.4070 ; \Lambda_{\mathrm{BA}}=0.6931$.

Redlich-Kister expansion did a good job of correlating the strong negative deviation from ideality that was found in the acetophenone + phenol system (system 2). The Wilson equation was used for the other six systems. The Soave-Redlich-Kwong equation of state ${ }^{4}$ was used to represent the vapor phase in the data reduction procedure. All Soave binary interaction parameters were assumed to be zero. The procedure used to reduce the PTx data has been described earlier ${ }^{1}$ and is similar to the method proposed by Barker. ${ }^{5}$

Results and Discussion

The results of the vapor-liquid equilibrium measurements are described below. The PTX data are presented in Tables 1 through 7. These tables give the run number, the charge compositions $\left(z_{\mathrm{A}}\right)$ on a mole basis, the calculated liquid $\left(x_{A}\right)$ and vapor $\left(y_{A}\right)$ compositions on a mole basis, the measured and correlated pressures, the activity $\left(\gamma_{\mathrm{A}}\right.$ and $\left.\gamma_{\mathrm{B}}\right)$ and fugacity coefficients $\left(\varphi_{\mathrm{A}}\right.$ and $\left.\varphi_{\mathrm{B}}\right)$, the Poynting corrections $\left(P F_{\mathrm{A}}\right.$ and

Figure 1. O, measured $P T x$ data;,$- P-x$ correlation; $---P-y$ correlation; - , Raoult's law for ethylene oxide (A) + 2-methylpropane (B) at 75 ${ }^{\circ} \mathrm{C}$.

Figure 2. O, measured $P T x$ data;,$- P-x$ correlation; $---P-y$ correlation; -- , Raoult's law for acetophenone (A) + phenol (B) at $160{ }^{\circ} \mathrm{C}$.
$\left.P F_{\mathrm{B}}\right)$, and the relative volatilities $\left(\alpha_{B A}\right)$. The relative volatility was determined from

$$
\begin{equation*}
\alpha_{\mathrm{BA}}=\frac{y_{\mathrm{B}} / x_{\mathrm{B}}}{y_{\mathrm{A}} / x_{\mathrm{A}}} \tag{1}
\end{equation*}
$$

The activity coefficient parameters used in the correlation are given at the bottom of each table. Figures $1-7$ show total pressure as a function of liquid and vapor composition to illustrate the $P T x$ data of each binary system at one of the measured temperatures.

The Txy data that were measured on the 1,4-butanediol + γ-butyrolactone system (system 7) are presented in Table 8. This table reports the correlated pressure, the measured liquid

Figure 3. O, measured $P T x$ data; -, $P-x$ correlation; $---P-y$ correlation; -- , Raoult's law for cis-1,3-dichloropropene (A) + 1,2-dichloropropane (B) at $80^{\circ} \mathrm{C}$.

Figure 4. O, measured $P T x$ data;,$- P-x$ correlation; $---P-y$ correlation; -- , Raoult's law for 1,5-hexadiene (A) + allyl chloride (B) at 100 ${ }^{\circ} \mathrm{C}$.
composition, and the measured and correlated vapor composition for each measured point. The measured and correlated relative volatility of γ-butyrolactone over 1,4-butanediol is also shown. The correlated values were obtained from the PTx correlation using the Wilson parameters shown in the footnote of Table 7. A plot of the measured and correlated relative volatility versus liquid composition is included to illustrate the data in Figure 8.

1. Ethylene Oxide + 2-Methylpropane. Results of the $P T x$ measurements on ethylene oxide +2 -methylpropane at $25^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ are given in Table 1. The Wilson activity coefficient equation was used to reduce the data. The system pressure as a function of liquid and vapor composition at $75^{\circ} \mathrm{C}$ is plotted in Figure 1 to illustrate the data. This system exhibits significant

Figure 5. O, measured PTx data; -, $P-x$ correlation; - --, $P-y$ correlation; - , Raoult's law for isopropyl acetate (A) + acetonitrile (B) at 180 ${ }^{\circ} \mathrm{C}$.

Figure 6. O, measured PTx data; -, $P-x$ correlation; - -,$P-y$ correlation; - , Raoult's law for vinyl chloride (A) + methyl chloride (B) at 40 ${ }^{\circ} \mathrm{C}$.
positive deviation from Raoult's law, and the data indicate that a minimum-boiling azeotrope exists at each of the two temperatures. The expression $P=\sum\left(P_{i}{ }^{\circ} x_{i}\right)$ defines Raoult's law, where P is the total system pressure, $P_{i}{ }^{\circ}$ is the vapor pressure of component i, and x_{i} is the liquid mole fraction of component i.
2. Acetophenone + Phenol. PTx measurements on acetophenone + phenol were performed at $100^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$. The threeparameter Redlich-Kister activity coefficient model was used to correlate the measured data. Results of the measurements are given in Table 2, and the results at $160^{\circ} \mathrm{C}$ are plotted in Figure 2. This system shows significant negative deviation from ideality with a maximum-boiling azeotrope at each of the two temperatures.

Figure 7. O, measured PTx data; -, $P-x$ correlation; ---, $P-y$ correlation; -- , Raoult's law for 1,4-butanediol (A) $+\gamma$-butyrolactone (B) at 110 ${ }^{\circ} \mathrm{C}$.

Table 8. Txy Measurement Results on 1,4-Butanediol (A) + γ-Butyrolactone (B) ${ }^{a}$

P / kPa correlated	$100 x_{\mathrm{A}}$ measured	$100 y_{\mathrm{A}}$ measured	$100 y_{\mathrm{A}}$ correlated	α_{BA} measured	α_{BA} correlated
$t=110^{\circ} \mathrm{C}$					
3.050	70.67	16.59	16.62	12.12	12.09
3.476	60.91	13.28	13.37	10.18	10.10
3.799	51.57	11.06	11.21	8.56	8.43
4.098	41.08	9.43	9.29	6.70	6.81
4.361	30.61	7.73	7.54	5.27	5.41
4.869	10.08	3.53	3.40	3.06	3.19

[^2]3. cis-1,3-Dichloropropene + 1,2-Dichloropropane. Results of measurements on cis-1,3-dichloropropene $+1,2$-dichloropropane at $60^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ are reported in Table 3. The data were reduced using the Wilson activity coefficient equation. This system exhibits nearly ideal behavior with activity coefficients that are only slightly greater than unity. The results of the $80^{\circ} \mathrm{C}$ measurements are plotted in Figure 3. Measurements were attempted at $100^{\circ} \mathrm{C}$, but the cis-1,3-dichloropropene was not sufficiently stable at this temperature to obtain accurate $P T x$ data.
4. 1,5-Hexadiene + Allyl Chloride. PTx measurements were performed at $60{ }^{\circ} \mathrm{C}$ and $100{ }^{\circ} \mathrm{C}$ on 1,5-hexadiene + allyl chloride. The Wilson activity coefficient model was used to reduce the data. Results of the measurements are given in Table 4 and the $100{ }^{\circ} \mathrm{C}$ data are plotted in Figure 4. This system exhibits slight positive deviation from ideality.
5. Isopropyl Acetate + Acetonitrile. PTx measurements on isopropyl acetate + acetonitrile were performed at $60^{\circ} \mathrm{C}, 120$ ${ }^{\circ} \mathrm{C}$, and $180^{\circ} \mathrm{C}$. The Wilson activity coefficient model was used to correlate the measured data. Results of the measurements are reported in Table 5, and the $180^{\circ} \mathrm{C}$ data are plotted in Figure 5. This system shows positive deviation from ideality with a minimum-boiling azeotrope at each of the three temperatures.
6. Vinyl Chloride + Methyl Chloride. The results of the PTx measurements on vinyl chloride + methyl chloride at 0

Figure 8. Relative volatility of γ-butyrolactone (B) over 1,4-butanediol (A) at $110{ }^{\circ} \mathrm{C}$ obtained from O , measured Txy data; -, $P-x$ correlation.

Table 9. Constants Used in Data Reduction Procedure ${ }^{a}$

compound	MW	$T_{\mathrm{C}} / \mathrm{K}$	$P_{\mathrm{C}} / \mathrm{kPa}$	Z_{C}	ω
ethylene oxide	44.053	469.15	7190	0.259	0.1974
2-methylpropane	58.123	407.8	3640	0.278	0.1835
acetophenone	120.151	709.6	4010	0.262	0.3830
phenol	94.113	694.25	6130	0.243	0.4435
cis-1,3-dichloropropene	110.970	594.4	4704	0.264	0.2307
1,2-dichloropropane	112.986	572	4240	0.259	0.2564
1,5-hexadiene	82.145	508	3350	0.269	0.2259
allyl chloride	76.525	514.15	4710	0.258	0.1478
isopropyl acetate	102.133	532	3290	0.250	0.3678
acetonitrile	41.053	545.5	4830	0.184	0.3379
vinyl chloride	62.499	432	5670	0.283	0.1001
methyl chloride	50.488	416.25	6680	0.276	0.1531
1,4-butanediol	90.122	667	4880	0.261	1.1770
γ-butyrolactone	86.090	739	5940	0.256	0.3690

${ }^{a}$ Constants are measured and/or estimated values reported in ref 6 .
${ }^{\circ} \mathrm{C}$ and $40{ }^{\circ} \mathrm{C}$ are given in Table 6. The Wilson activity coefficient equation with symmetrical parameters was used to reduce the measured data. The system pressure as a function of liquid and vapor composition at $40^{\circ} \mathrm{C}$ is plotted in Figure 6 . This system exhibits nearly ideal behavior.
7. 1,4-Butanediol $+\gamma$-Butyrolactone. Results of the $P T x$ measurements on 1,4-butanediol $+\gamma$-butyrolactone at $110^{\circ} \mathrm{C}$ are listed in Table 7 and plotted in Figure 7. The Wilson activity coefficient equation was used to reduce the data. Txy data are shown in Table 8 together with a comparison between the measured Txy data and the correlation of the measured PTx data. Relative volatilities obtained from the Txy data agree well with corresponding values obtained from the PTx correlation. Figure 8 is a plot of the relative volatility of γ-butyrolactone over $1,4-$ butanediol versus liquid composition. The PTx correlation is shown as a smooth curve while the measured $T x y$ points are shown as open circles. This system exhibits moderate positive deviation from ideality.

Ancillary Data. Table 9 gives the physical constants for each compound used in the data reduction procedures. Table 10 compares the measured pure component vapor pressures to correlations reported in the DIPPR 801 database. ${ }^{6}$ Table 11 lists the source and purity of the chemicals used in this study. The

Table 10. Measured and Literature Vapor Pressures.

		P / kPa		
compound	$t /{ }^{\circ} \mathrm{C}$	measured	literature a	$\% \mathrm{dev}^{b}$
ethylene oxide	25	174.7	175.2	-0.27
	75	766.7	772.4	-0.74
2-methylpropane	25	352.4	351.2	0.33
	75	1212.7	1209.5	0.26
acetophenone	100	3.573	3.595	-0.61
	160	32.024	31.955	0.22
phenol	100	5.506	5.474	0.58
	160	53.234	53.308	-0.14
cis-1,3-dichloropropene	60	22.61	22.83	-0.96
	80	47.29	47.21	0.17
1,2-dichloropropane	60	30.14	30.51	-1.23
	80	61.07	61.44	-0.61
1,5-hexadiene	60	103.2	103.5	-0.34
	100	316.6	312.0	1.49
allyl chloride	60	164.7	161.3	2.07
	100	489.3	460.0	6.37
isopropyl acetate	60	37.73	37.26	1.28
	120	249.6	252.1	-1.01
acetonitrile	180	939.9	958.32	-1.92
	60	49.16	49.57	-0.90
	120	297.4	297.1	0.09
vinyl chloride	180	1096.9	1096.3	0.05
methyl chloride	0	172.0	175.1	-1.77
	40	601.5	604.7	-0.53
1,4-butanediol	0	260.1	259.3	0.31
γ-butyrolactone	40	870.9	866.0	0.57
	110	0.664	0.674	-1.48
	110	5.150	5.209	-1.13

${ }^{a}$ Literature data calculated from correlations in ref $6 .{ }^{b}$ Percent deviation: $100 \times($ measured - literature $) /$ literature. ${ }^{c}$ The DIPPR 801 correlation ${ }^{6}$ for allyl chloride is based on experimental vapor pressure data that were measured up to a temperature of $55^{\circ} \mathrm{C}$. At higher temperatures, this correlation is an extrapolation of the measured vapor pressure curve up to a measured critical temperature $\left(241^{\circ} \mathrm{C}\right)$ and a predicted critical pressure (4710 kPa).

Table 11. Source and Purity of Chemicals

compound		supplier	purity, mass \%	
			Wiltec analysis	supplier analysis
ethylene oxide	75-21-8	Aldrich		99.5+
2-methylpropane	75-28-5	Aldrich	99.4	99.4
acetophenone	98-86-2	Aldrich	99.6	99.7
phenol	108-95-2	Aldrich	99.91	99.97
cis-1,3-dichloropropene	10061-01-5	DowElanco	97.5	98.23
1,2-dichloropropane	78-87-5	Aldrich	99.6	99.6
1,5-hexadiene	592-42-7	Aldrich	99.0	99.3
allyl chloride	107-05-1	Aldrich	98.8	98.7
isopropyl acetate	108-21-4	Aldrich	99.9	99.9
acetonitrile	75-05-8	Aldrich	99.97	99.95
vinyl chloride	75-01-4	Aldrich		99.5+
methyl chloride	74-87-3	Aldrich		99.9
1,4-butanediol	110-63-4	Aldrich	99.7	99.8
γ-butyrolactone	96-48-0	Aldrich	99.8	99.5

chemicals were thoroughly degassed before being used whenever possible. Table 11 also lists the Chemical Abstracts Service Registry number for each chemical.

Acknowledgment

We wish to thank Merril R. Chipman and Matthew E. Mainord, who helped measure the experimental data.

Literature Cited

(1) Giles, N. F.; Wilson, H. L.; Wilding, W. V. Phase equilibrium measurements on twelve binary mixtures. J. Chem. Eng. Data 1996, 41, 1223-1238.
(2) Wilson, G. M. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 1964, 86, 127130.
(3) Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, 1986.
(4) Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27, 1197-1203.
(5) Barker, J. A. Determination of activity coefficients from total pressure measurements. Aust. J. Chem. 1953, 6, 207-210.
(6) Rowley, R. L.; Wilding, W. V.; Oscarson, J. L.; Yang, Y.; Zundel, N. A. DIPPR Data Compilation of Pure Chemical Properties;

Design Institute for Physical Properties, AIChE: New York, 2005.

Received for review August 11, 2005. Accepted November 13, 2005. We are grateful to the DIPPR 805 steering committee and to the companies it represents for funding this research.

JE050317K

[^0]: ${ }^{\dagger}$ This contribution will be part of a special print edition containing papers reporting experimental results from the various projects of the Design Institute for Physical Properties of the American Institute of Chemical Engineers.

 * Corresponding author. E-mail: gilesnf@wiltecresearch.com. Fax: (801)-374-6674.

[^1]: ${ }^{a}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.5168 ; \Lambda_{\mathrm{BA}}=1.3859 .{ }^{b}$ Wilson equation parameters: $\Lambda_{\mathrm{AB}}=0.8402 ; \Lambda_{\mathrm{BA}}=1.0162$.

[^2]: ${ }^{a}$ The correlated values were obtained at the measured liquid compositions using the model described in the PTx Data Reduction Procedure section using the Wilson equation parameters shown in the footnotes of Table 7.

