Thermodynamic Properties of Mixtures Containing Ionic Liquids. 8. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide Using Gas-Liquid Chromatography

Andreas Heintz* and Sergey P. Verevkin

Department of Physical Chemistry, University of Rostock, Hermannstrasse 14, D-18055 Rostock, Germany

Daniel Ondo

Department of Physical Chemistry, Institute of Chemical Technology. Technicka 5, 16628 Prague 6, Czech Republic

Activity coefficients at infinite dilution γ_i^{∞} of alkanes, alkenes, and alkylbenzenes as well as of the linear and branched C₁-C₆ alcohols, esters, and aldehydes in the ionic liquids 1-hexyl-3-methylimidazolium bis-(trifluoromethylsulfonyl) imide have been determined by gas chromatography using the ionic liquids as stationary phase. The measurements were carried out at different temperatures between 301 K and 396 K. From the temperature dependence of the limiting activity coefficients, partial molar excess enthalpies at infinite dilution $H_i^{E,\infty}$ of the solutes in the ionic liquids have been derived.

Introduction

Replacing volatile organic compounds by less polluting solvents is an aspect of major interest in the field of "green chemistry". Ionic liquids (ILs) appear to be an alternative because of their negligible vapor pressure. This work continues our study of thermodynamic properties of mixtures containing ionic liquids.^{1–11} Our interest in ionic liquids is focused on providing systematic data on activity coefficients in mixtures with organic solvents.

In this work, we extend our measurements of activity coefficients in infinity dilution γ_i^{∞} in ILs to the compound 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (C₁₂H₁₉S₂O₄F₆N₃),

having the molar mass 447.3 and the common abbreviation $[HMIM][NTf_2]$.

Since ILs have a negligible vapor pressure, the most suitable method for measuring limiting activity coefficients of volatile solutes in ILs is the gas-liquid chromatographic method using the ionic liquid as stationary phase. A series of hydrocarbons such as alkanes, alkenes, and alkylbenzenes as well as linear and branched C_1 - C_6 alcohols, esters, aldehydes, and several common solvents (acetone, acetonitrile, trichloromethane, and 1,4-dioxane) in the ionic liquid [HMIM][NTf₂] have been studied over the temperature range (301 to 396) K.

Experimental Section

Materials. The samples of solutes studied were of commercial origins. GC analysis gave a purity > 99.9 % in agreement with

specifications stated by the suppliers. All chemicals were used without further purification. The [HMIM][NTf₂] was supplied by the research group of Prof. Wasserscheid in Erlangen. Prior to experiments, the IL was subjected to vacuum evaporation at 333 K for > 24 h to remove possible traces of solvents and moisture. The water concentration (< 100 ppm) was determined by Karl Fischer titration. Chromosorb W/AW-DMCS 100/120 mesh was used as solid support for the ionic liquid in the GC column. The chromosorb has been subjected to vacuum treatment with heating in order to remove traces of adsorbed moisture.

Experimental Procedure. Coating the solid support material with the ionic liquid was performed by dispersing a certain portion of chromosorb in a solution of the IL in dichloromethane followed by evaporation of the solvent using a rotating evaporator. The chromosorb was weighed before and after the coating process. The experiments were performed with a Varian-3600 gas chromatograph equipped with a flame ionization detector and a Hewlett-Packard 3390A integrator. Nitrogen was used as carrier gas. Two different GC columns (stainless steel) with length 43 cm and 105 cm, respectively, with an inside diameter of 0.40 cm were used. The amounts of stationary phase (ionic liquid) were 3.36 mmol for the short column and 7.61 mmol for the longer one. The masses of the stationary phase were determined with a precision of \pm 0.0003 g. To avoid possible residual adsorption effects of the solutes on chromosorb, the amount of ionic liquid was about 48 mass percent of the support material.

According to Cruickshank et al.,¹² the following equation for the data treatment was used:

$$\ln \gamma_{i,3}^{\infty} = \ln \left(\frac{n_3 RT}{V_N p_1^0} \right) - \frac{B_{11} - V_1^0}{RT} p_1^0 + \frac{2B_{12} - V_1^{\infty}}{RT} J p_0 \qquad (1)$$

* Corresponding author. E-mail: andreas.heintz@uni-rostock.de.

where $\gamma_{i,3}^{\infty}$ is the activity coefficient of component *i* at infinite

dilution in the stationary phase (index 3), p_1^0 is the vapor pressure of the pure liquid solute, n_3 is the number of moles of the stationary phase component (ionic liquid) on the column, and V_N is the standardized retention volume obtained by

$$V_{\rm N} = JU_0(t_{\rm r} - t_{\rm G}) \frac{T_{\rm col}}{T_{\rm f}} \left[1 - \frac{p_{\rm 0w}}{p_0} \right]$$
(2)

where t_r is the retention time, t_G is the dead time, U_0 is the flow rate, measured by a soap bubble flowmeter, T_{col} is the column temperature, T_f is flowmeter temperature, p_{0w} is saturation pressure of water at T_f , and p_0 is the pressure at the column outlet.

The second and third term in eq 1 are correction terms that arise from the nonideality of mobile gaseous phase. B_{11} is the second virial coefficient of the solute, B_{12} the mixed virial coefficient of the solute (1) with the carrier gas nitrogen (2). V_1^0 is the liquid molar volume of pure solute, and V_1^∞ is the partial molar volume of solute in the ionic liquid at infinite dilution.

The factor *J* appearing in eqs 1 and 2 corrects for the influence of the pressure drop along the column given by¹³

$$J = \frac{3}{2} \frac{(p_i/p_o)^2 - 1}{(p_i/p_o)^3 - 1}$$
(3)

where p_i and p_o are the inlet and the outlet pressure of the GC column, respectively.

The outlet pressure p_o was kept equal to the atmospheric pressure. The pressure drop $(p_i - p_o)$ was varied between (20.3 and 101.3 kPa), providing suitable retention times with sharp peaks. The pressure drop and the outlet pressure were measured using a membrane manometer with an uncertainty of ± 0.2 kPa.

Volumes of the samples injected into the GC probes were (0.5 to 2 μ L). No differences in retention times t_r were found by injecting individual pure components or their mixtures with both columns containing different masses of the ionic liquids, respectively. This fact indicates that different concentrations of the solute in the stationary phase caused by different ratios of the injected amounts of solute and the amount of stationary phase do not affect the results, and it can be concluded that in all cases the state of infinite dilution was realized to a high degree of approximation. Experiments were carried out at 4 to 8 temperatures (in 10 deg steps) between 301 K and 396 K. The temperature of the GC column was maintained constant to within \pm 0.01 K. At a given temperature, each experiment was repeated at least twice to check the reproducibility. Retention times were generally reproducible within (0.01 to 0.03) min. Absolute values of retention times varied between (3 to 30) min depending on the individual solute. At each temperature values of the dead time $t_{\rm G}$ identical to the retention time of a nonretainable component were measured. While our GC was equipped with a flame-ionization detector, methane¹ was used as non-retainable component under the assumption that the effect of solubility of methane in ionic liquid is negligible. This assumption has been justified by attestation of our experimental procedure with the reliable data on γ_i^{∞} of hexane, heptane, and benzene in hexadecane.1

To check the stability of the experimental conditions, such as the possible elution of the stationary phase by the nitrogen stream, the measurements of retention times were repeated systematically every (2 to 3) days for three selected solutes. No changes of the retention times were observed during several months of continuous operation. Data needed for calculating the correction terms in eq 1 have been obtained in the following way. Molar volumes of solutes V_1^0 were estimated using experimental values of their densities. Partial molar volumes of solute at infinite dilution V_1^{∞} have been assumed to be equal of V_1^0 . Values of B_{11} have been estimated according to Tsonopolous' method.¹⁴ Critical parameters needed for the calculations were available from the literature.¹⁴ If these data were not available, values of the critical pressure P_c , the critical temperature T_c , and the critical volume V_c were estimated using Lydersen's method.¹⁵ Acentric factors ω_i were calculated by Edmister equation.¹⁵ More details are given in the Supporting Information. Values of B_{12} have also been estimated according to Tsonopolous' method. The mixed critical properties P_{cij} , T_{cij} , V_{cij} , Z_{cij} , and mixed acentric factor ω_{ij} were calculated by equations given in the literature.^{14,15}

Values of vapor pressures p_1^0 of pure solutes are of a crucial importance for the reliability of γ_i^{∞} . For alkanes these values were calculated using parameters of the Cox equation recommended by Ruzicka and Majer.¹⁶ For hydrocarbons values of p_1^0 were calculated using parameters of the Cox equation recommended by Steele and Chirico.¹⁷ Vapor pressures of pure alcohols were calculated using coefficients of Wagner's equation recommended by Ambrose and Walton.¹⁸ Specification of the sources of vapor pressures of other solutes was given in the previous papers of this series.^{8,9}

The validity of the experimental procedure has been checked by comparison of our measured values of γ_i^{∞} for hexane, heptane, and benzene in hexadecane with those available in the literature.¹ The procedure of the experimental error estimation was described in our previous work.¹ Values of γ_i^{∞} are estimated to be accurate within to ± 3 %.

Results and Discussion

The values of γ_i^{∞} of different solutes in [HMIM][NTf₂] obtained at different temperatures are listed in Table 1. Altogether 269 data points for 52 solutes have been obtained in the temperature range (301 to 396) K. The complete set of data is available in the Supporting Information. The values of γ_i^{∞} have been approximated by the linear regression

$$\ln \gamma_i^{\infty} = a + \frac{b}{T} \tag{4}$$

The coefficients *a* and *b*, the correlation coefficients R^2 , and the values of $\gamma_{i(298 \text{ K})}^{\infty}$ calculated with these coefficients are also given in Table 1. The quality of the linear regression was very good because the correlation coefficients lie between 0.96 and 0.99.

The activity coefficients of the linear *n*-alkanes, *n*-alkenes, alkylbenzenes, aldehydes, and esters increase with increasing chain length. Cyclization of the alkane skeleton (e.g., cyclohexane) reduces the value of γ_i^{∞} in comparison to the corresponding linear alkanes (e.g., hexane). Introduction of the double bond in the six membered ring (cyclohexene, cyclohexadiene) also causes a decrease of γ_i^{∞} . This indicates a better solubility of molecules with double bonds in the ionic liquid due to their higher polarizability.

Values of γ_i^{∞} for benzene and the alkylbenzenes are distinctly lower in comparison with those of the alkanes and alkenes. However, as with alkanes, γ_i^{∞} values increase with increasing size of the alkyl group. The activity coefficients of the linear *n*-alkanols slightly increase with increasing chain length. The branching of the alkane skeleton (e.g., 2-propanol

Table 1. Experimental Results of γ_i° for Different Solutes in the [HMIM][NTf ₂] Temperature Ranges, Coefficients of Equation 4, Correlat	ion
Coefficients R^2 and γ_i° at 298 K Calculated Using Equation 4, and Values of $H_i^{E,\circ}$ Derived from Equation 5	

Alkanes	solute <i>i</i>	temperature interval/K	а	b/K	R^2	γ_i^{∞} (298 K)	$H_i^{\mathrm{E},\infty}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$			
$\begin{split} \begin{array}{l} \mbox{l-pentanc} & 302.0 - 343.8 & 0.62 & 443.1 & 0.988 & 8.2 & 3.7 \\ \mbox{l-pentanc} & 301.0 - 343.8 & 0.64 & 643.1 & 0.988 & 8.2 & 3.7 \\ \mbox{l-pentanc} & 301.0 - 343.8 & 0.46 & 683.3 & 0.998 & 11.4 & 5.2 \\ \mbox{l-cotanc} & 301.0 - 343.8 & 0.46 & 685.2 & 0.998 & 11.4 & 5.2 \\ \mbox{l-cotanc} & 301.0 - 343.8 & 0.46 & 685.2 & 0.9390 & 31.7 & 7.4 \\ \mbox{l-cotanc} & 301.2 - 343.8 & 0.46 & 685.0 & 0.999 & 43.7 & 7.4 \\ \mbox{l-cotanc} & 313.4 - 354.3 & 0.46 & 985.0 & 0.9390 & 31.7 & 7.4 \\ \mbox{l-cotanc} & 313.4 - 354.3 & 0.69 & 999.4 & 0.976 & 55.8 & 8.3 \\ \mbox{l-cotanc} & 312.4 - 354.4 & 0.54 & 377.8 & 0.989 & 6.5 & 3.3 \\ \mbox{l-betrace} & 312.2 - 354.4 & 0.54 & 377.8 & 0.989 & 6.5 & 3.3 \\ \mbox{l-cotanc} & 312.2 - 354.4 & 0.73 & 438.3 & 0.997 & 9.0 & 3.6 \\ \mbox{l-betrace} & 312.3 - 364.6 & 0.63 & 593.7 & 0.998 & 13.7 & 4.9 \\ \mbox{l-cotanc} & 312.3 - 364.6 & 0.63 & 593.7 & 0.998 & 13.7 & 4.9 \\ \mbox{l-cotanc} & 312.3 - 364.6 & 0.63 & 593.7 & 0.998 & 13.7 & 4.9 \\ \mbox{l-cotanc} & 312.3 - 364.6 & 0.63 & 601.5 & 0.978 & 17.7 & 5.1 \\ \mbox{l-cotanc} & 312.3 - 364.6 & 0.63 & 601.5 & 0.978 & 17.7 & 5.1 \\ \mbox{l-cotanc} & 301.0 - 333.8 & -0.31 & 642.2 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 333.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 333.8 & -0.32 & 0.989 & 1.9 & 2.3 \\ \mbox{l-cotanc} & 301.9 - 343.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 343.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 343.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 343.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 343.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 343.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 301.9 - 343.8 & -0.32 & 0.999 & 5.8 & 5.3 \\ \mbox{l-cotanc} & 302.9 - 354.3 & 0.25 & 66.4 & 0.966 & 1.2 & 1.4 \\ \mbox{l-tancac} & 302.9 - 354.3 & 0.25 & 66.4 & 0.966 & 1.6 & 0.5 \\ \mbox{l-tancac} & 302.9 - 354.3 & 0.25 & 66.4 & 0.966 & 1.6 & 0.5 \\ \mbox{l-tancac} & 322.9 - 354.3 & 0.25 & 66.4 & 0.969 & 0.7 & -0.8 \\ \mbox{l-tanc} $	Alkanes									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-pentane	302.0-344.0	-1.41	979.6	0.952	6.5	8.1			
$\begin{split} \begin{array}{llllllllllllllllllllllllllllllllllll$	1-ĥexane	301.9-343.8	0.62	443.1	0.988	8.2	3.7			
$\begin{array}{c cccince} & 301.0-343.8 & 0.46 & 683.3 & 0.993 & 15.6 & 5.7 \\ 1-ronace & 307.1-323.4 & 0.45 & 895.2 & 0.980 & 31.7 & 7.4 \\ 1-undccince & 313.4-33.4 & 0.45 & 895.2 & 0.980 & 31.7 & 7.4 \\ 1-undccince & 333.4-35.4 & 0.45 & 895.2 & 0.980 & 31.7 & 7.4 \\ 1-bettere & 302.0-34.4 & 0.3 & 35.9 & 0.996 & 4.5 & 2.3 \\ 1-bettere & 302.0-34.4 & 0.3 & 35.9 & 0.996 & 4.5 & 2.3 \\ 1-bettere & 302.0-34.4 & 0.3 & 35.9 & 0.996 & 4.5 & 2.3 \\ 1-bettere & 302.0-34.4 & 0.3 & 35.9 & 0.996 & 4.5 & 2.3 \\ 1-bettere & 302.0-34.4 & 0.3 & 35.8 & 0.997 & 9.0 & 3.6 \\ 1-ronene & 312.3-364.6 & 0.68 & 610.5 & 0.975 & 17.7 & 5.1 \\ 1-decene & 312.3-364.6 & 0.68 & 610.5 & 0.978 & 13.7 & 4.9 \\ 1-decene & 322.7-375.1 & 0.10 & 950.5 & 0.998 & 2.6 & 7.9 \\ 1-dedcene & 333.2-375.0 & -0.36 & 1203.0 & 0.988 & 39.2 & 10.0 \\ \hline Cyclic Hydroarbors & \\ cyclohexane & 301.0-33.3 & -0.40 & 641.3 & 0.999 & 5.8 & 5.3 \\ cyclohexane & 301.9-343.8 & -0.32 & 21.0 & 0.980 & 1.0 & -0.8 \\ explohexane & 301.9-343.8 & -0.32 & 21.0 & 0.986 & 1.0 & -0.8 \\ explohexane & 301.9-343.8 & -0.32 & 21.0 & 0.986 & 1.0 & -0.8 \\ explohexane & 301.9-343.8 & -0.32 & 21.0 & 0.986 & 1.0 & -0.8 \\ entry = 0.0000 & 0.0000 & 0.78 & 0.2 \\ tolarene & 307.1-342.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ entry = 0.0000 & 322.9-354.3 & 0.25 & 60.4 & 0.966 & 1.0 & -0.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201 & 0.999 & 1.5 & 7.8 \\ entry = 0.0000 & 302.0-354.5 & -2.73 & 1201.0 & 0.999 & 1.7 & 7.9 \\ 1-pettrato1 & 333$	1-heptane	301.0-343.8	0.34	625.6	0.998	11.4	5.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-octane	301.0-343.8	0.46	683.3	0.993	15.6	5.7			
$\begin{array}{c cccane} & 301, -333.4 & 0.45 & 895.2 & 0.980 & 31.7 & 7.4 \\ 1-andccane & 333.4 -534.3 & 0.46 & 985.0 & 0.992 & 43.3 & 8.2 \\ 1-doctene & 302.0 -334.5 & 0.35 & 52.9 & 0.991 & 4.6 & 2.9 \\ 1-bexene & 302.0 -344.5 & 0.35 & 32.9 & 0.991 & 4.6 & 2.9 \\ 1-beyene & 302.0 -344.4 & 0.54 & 397.8 & 0.989 & 6.5 & 3.3 \\ 1-oncene & 312.3 -364.6 & 0.63 & 593.7 & 0.998 & 4.5 & 3.6 \\ 1-accene & 312.3 -364.6 & 0.63 & 593.7 & 0.998 & 3.2 & 10.0 \\ 1-accene & 32.2 -757.1 & 0.10 & 950.5 & 0.998 & 3.2 & 10.0 \\ \hline cyclohexane & 30.1 - 333.3 & -0.40 & 6.41.3 & 0.999 & 5.8 & 5.3 \\ cyclohexane & 30.1 - 333.3 & -0.40 & 6.41.3 & 0.999 & 5.8 & 5.3 \\ cyclohexane & 30.1 - 343.8 & -0.31 & 462.2 & 0.999 & 5.8 & 5.3 \\ cyclohexane & 30.1 - 343.8 & -0.31 & 462.2 & 0.999 & 5.8 & 5.3 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ \hline henzene & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ \hline henzene & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.1 - 343.9 & 0.36 & -98.3 & 0.963 & 1.0 & -0.8 \\ cyclohexane & 30.2 - 54.5 & -2.72 & 92.9 & 2.1 & 1.4 \\ penyl beazene & 33.4 - 35.7 & 0.24 & 163.7 & 0.969 & 3.0 & 1.4 \\ penyl beazene & 33.4 - 35.7 & 0.24 & 163.7 & 0.969 & 3.0 & 1.4 \\ penyl beazene & 30.2 - 54.5 & -2.72 & 92.9 & 2.1 & 1.0 \\ rehanol & 30.2 - 54.5 & -2.72 & 92.9 & 2.1 & 1.0 \\ rehanol & 30.2 - 54.5 & -2.72 & 92.9 & 2.1 & 1.4 \\ penyl beazene & 30.4 - 34.8 & -0.6 & 31.5 & 0.977 & 0.58 & 0.3 \\ pentanel & 30.2 - 54.5 & -2.68 & 1080.8 & 0.998 & 1.3 & 9.4 \\ l-bexanol & 30.1 - 33.4 & -3.12 & 121.40 & 0.998 & 1.3 & 9.4 \\ l-bexanol & 30.1 - 33.4 & -3.12 & 121.40 & 0.998 & 1.7 & 6.7 \\ cyclohexanol & 30.1 - 33.4 & -3.12 & 121.40$	1-nonane	307.1-322.9	0.37	828.0	0.991	23.2	6.9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-decane	307.1-333.4	0.45	895.2	0.980	31.7	7.4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-undecane	312.4-354.3	0.46	985.0	0.992	43.3	8.2			
Alkenes Algenes <	1-dodecane	333.4-354.3	0.69	999.4	0.976	56.8	8.3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 pontono	202 0-222 5	1 08	0	0.066	2.2	-10			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-pentene	202.0 244.5	1.90	-232.0	0.900	3.3	-1.9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-nexelle	302.0-344.3	0.55	552.9 207.9	0.991	4.0	2.9			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-neptene	302.0-354.4	0.54	397.8	0.989	0.5	3.3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-octene	302.0-354.4	0.73	438.3	0.997	9.0	3.6			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-nonene	312.3-364.6	0.63	593.7	0.998	13.7	4.9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-decene	312.3-364.6	0.82	610.5	0.975	17.7	5.1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-undecene	322.7-375.1	0.10	950.5	0.998	26.7	7.9			
$\begin{array}{c} \begin{array}{c} \mbox{Cyclohexane} & 301.9-333.3 & -0.40 & 64.21 & 0.999 & 5.8 & 5.3 \\ 1.3-cyclohexane & 301.9-343.8 & -0.31 & 462.2 & 0.999 & 3.5 & 3.8 \\ 1.3-cyclohexane & 301.2-343.8 & -0.32 & 276.0 & 0.980 & 0.78 & 0.2 \\ \hline \mbox{Myblenzenes} & & & & & & & & \\ \mbox{Exene} & 301.7-343.8 & -0.32 & 21.0 & 0.980 & 0.78 & 0.2 \\ \mbox{Evene} & 301.7-343.8 & -0.32 & 21.0 & 0.963 & 1.0 & -0.8 \\ \mbox{ethylbenzene} & 322.9-354.3 & 0.25 & 60.4 & 0.964 & 1.6 & 0.5 \\ \mbox{propylbenzene} & 323.4-385.7 & 0.25 & 163.7 & 0.966 & 2.2 & 1.4 \\ \mbox{butylbenzene} & 364.7-385.7 & 0.54 & 163.8 & 0.989 & 3.0 & 1.4 \\ \mbox{pertylbenzene} & 364.7-385.7 & 0.54 & 163.8 & 0.989 & 3.0 & 1.4 \\ \mbox{pertylbenzene} & 364.7-385.7 & 1.14 & 30.0 & 0.997 & 3.4 & 0.3 \\ \mbox{methanol} & 302.0-354.5 & -2.72 & 9.992 & 2.6 & 11.4 \\ \mbox{l-butylbenzene} & 354.3-355.7 & -2.63 & 1080.8 & 0.998 & 3.3 & 9.4 \\ \mbox{l-butylbenzene} & 354.3-355.7 & -2.63 & 1080.8 & 0.998 & 3.3 & 9.4 \\ \mbox{l-butual} & 322.7-354.2 & -2.63 & 1133.5 & 0.998 & 3.3 & 9.4 \\ \mbox{l-butual} & 322.7-354.1 & -3.14 & 1143.8 & 0.999 & 2.0 & 9.5 \\ \mbox{l-cerbutanol} & 301.7-354.1 & -3.12 & 1214.0 & 0.998 & 2.6 & 10.1 \\ \mbox{l-err-butyl alcohol} & 301.7-333.4 & -3.21 & 1200.0 & 0.999 & 2.3 & 10.0 \\ \mbox{l-err-butyl alcohol} & 301.7-334.4 & -3.12 & 12140.0 & 0.998 & 1.7 & 6.7 \\ \mbox{cyclohexanol} & 301.7-334.4 & -3.12 & 1214.0 & 0.998 & 1.7 & 6.7 \\ \mbox{cyclohexanol} & 301.7-334.4 & -3.12 & 1200.0 & 0.999 & 1.4 & -1.1 \\ \mbox{l-err-butyl alcohol} & 301.7-334.4 & -3.12 & 1200.0 & 0.998 & 1.7 & 6.7 \\ \mbox{cyclohexanol} & 354.1-396.0 & -1.58 & 1482.0 & 0.988 & 1.7 & 6.7 \\ \mbox{cyclohexanol} & 301.7-354.1 & -0.28 & 1192.2 & 0.987 & 1.1 & 1.5 \\ \mbox{hutmal} & 301.8-333.4 & -1.13 & 103.9 & 0.984 & 0.466 & 0.9 \\ \mbox{popanal} & 301.8-333.4 & -1.13 & 103.9 & 0.984 & 0.466 & 0.9 \\ \mbox{popanal} & 301.8-333.4 & -1.6 & 0.25 & 0.987 & 1.1 & 1.5 \\ \mbox{hutmal} & 301.8-333.4 & -0.65 & 31.5 & 0.977 & 0.58 & 0.3 \\ \mbox{pertunal} & 301.8-333.4 & -0.65 & 31.5 & 0.977 & 0.58 & 0.3 \\ p$	1-dodecene	333.2-375.0	-0.36	1203.0	0.988	39.2	10.0			
cyclobexane 301.0 -333.3 -0.40 Cyclobexal 0.999 5.8 5.3 cyclobexalene 301.0 -343.8 -0.31 462.2 0.999 3.5 3.8 1.3-cyclobexalene 312.1 -354.3 -0.29 276.0 0.989 1.9 2.3 Alkylbenzenes benzene 307.1 -343.8 -0.32 2.10 0.980 0.78 0.2 totuene 307.1 -343.8 -0.32 2.10 0.980 0.78 0.2 totuene 307.1 -343.9 0.35 -98.3 0.963 1.0 -0.8 ethyl benzene 354.3 -385.7 0.25 163.7 0.966 2.2 1.4 butyl benzene 364.7 -385.7 1.14 30.0 0.997 3.4 0.3 Alcohols methanol 302.0 -354.5 -2.33 1210.1 0.999 2.6 11.4 1-butanol 332.2 -754.5 -3.264 1375.2 0.999	Cyclic Hydrocarbons									
$\begin{array}{c} -0.31 & 462.2 & 0.999 & 3.5 & 3.8 \\ 1.3-cyclohexadiene & 312.1-354.3 & -0.23 & 276.0 & 0.989 & 1.9 & 2.3 \\ \hline Alkylbenzenes & & & & \\ \hline Alkylbenzenes & & & & \\ \hline benzene & 30.7-343.8 & -0.32 & 21.0 & 0.980 & 0.78 & 0.2 \\ toluene & 30.7-343.8 & -0.32 & 21.0 & 0.980 & 0.78 & 0.2 \\ toluene & 30.7-343.8 & -0.32 & 21.0 & 0.980 & 0.78 & 0.2 \\ ethyl benzene & 322.9-354.3 & 0.25 & 60.4 & 0.964 & 1.6 & 0.5 \\ propyl benzene & 334.3-385.7 & 0.54 & 163.8 & 0.989 & 3.0 & 1.4 \\ pentyl benzene & 354.3-385.7 & 0.54 & 163.8 & 0.989 & 3.0 & 1.4 \\ pentyl benzene & 364.7-385.7 & 1.14 & 30.0 & 0.997 & 3.4 & 0.3 \\ \hline methanol & 302.0-354.5 & -2.72 & 939.2 & 0.999 & 2.1 & 10.1 \\ 1-propanol & 312.5-354.5 & -3.33 & 1210.1 & 0.999 & 2.1 & 10.1 \\ 1-propanol & 312.5-354.5 & -3.64 & 1375.2 & 0.999 & 2.6 & 11.4 \\ 1-butanol & 322.7-354.2 & -2.63 & 1080.8 & 0.998 & 2.7 & 9.0 \\ 1-pentanol & 333.3-375.0 & -2.62 & 1133.5 & 0.998 & 3.3 & 9.4 \\ 1-bxtanol & 301.7-334 & -3.12 & 1214.0 & 0.998 & 2.6 & 10.1 \\ sec-butanol & 301.7-334 & -3.21 & 1200.0 & 0.999 & 1.8 & 9.1 \\ terr-pentanol & 301.7-334 & -3.21 & 1200.0 & 0.999 & 1.8 & 9.1 \\ terr-pentanol & 301.7-334 & -3.21 & 1200.0 & 0.998 & 1.7 & 6.7 \\ cyclobexanol & 301.7-334 & -3.16 & 104.6 & 0.999 & 1.8 & 9.1 \\ terr-pentanol & 301.7-334 & -3.16 & 104.6 & 0.999 & 1.8 & 9.1 \\ terr-pentanol & 301.7-334 & -3.16 & 104.6 & 0.999 & 1.8 & 9.1 \\ terr-pentanol & 301.7-334 & -3.16 & 104.6 & 0.999 & 1.8 & 9.1 \\ terr-pentanol & 301.7-334 & -3.16 & 104.6 & 0.999 & 1.8 & 9.1 \\ terr-pentanol & 301.7-354.6 & -2.16 & 808.0 & 0.988 & 1.7 & 6.7 \\ cyclobexanol & 301.8-333.4 & -0.65 & 31.5 & 0.977 & 0.58 & 0.3 \\ pentanal & 301.8-333.4 & -0.13 & 103.9 & 0.984 & 0.46 & 0.9 \\ methyl pentanote & 322.8-354.2 & 0.06 & -4.48 & 179.2 & 0.987 & 1.1 & 1.5 \\ methyl butanote & 322.8-354.2 & 0.05 & -1.05 & 0.999 & 1.14 & -1.1 \\ heptanal & 301.8-333.4 & -0.65 & 31.5 & 0.977 & 0.58 & 0.3 \\ pentanal & 301.8-333.4 & -0.65 & 31.5 & 0.977 & 0.58 & 0.3 \\ pentanal & 301.8-333.4 & -0.65 & 31.5 & 0.987 & 1.1 & 1.5 \\ methyl betanoate & 322.8-$	cyclohexane	301.0 - 333.3	-0.40	641.3	0.999	5.8	5.3			
1.3-eyclohexadiene 312.1-354.3 -0.29 276.0 0.995 1.5 2.3 Alkylbenzenes benzene $30.7343.8$ -0.32 2.10 0.980 0.78 0.2 toluene $307.1-343.9$ 0.36 -98.3 0.963 1.0 -0.32 0.64 0.64 0.963 1.0 -0.32 0.963 0.966 1.6 0.5 https://doi.org/10.10000000000000000000000000000000000	cyclohexene	301.9-343.8	-0.31	462.2	0.999	3.5	3.8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.3-cyclohevadiene	312 1-354 3	-0.29	276.0	0.989	1.9	2.3			
$\bergeneric Alkylbenzenes \\ \hline Alkylbenzenes \\ \hline toluene 307.1-343.8 & -0.32 & 21.0 & 0.980 & 0.78 & 0.2 \\ toluene 322.9-354.3 & 0.25 & 60.4 & 0.964 & 1.6 & 0.5 \\ propyl benzene 333.4-385.7 & 0.25 & 163.7 & 0.966 & 2.2 & 1.4 \\ butyl benzene 354.3-385.7 & 0.54 & 163.8 & 0.989 & 3.0 & 1.4 \\ pentyl benzene 364.7-385.7 & 1.14 & 30.0 & 0.997 & 3.4 & 0.3 \\ \hline methanol 302.0-354.5 & -2.72 & 939.2 & 0.999 & 1.5 & 7.8 \\ ethanol 302.0-354.5 & -3.33 & 1210.1 & 0.999 & 2.1 & 10.1 \\ 1-propanol 312.5-354.5 & -3.64 & 1375.2 & 0.999 & 2.6 & 11.4 \\ 1-butanol & 322.7-354.2 & -2.63 & 1080.8 & 0.998 & 2.7 & 9.0 \\ 1-butanol & 333.3-375.0 & -2.62 & 1133.5 & 0.998 & 3.3 & 9.4 \\ 1-butanol & 301.7-353.4 & -3.12 & 1214.0 & 0.998 & 3.3 & 9.4 \\ 1-bxtanol & 301.7-353.4 & -3.12 & 1214.0 & 0.998 & 2.6 & 10.1 \\ sec-butanol & 301.7-333.4 & -3.21 & 1200.0 & 0.999 & 1.8 & 9.1 \\ tert-butyl alcohol & 301.7-333.4 & -3.21 & 1200.0 & 0.998 & 1.7 & 6.7 \\ cyclohexanol & 301.7-333.4 & -3.12 & 1240.0 & 0.988 & 1.7 & 6.7 \\ ethanol & 301.7-334.4 & -3.10 & 1094.6 & 0.998 & 1.7 & 6.7 \\ cyclohexanol & 301.7-335.4 & -1.13 & 10.39 & 0.988 & 1.7 & 6.7 \\ etr-butyl alcohol & 301.7-335.4 & -1.13 & 10.5 & 0.988 & 1.7 & 6.7 \\ etr-butyl alcohol & 301.7-354.5 & -1.68 & 808.0 & 0.988 & 1.7 & 6.7 \\ etr-butanol & 301.7-354.6 & -2.16 & 808.0 & 0.988 & 1.7 & 6.7 \\ etr-butanol & 301.8-333.4 & -1.13 & 10.39 & 0.988 & 1.0 & 12.3 \\ tert-butyl alcohol & 301.8-335.4 & -1.13 & 10.39 & 0.988 & 1.7 & 6.7 \\ etr-butanol & 301.8-335.4 & -1.05 & 31.5 & 0.77 & 0.58 & 0.3 \\ pentanal & 301.8-335.4 & -0.65 & 31.5 & 0.977 & 0.58 & 0.3 \\ pentanal & 301.8-335.4 & -0.15 & 31.5 & 0.999 & 1.14 & -1.1 \\ heptanal & 301.8-335.4 & -0.13 & 10.5 & 0.999 & 1.14 & -1.1 \\ heptanal & 301.8-335.4 & -0.65 & 31.5 & 0.999 & 1.14 & -1.1 \\ heptanal & 301.8-335.4 & -0.65 & 31.5 & 0.999 & 1.14 & -1.1 \\ methyl propanote & 322.8-354.1 & -0.28 & -34.5 & 0.996 & 0.67 & -0.3 \\ methyl pentanoate & 322.8-354.2 & 0.06 & -64.2 & 0.967 & 0.36 & -0.5 \\ methyl pentanoate & 322.8-354.2 & 0.060 & -64.2 & 0.999 & 0.25 & -1.0 \\ a$	1,5-eyelöhexadiene	512.1 557.5	0.27	270.0	0.969	1.9	2.5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	201 7 242 9	Alkylbei	nzenes	0.000	0.70	0.0			
totlene $30.1-34.3$ 0.56 -98.3 0.963 1.0 -0.8 propyl benzene $33.4-385.7$ 0.25 163.7 0.966 2.2 1.4 pentyl benzene $33.4-385.7$ 0.25 163.8 0.989 3.0 1.4 pentyl benzene $364.7-385.7$ 1.14 30.0 0.997 3.4 0.3 methanol $302.0-354.5$ -3.33 1210.1 0.999 2.1 10.1 1-propanol $312.5-354.5$ -3.64 1375.2 0.999 2.6 11.4 1-butanol $322.7-354.2$ -2.62 1133.5 0.998 3.3 9.4 1-hexanol $333.3-375.0$ -2.462 1133.5 0.998 3.3 9.4 1-hexanol $301.7-334.4$ -3.12 1214.0 0.998 2.6 10.1 terr-butyl alcohol $301.7-333.4$ -3.21 120.0 0.999 2.3 10.0 terr-butyl alcohol	benzene	301.7-343.8	-0.32	21.0	0.980	0.78	0.2			
ethyl benzene $322-9-33.3$ 0.25 60.4 0.964 1.6 0.5 propyl benzene $334.3-385.7$ 0.25 163.7 0.966 2.2 1.4 butyl benzene $364.7-385.7$ 0.54 163.8 0.989 3.0 1.4 pentyl benzene $364.7-385.7$ 1.14 30.0 0.997 3.4 0.3 methanol $302.0-354.5$ -2.72 939.2 0.999 1.5 7.8 ethanol $322.7-354.5$ -3.64 1375.2 0.999 2.6 11.4 1 -propanol $312.5-354.5$ -3.64 1375.2 0.998 2.7 9.0 1 -pentanol $333.3-375.0$ -2.62 1133.5 0.998 3.3 9.4 1 -pentanol 331356.0 -2.38 1115.4 0.999 3.9 9.3 2 -propanol $301.7-334.4$ -3.12 1200.0 0.998 2.6 10.1 $zer-butanol$ $301.7-334.4$ -3.12 1200.0 0.999 1.8 9.1 $zer-butanol$ $301.7-33.4$ -3.10 1094.6 0.999 1.8 9.1 $zer-butanol$ $301.7-33.4$ -3.10 1094.6 0.998 1.7 6.7 $zer-butanol$ $301.7-33.4$ -1.13 103.9 0.984 0.46 0.9 $zer-butanol$ $301.8-375.0$ -0.58 1482.0 0.987 1.1 1.5 $zer-butanol$ $301.8-375.0$ -0.59 135.6 0.999 1.4	toluene	307.1-343.9	0.36	-98.3	0.963	1.0	-0.8			
propyl benzene $333.4-385.7$ 0.25 163.7 0.966 2.2 1.4 penyl benzene $364.7-385.7$ 0.54 163.8 0.989 3.0 1.4 penyl benzene $364.7-385.7$ 1.14 30.0 0.997 3.4 0.3 methanol $302.0-354.5$ -2.72 939.2 0.999 1.5 7.8 ethanol $302.0-354.5$ -3.33 121.1 0.999 2.1 10.1 1 -propanol $312.5-354.5$ -3.64 1375.2 0.999 2.6 11.4 1 -butanol $322.7-354.2$ -2.62 1133.5 0.998 2.7 9.0 1 -prentanol $333.3-375.0$ -2.62 1133.5 0.999 3.9 9.3 2 -propanol $301.7-354.1$ -3.14 1143.8 0.999 2.6 10.1 1 -reventanol $301.7-354.4$ -3.12 120.0 0.999 2.6 10.1 sec -butanol $301.7-33.4$ -3.12 120.0 0.999 2.3 10.0 $terr-butyl alcohol301.7-33.4-3.12120.00.9991.89.1terr-butyl alcohol301.7-33.4-3.101094.60.9991.89.1terr-butyl alcohol301.7-33.4-3.101094.60.9991.80.1propanal301.8-33.4-1.1310.390.9840.4660.9putanal301.8-33.4-1.1310.390.9871.$	ethyl benzene	322.9-354.3	0.25	60.4	0.964	1.6	0.5			
butyl benzene $354.3-385.7$ 0.54 163.8 0.989 3.0 1.4 pentyl benzene $364.7-385.7$ 1.14 30.0 0.997 3.4 0.3 methanol $302.0-354.5$ -2.72 939.2 0.999 1.5 7.8 ethanol $302.0-354.5$ -3.33 1210.1 0.999 2.1 10.1 1 -propanol $312.5-354.5$ -3.64 1375.2 0.999 2.6 11.4 1 -butanol $322.7-354.2$ -2.63 1080.8 0.998 2.7 9.0 1 -pentanol $333.3-375.0$ -2.62 1133.5 0.998 3.3 9.4 2 -propanol $301.7-334.4$ -3.12 1214.0 0.998 2.6 10.1 2 -propanol $301.7-333.4$ -3.12 1220.0 0.999 1.8 9.1 $eer-butyl alcohol301.7-333.4-3.12120.000.9991.89.1err-pentanol301.7-333.4-3.12100.00.9981.76.7eyclohexanol301.7-333.4-3.12103.90.9840.460.991.141.13103.90.9840.460.991.141.13103.90.9840.460.9propanal301.8-375.0-0.48179.20.9871.11.5propanal301.8-375.0-0.48179.20.9871.11.5propanal301.8-335.$	propyl benzene	333.4-385.7	0.25	163.7	0.966	2.2	1.4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	butyl benzene	354.3-385.7	0.54	163.8	0.989	3.0	1.4			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	pentyl benzene	364.7-385.7	1.14	30.0	0.997	3.4	0.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Alcoh	ols						
ethanol $302.0-354.5$ -3.33 1210.1 0.999 2.1 10.1 1-propanol $312.5-354.5$ -3.64 1375.2 0.999 2.6 11.4 1-butanol $322.7-354.2$ -2.63 1080.8 0.998 2.7 9.0 1-pentanol $333.3-375.0$ -2.62 1133.5 0.998 3.3 9.4 1-hexanol $354.1-396.0$ -2.38 1115.4 0.999 3.9 9.3 2-propanol $301.7-354.1$ -3.14 1143.8 0.999 2.6 10.1 sec-butanol $301.7-33.4$ -3.12 1214.0 0.998 2.6 10.1 sec-butanol $301.7-33.4$ -3.12 1200.0 0.999 1.8 9.1 tert-butyl alcohol $301.7-33.4$ -3.10 1094.6 0.999 1.8 9.1 tert-pentanol $301.7-33.4$ -1.13 103.9 0.984 0.46 0.9 potanal $301.8-33.4$ -1.13 103.9 0.984 0.46 0.9 potanal $301.8-33.4$ -0.65 31.5 0.977 0.58 0.3 <td>methanol</td> <td>302.0-354.5</td> <td>-2.72</td> <td>939.2</td> <td>0.999</td> <td>1.5</td> <td>7.8</td>	methanol	302.0-354.5	-2.72	939.2	0.999	1.5	7.8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ethanol	302.0 - 354.5	-3.33	1210.1	0 999	21	10.1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1_propanol	312 5-354 5	-3.64	1375.2	0.999	2.1	11.4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 butanol	322.7-354.2	-2.63	1080.8	0.008	2.0	0.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 poptopol	222 2 2 2 7 5 0	-2.63	1122.5	0.998	2.7	9.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		254.1 206.0	-2.02	1155.5	0.998	3.3	9.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-nexanoi	354.1-396.0	-2.38	1115.4	0.999	3.9	9.5			
isobutanol $301.7-33.4$ -3.12 $121.4.0$ 0.998 2.6 10.1 sec-butanol $301.7-33.4$ -3.21 1200.0 0.999 2.3 10.0 tert-butyl alcohol $301.7-33.4$ -3.10 1094.6 0.999 1.8 9.1 tert-pentanol $301.7-364.6$ -2.16 808.0 0.998 1.7 6.7 cyclohexanol $301.8-33.4$ -1.13 103.9 0.984 0.46 0.9 propanal $301.8-33.4$ -0.65 31.5 0.977 0.58 0.3 pentanal $301.8-33.4$ -0.65 31.5 0.977 0.58 0.3 pentanal $301.8-375.0$ -0.48 179.2 0.987 1.1 1.5 hexanal $333.2-375.0$ 0.59 -135.6 0.999 1.14 -1.1 heptanal $334.6-396.0$ -1.59 584.7 0.991 1.45 4.9 octanal $354.1-396.0$ 0.98 -119.7 0.981 1.78 -1.0 Estersmethyl propanoate $322.8-354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl pentanoate $322.8-354.2$ -0.62 182.5 0.988 1.1 1.5 methyl pentanoate $322.8-354.2$ -0.62 128.5 0.996 0.67 -0.3 methyl pentanoate $322.8-354.2$ -0.62 -128.9 0.999 0.22 5.3 methyl heptanoate $301.8-354.3$ -0.62 <th< td=""><td>2-propanol</td><td>301.7-354.1</td><td>-3.14</td><td>1143.8</td><td>0.999</td><td>2.0</td><td>9.5</td></th<>	2-propanol	301.7-354.1	-3.14	1143.8	0.999	2.0	9.5			
sec-butanol $301.7-333.4$ -3.21 1200.0 0.999 2.3 10.0 tert-butyl alcohol $301.7-334.4$ -3.10 1094.6 0.999 1.8 9.1 tert-butyl alcohol $301.7-364.6$ -2.16 808.0 0.998 1.7 6.7 cyclohexanol $354.1-396.0$ -3.58 1482.0 0.989 4.0 12.3 Aldehydes propanal $301.8-333.4$ -0.65 31.5 0.977 0.58 0.3 pentanal $301.8-33.4$ -0.65 31.5 0.977 0.58 0.3 pentanal $301.8-375.0$ -0.48 179.2 0.987 1.1 1.5 hexanal $333.2-375.0$ 0.59 -119.7 0.981 1.78 -1.0 testrs methyl propanoate $322.8-354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl potanoate $322.8-354.2$ -0.52 182.5 0.988 1.1	isobutanol	301.7-333.4	-3.12	1214.0	0.998	2.6	10.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sec-butanol	301.7-333.4	-3.21	1200.0	0.999	2.3	10.0			
tert-pentanol $301.7-364.6$ -2.16 808.0 0.998 1.7 6.7 cyclohexanol $354.1-396.0$ -3.58 1482.0 0.989 4.0 12.3 Aldehydespropanal $301.8-333.4$ -1.13 103.9 0.984 0.46 0.9 butanal $301.8-333.4$ -0.65 31.5 0.977 0.58 0.3 pentanal $301.8-375.0$ -0.48 179.2 0.987 1.1 1.5 hexanal $333.2-375.0$ 0.59 -135.6 0.999 1.14 -1.1 heptanal $343.6-396.0$ -1.59 584.7 0.991 1.45 4.9 octanal $354.1-396.0$ 0.98 -119.7 0.981 1.78 -1.0 Estersmethyl propanoate $322.8-354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl pentanoate $322.8-354.2$ 0.06 -64.2 0.967 0.866 -0.5 methyl pentanoate $342.7-385.7$ -1.02 464.1 0.995 1.7 3.9 methyl hexanoate $343.2-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetone $301.8-354.3$ -1.61 257.6 0.988 0.47 2.1 acetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 <t< td=""><td><i>tert</i>-butyl alcohol</td><td>301.7-333.4</td><td>-3.10</td><td>1094.6</td><td>0.999</td><td>1.8</td><td>9.1</td></t<>	<i>tert</i> -butyl alcohol	301.7-333.4	-3.10	1094.6	0.999	1.8	9.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tert-pentanol	301.7-364.6	-2.16	808.0	0.998	1.7	6.7			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	cyclohexanol	354.1-396.0	-3.58	1482.0	0.989	4.0	12.3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Aldeh	vdes						
butanal $301.8-33.4$ -0.65 31.5 0.977 0.58 0.3 pentanal $301.8-375.0$ -0.48 179.2 0.987 1.1 1.5 hexanal $333.2-375.0$ 0.59 -135.6 0.999 1.14 -1.1 heptanal $343.6-396.0$ -1.59 584.7 0.991 1.45 4.9 octanal $354.1-396.0$ 0.98 -119.7 0.981 1.78 -1.0 Estersmethyl propanoate $322.8-354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl pentanoate $322.8-354.2$ 0.06 -64.2 0.967 0.866 -0.5 methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7-385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2-385.7$ -1.34 639.9 0.999 0.35 -1.0 acetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.47 2.1 $1,4$ -dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$	propanal	301.8-333.4	-1.13	103.9	0.984	0.46	0.9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	butanal	301 8-333 4	-0.65	31.5	0.977	0.58	0.3			
permutation $333.2 - 375.0$ 0.75 177.2 0.707 114 -1.5 hexanal $333.2 - 375.0$ 0.59 -135.6 0.999 1.14 -1.1 heptanal $343.6 - 396.0$ -1.59 584.7 0.991 1.45 4.9 octanal $354.1 - 396.0$ 0.98 -119.7 0.981 1.78 -1.0 Estersmethyl propanoate $322.8 - 354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl pentanoate $322.8 - 354.2$ 0.06 -64.2 0.967 0.86 -0.5 methyl pentanoate $322.8 - 354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7 - 385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2 - 385.7$ -1.34 639.9 0.999 0.35 -1.0 Polar Solventsacetone $301.8 - 354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetone $301.8 - 354.3$ -1.61 257.6 0.988 0.47 2.1 1,4-dioxane $375.2 - 396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8 - 344.0$ 0.16 -170.3 0.948 0.66 -1.4	pentanal	301.8-375.0	-0.48	179.2	0.987	11	1.5			
hextman $333.6 - 396.0$ -1.59 135.6 0.997 1.45 4.9 heptanal $343.6 - 396.0$ -1.59 584.7 0.991 1.45 4.9 octanal $354.1 - 396.0$ 0.98 -119.7 0.981 1.78 -1.0 Estersmethyl propanoate $322.8 - 354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl butanoate $322.8 - 354.2$ 0.06 -64.2 0.967 0.86 -0.5 methyl pentanoate $322.8 - 354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7 - 385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2 - 385.7$ -1.34 639.9 0.999 2.2 5.3 Polar Solventsacetone $301.8 - 354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3 - 354.3$ -1.61 257.6 0.988 0.47 2.1 $1,4$ -dioxane $375.2 - 396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8 - 344.0$ 0.16 -170.3 0.948 0.66 -1.4	beyanal	333 2-375 0	0.59	-135.6	0.999	1 14	-11			
Including $343.0 > 354.0 > 350.0$ $1.57 > 354.7 > 0.971 > 0.971 = 1.45 = 4.7 0.971 = 1.45 = 4.7 0.981 = 1.78 = -1.0 octanal354.1 - 396.0 = 0.98 = -119.7 = 0.981 = 1.78 = -1.0 Esters = -1.0 methyl propanoate322.8 - 354.1 = -0.28 = -34.5 = 0.996 = 0.67 = -0.3 0.06 = -64.2 = 0.967 = 0.86 = -0.5 0.86 = -0.5 methyl pentanoate322.8 - 354.2 = -0.52 = 182.5 = 0.988 = 1.1 = 1.5 0.995 = 1.7 = 3.9 0.995 = 1.7 = 3.9 methyl heptanoate343.7 - 385.7 = -1.02 = 464.1 = 0.995 = 1.7 = 3.9 0.999 = 0.22 = 5.3 Polar Solventsacetone301.8 - 354.3 = -0.62 = -128.9 = 0.999 = 0.35 = -1.0 acetonitrile = 312.3 - 354.3 = -1.61 = 257.6 = 0.988 = 0.47 = 2.1 1.4-dioxane = 375.2 - 396.2 = -0.01 = -1202.0 = 0.999 = 0.02 = -10.0 trichloromethane = 301.8 - 344.0 = 0.16 = -170.3 = 0.948 = 0.66 = -1.4 $	hentanal	343 6-396 0	-1.59	584.7	0.991	1.14	1.1			
octahal $334.1-390.0$ 0.98 -119.7 0.981 1.78 -1.0 Estersmethyl propanoate $322.8-354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl butanoate $322.8-354.2$ 0.06 -64.2 0.967 0.86 -0.5 methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7-385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2-385.7$ -1.34 639.9 0.999 2.2 5.3 Polar Solventsacetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.477 2.1 $1,4$ -dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4	ootopol	254 1-206 0	0.08	-110.7	0.091	1.45	-1.0			
Estersmethyl propanoate $322.8-354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl butanoate $322.8-354.2$ 0.06 -64.2 0.967 0.86 -0.5 methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7-385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2-385.7$ -1.34 639.9 0.999 2.2 5.3 Polar Solventsacetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.47 2.1 $1,4$ -dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4	octaliai	554.1 590.0	0.98	117.7	0.981	1.70	1.0			
metnyi propanoate $322.8-354.1$ -0.28 -34.5 0.996 0.67 -0.3 methyl butanoate $322.8-354.2$ 0.06 -64.2 0.967 0.86 -0.5 methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7-385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2-385.7$ -1.34 639.9 0.999 2.2 5.3 Polar Solventsacetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.47 2.1 1,4-dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4		222.9 254.1	Este	rs	0.007	0.77	0.2			
methyl butanoate $322.8-354.2$ 0.06 -64.2 0.967 0.86 -0.5 methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7-385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2-385.7$ -1.34 639.9 0.999 2.2 5.3 Polar Solventsacetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.47 2.1 1,4-dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4	methyl propanoate	322.8-354.1	-0.28	-34.5	0.996	0.67	-0.3			
methyl pentanoate $322.8-354.2$ -0.52 182.5 0.988 1.1 1.5 methyl hexanoate $343.7-385.7$ -1.02 464.1 0.995 1.7 3.9 methyl heptanoate $354.2-385.7$ -1.34 639.9 0.999 2.2 5.3 Polar Solventsacetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.47 2.1 1,4-dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4	methyl butanoate	322.8-354.2	0.06	-64.2	0.967	0.86	-0.5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	methyl pentanoate	322.8-354.2	-0.52	182.5	0.988	1.1	1.5			
methyl heptanoate 354.2–385.7 -1.34 639.9 0.999 2.2 5.3 Polar Solvents -0.62 -128.9 0.999 0.35 -1.0 acetone 312.3–354.3 -1.61 257.6 0.988 0.47 2.1 1,4-dioxane 375.2–396.2 -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane 301.8–344.0 0.16 -170.3 0.948 0.66 -1.4	methyl hexanoate	343.7-385.7	-1.02	464.1	0.995	1.7	3.9			
Polar Solventsacetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.47 2.1 1,4-dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4	methyl heptanoate	354.2-385.7	-1.34	639.9	0.999	2.2	5.3			
acetone $301.8-354.3$ -0.62 -128.9 0.999 0.35 -1.0 acetonitrile $312.3-354.3$ -1.61 257.6 0.988 0.47 2.1 1,4-dioxane $375.2-396.2$ -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4	Polar Solvents									
acetonitrile 312.3-354.3 -1.61 257.6 0.988 0.47 2.1 1,4-dioxane 375.2-396.2 -0.01 -1202.0 0.999 0.02 -10.0 trichloromethane 301.8-344.0 0.16 -170.3 0.948 0.66 -1.4	acetone	301.8-354.3	-0.62	-128.9	0.999	0.35	-1.0			
1,4-dioxane375.2-396.2-0.01-1202.00.9990.02-10.0trichloromethane301.8-344.00.16-170.30.9480.66-1.4	acetonitrile	312.3-354.3	-1.61	257.6	0.988	0.47	2.1			
trichloromethane $301.8-344.0$ 0.16 -170.3 0.948 0.66 -1.4	1.4-dioxane	375.2-396.2	-0.01	-1202.0	0.999	0.02	-10.0			
	trichloromethane	301.8-344.0	0.16	-170.3	0.948	0.66	-1.4			

or *tert*-butyl alcohol) reduces the value of γ_i^{∞} in comparison to the corresponding linear alcohol. Values of γ_i^{∞} of aldehydes and esters are distinctly lower in comparison with those of the alkanes and alkenes.

The value for the partial molar excess enthalpy at infinite dilution $(H_i^{E,\infty})$ can be directly obtained from the slope of a straight line derived from eq 5:

$$\left(\frac{\partial \partial \ln \gamma_i^{\infty}}{\partial (1/T)}\right) = \frac{H_i^{\text{E}\infty}}{R}$$
(5)

where R is the gas constant. The values of $H_i^{\mathrm{E},\infty}$ for the

compounds studied are also listed in Table 1. The uncertainties of $H_i^{\text{E},\infty}$ are estimated to be not better than ± 10 % due to the small slope of $\ln \gamma_i^{\infty}$ versus 1/T plots and taking into account the experimental uncertainty of the γ_i^{∞} values. This is also confirmed by results of $H_i^{\text{E},\infty}$ for systems where a comparison between the results obtained by eq 5 and direct calorimetric data is possible.¹⁰

 $H_i^{\mathrm{E},\infty}$ are positive and hardly change with increasing chain length of the linear alkanes. The introduction of double bonds slightly lower the positive values of $H_i^{\mathrm{E},\infty}$. Values of $H_i^{\mathrm{E},\infty}$ of linear alcohols are positive and do not change with increasing

chain length. For dioxane, and some aldehydes $H_i^{E,\infty}$ becomes negative. This is most probably due to the high polarizibility of the oxygen atoms and the special strength of ion-induced dipole interactions.

Acknowledgment

We are grateful to Prof. P. Wasserscheid (Technical University of Erlangen, Germany) for supplying the ionic liquid [HMIM]-[NTf₂].

Supporting Information Available:

Two tables showing critical constants and acentric factors of the solutes and experimental activity coefficients at infinity dilution. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- (1) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-*N*-butylpyridinium tetrafluoroborate using gas-liquid chromatography. *J. Chem. Eng. Data* **2001**, *46*, 1526–1529.
- (2) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. activity coefficients at infinite dilution of polar solvents in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Thermodyn. 2002, 34, 1341–1347.
- (3) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl) amide and in 1,2-dimethyl-3-ethylimidazolium bis(trifluoromethyl-sulfonyl) amide using gasliquid chromatography. J. Chem. Eng. Data 2002, 47, 894–899.
- (4) Verevkin, S. P.; Vasiltsova, T. V.; Bich, E.; Heintz, A. Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients of aldehydes and ketones in 1-methyl-3-ethyl-imidazolium bis-(trifluoromethyl-sulfonyl) imide using the transpiration method. *Fluid Phase Equilib.* 2004, 218, 165–175.
- (5) Verevkin, S. P.; Safarov, J.; Bich, E.; Hassel, E.; Heintz, A. Thermodynamic properties of mixtures containing ionic liquids. Vapor pressures and activity coefficients of *n*-alcohols and benzene in binary mixtures with in 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl) imide. *Fluid Phase Equilib*. (in press).
- (6) Safarov, J.; Verevkin, S. P.; Bich, E.; Wasserscheid, P.; Heintz, A. Thermodynamic properties of mixtures containing ionic liquids. Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butylimidazolium octyl sulfate or 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 2006, 51, 518–525.

- (7) Heintz, A.; Martinez Casás, L.; Nesterov, I. A.; Emel'yanenko, V. N.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 5. Activity coefficients at infinite dilution of hydrocarbons alcohols, ester and aldehydes in 1-methyl-3-butyl-imidazolium bis-(trifluoromethyl-sulfonyl) imide using gas-liquid chromatography. J. Chem. Eng. Data 2005, 50, 1510–1514.
- (8) Heintz, A.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 6. Activity coefficients at infinite dilution of hydrocarbons, alcohols, ester and aldehydes in 1-methyl-3-octylimidazolium tetrafluoroborate using gas—liquid chromatography. J. Chem. Eng. Data 2005, 50, 1515–1519.
- (9) Vasiltsova, T. V.; Verevkin, S. P.; Bich, E.; Heintz, A.; Bogel-Lukasik, R.; Domanska, U. Thermodynamic properties of mixtures containing ionic liquids. 7. Activity coefficients of aliphatic and aromatic esters, and benzylamine in 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl) imide using the transpiration method. *J. Chem. Eng. Data* 2006, 51, 213–218.
- (10) Heintz, A.; Marczak, W.; Verevkin, S. P. Activity coefficients and heats of dilution in mixtures containing ionic liquids. In *Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities*; Rogers, R. D., Seddon, K., Eds.; ACS Symposium Series 901; American Chemical Society: Washington, DC, 2005; Chapter 14, pp 187–206.
- (11) Heintz, A. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn. 2005, 37, 525–535.
- (12) Cruickshank, A. J. B.; Windsor, M. L.; Young, C. L. The use of gasliquid chromatography to determine activity coefficients and second virial coefficients of mixtures. *Proc. R. Soc.* **1966**, A295, 259–270.
- (13) Grant, D. W. *Gas-Liquid Chromatography*; van Nostrand Reinhold Company: London, 1971.
- (14) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. *The Properties of Gases and Liquids*, 3rd ed.; McGraw-Hill: New York 1977.
- (15) Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed.; Prentice-Hall: New York, 1986.
- (16) Ruzicka, K.; Majer, V. Simultaneous treatment of vapor pressures and related thermal data between the triple and normal boiling temperatures for *n*-alkanes C₅₋₂₀. J. Phys. Chem. Ref. Data **1994**, 23, 1–39.
- (17) Steele, W. V.; Chirico, R. D. Thermodynamic properties of alkenes (mono-olefins larger than C₄). J. Phys. Chem. Ref. Data 1993, 22, 377-430.
- (18) Ambrose D.; Walton J. Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols. *Pure Appl. Chem.* 1989, *61*, 1395–1403.

Received for review August 31, 2005. Accepted January 3, 2006. D.O. gratefully acknowledges an ERASMUS scholarship. We are grateful to the German Science Foundation (DFG) for financial support.

JE0503554