Effect of NaCl, MgCl₂, FeCl₂, FeCl₃, and AlCl₃ on Solubility of CaSO₄ Phases in Aqueous HCl or HCl + CaCl₂ Solutions at 298 to 353 K

Zhibao Li and George P. Demopoulos*

Department of Mining, Metals and Materials Engineering, McGill University, M. H. Wong Building, 3610 University Street, Montreal, Quebec, H3A 2B2 Canada

The effect of various chloride salts (NaCl, MgCl₂, FeCl₂, FeCl₃, and AlCl₃) on the solubility of three CaSO₄ modifications, namely, calcium sulfate dihydrate, hemihydrate, and anhydrite in aqueous HCl or HCl + CaCl₂ solutions up to 353 K was investigated. The concentration ranges (at ambient temperature) studied are up to 6 mol·dm⁻³ for HCl; 1.5 mol·dm⁻³ for CaCl₂; 3 mol·dm⁻³ for NaCl, MgCl₂, and FeCl₂; and 2 mol·dm⁻³ for AlCl₃ and FeCl₃. The solubility of CaSO₄ phases in all cases investigated was found to increase with temperature. In 0.5 mol·dm⁻³ HCl, the effect of metal chlorides on the solubility of dihydrate was a complex one with solubility increasing up to a certain metal chloride concentration (3 mol·dm⁻³), the solubility of dihydrate and anhydrite was found to consistently decrease with increasing metal chloride concentration. The only exception was NaCl, which was found not to influence to a significant degree the solubility of dihydrate in HCl solutions. The solubility of dihydrate in pure AlCl₃ solution smoothly passes through a maximum value in the (0 to 1.5) mol·dm⁻³ AlCl₃ concentration range. The presence of CaCl₂ causes the solubility of both dihydrate and hemihydrate to decrease due to common ion effect.

Introduction

Previously, we reported the solubility of three CaSO₄ modifications, namely, dihydrate (DH), hemihydrate (HH), and anhydrite (AH) in aqueous HCl + CaCl₂ solutions at the temperature range of (283 to 353) K.¹ These data are considered important both from the standpoint of developing chemical solution models² as well as from the standpoint of designing a process for HCl regeneration and production of valuable gypsum materials, like α -CaSO₄ hemihydrate.^{3,4} In many industrial systems, however, there exist other metal chloride salts in addition to CaCl₂ in HCl media.^{5–9} It is indeed the object of this research to evaluate the effect various metal chlorides, such as NaCl, MgCl₂, FeCl₂, FeCl₃, and AlCl₃, have on the solubility of CaSO₄ phases in HCl or HCl + CaCl₂ solutions. There is currently limited work reported on the effect of metal chlorides on the solubility of CaSO₄ phases in particular in hot concentrated HCl solutions.

The solubility of calcium sulfate dihydrate at low temperature or anhydrite at elevated temperature in pure NaCl solutions was determined by many investigators. Raju and Atkinson¹⁰ presented a comprehensive review of CaSO₄ solubility data in NaCl + H₂O system. Kruchenko¹¹ reported the solubility of gypsum (dihydrate) in aqueous solutions of MgCl₂ at (25, 40, and 50) °C. The results show that the solubility passes through a maximum at the concentration range of (0 to 35) % MgCl₂. Flint¹² investigated the effect of small additions of NaCl, MgCl₂, AlCl₃, and HCl on dihydrate solubility. According to Flint's work, the uptake (solubility) of calcium sulfate by seawater brines increases from 0.8 % to (3 or 6) % by AlCl₃ or HCl, respectively. Ostroff and Metler¹³ measured the solubility of dihydrate in mixed NaCl + MgCl₂ solutions with concentration range of (0.01 to 0.325) mol·kg⁻¹ MgCl₂ up to 70 °C. Finally,

* Corresponding author. E-mail: george.demopoulos@mcgill.ca. Fax: (514)-398-4492.

the solubility of gypsum in aqueous electrolyte systems (such as NaCl and MgCl₂) of limited ionic strength at 25 °C was reported by Tanji,¹⁴ who also calculated these values with the aid of a computer program.

The above discussion suggests that there is still a requirement to systematically investigate the effects of various chloride salts on the solubility of calcium sulfate and its hydrates, especially in concentrated HCl- based solutions. This is done here for NaCl, MgCl₂, FeCl₂, FeCl₃, AlCl₃, CaCl₂, and their mixtures over the temperature range of (298 to 353) K.

Experimental Section

Chemicals. Analytically pure HCl, CaCl₂·2H₂O, NaCl, MgCl₂·6H₂O, FeCl₂·4H₂O, and FeCl₃ were supplied by Fisher with minimum purities of (36.5 to 38.0) %, 99.9 %, 99.9 %, 99.5 %, 99.9 %, and 99.9 %, respectively. AlCl₃ (98.5 %) was supplied by Aldrich. All solutions were prepared by carefully weighing the appropriate quantities of acid or salts and deionized water into 1 L flasks. Three solid substances were employed as the saturating solid phase; gypsum with 99 % purity that contained trace anhydrite (CaSO₄) was obtained from Alfa Aesar. Calcium sulfate hemihydrate (plaster of Paris, also called β -hemihydrate) was obtained from Fisher, while anhydrite with 99 % purity was estimated from Alfa Aesar. Deionized water with specific conductivity of 0.1 μ S·cm⁻¹ was used.

Procedure. The experimental technique used in the present work is the isothermal dissolution method that has been discussed in detail in an earlier report.¹ To summarize, the method involves saturating aqueous electrolyte solutions with known composition with CaSO₄ solids in glass flasks thermostated at selected temperature with constant magnetic stirring. The temperature was controlled to \pm 0.2 K. Five hours of contact time was employed at 298 K to ensure the equilibration between calcium sulfate dihydrate or anhydrite and solution

Table 1. Solubility of $CaSO_4$ (1) as Dihydrate in 0.5 mol dm^{-3} HCl (2) + NaCl (3) + H₂O (4)

solution parameters				solubility as CaSO ₄ in different units		
<i>c</i> ₃	m_2	m_3	$ ho_{\rm s}$	γ_1	c_1	m_1
$mol \cdot dm^{-3 a}$	$\overline{\mathrm{mol}\mathbf{\cdot}\mathrm{kg}^{-1}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{g \cdot cm^{-3b}}$	g•dm ⁻³	mol·dm ⁻³	mol·kg ⁻¹
		Т	= 323 K			
0.50	0.5089	0.5089	1.028	15.66	0.1150	0.1190
1.00	0.5137	1.0273	1.048	16.17	0.1187	0.1241
2.00	0.5236	2.0945	1.086	16.52	0.1213	0.1294
3.00	0.5369	3.2212	1.121	16.07	0.1180	0.1290
		Т	= 353 K			
0.50	0.5083	0.5083	1.114	21.24	0.1560	0.1496
1.00	0.5132	1.0265	1.169	21.32	0.1566	0.1471
2.00	0.5232	2.0928	1.225	21.81	0.1602	0.1519
3.00	0.5364	3.2186	1.277	21.36	0.1569	0.1508

while 1 h was used for hemihydrate saturation. At elevated temperatures, 2 h instead of 5 h was used since it was found to be adequate to ensure the attainment of equilibrium on one hand and on the other to minimize HCl and water vapor losses. After equilibration, the clear solution was sampled and filtered to determine the solution density at the temperature of the system. The measured densities were uncertain to ± 0.001 g·cm⁻³. Next, the filtered CaSO₄ saturated solution was diluted, and its calcium or sulfur content was analyzed by ICP to determine the solubility. The triplicate determinations of dihydrate solubility in 1 mol·dm⁻³ HCl at ambient temperature were carried out. The uncertainty of the measured solubility values was within ± 0.111 $g \cdot dm^{-3}$ while the relative deviation was 0.77 %. The washed (with hot water and acetone) and dried solid phases were examined by XRD to determine whether the solid phase had been altered due to phase transformation during equilibration.

Results and Discussion

Solubility of CaSO₄·2H₂O in HCl + NaCl Solutions. Calcium sulfate dihydrate solubilities in mixed HCl (0.5 mol·dm⁻³) + NaCl solutions were measured at (323 and 353) K. The investigated concentration of NaCl is from (0.0 to 3) mol·dm⁻³ at ambient temperature. The results of experimentally determined solubilities are summarized in Table 1 and graphically in Figure 1. In Table 1, the concentration of HCl, NaCl, and calcium sulfate (CaSO₄) is expressed both in concentration (*c*/mol·dm⁻³) and molality (*m*/mol·kg⁻¹) for convenient practical and thermodynamic reference. However, the concentration of NaCl marked with c_3 is the initial concentration of the solution

Figure 1. Solubility of calcium sulfate dihydrate in HCl (0.5 mol·dm⁻³) + NaCl solutions: \bigcirc , 323 K; \blacksquare , 353 K; \neg , Ostroff and Metler¹² at 323 K.

Table 2. Solubility of CaSO₄ (1) as Dihydrate in 0.5 mol·dm $^{-3}$ HCl (2) + MgCl₂ (3) + H₂O (4)

lifferent u	SO ₄ nits
c_1	m_1
nol•dm ⁻³	mol•kg ⁻¹
0.0921	0.0949
0.0805	0.0846
0.0611	0.0654
0.0430	0.0472
0.1175	0.1222
0.1065	0.1129
0.0838	0.0905
0.0624	0.0690
0.1600 0.1421 0.1199 0.0900	0.1689 0.1526 0.1311 0.1007
	$\frac{c_1}{100000000000000000000000000000000000$

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*} Experimental density of saturated solutions.

Table 3. Solubility of CaSO₄ (1) as Dihydrate in 3 mol·dm⁻³ HCl (2) + MgCl₂ (3) + H₂O (4)

	soluti parame	on eters		solu	ubility as Ca different u	aSO ₄ nits
С3	m_2	m_3	$ ho_{ m s}$	γ_1	<i>c</i> ₁	m_1
$mol \cdot dm^{-3 a}$	mol·kg ⁻¹	mol·kg ⁻¹	$\overline{g \cdot cm^{-3 b}}$	$g \cdot dm^{-3}$	mol·dm ⁻³	mol·kg ⁻¹
		Т	= 298 K			
0.25	3.2034	0.2670	1.077	18.37	0.1349	0.1456
0.50	3.2255	0.5376	1.093	16.27	0.1195	0.1296
1.00	3.2683	1.0894	1.127	13.50	0.0992	0.1089
1.25	3.3009	1.3754	1.142	12.45	0.0914	0.1013
1.50	3.3232	1.6616	1.158	11.36	0.0834	0.0930
2.00	3.3790	2.2527	1.190	8.98	0.0659	0.0746
2.50	3.4419	2.8683	1.203	7.83	0.0575	0.0673
3.00	3.4932	3.4932	1.252	6.34	0.0466	0.0545
		Т	= 323 K			
0.25	3.1959	0.2663	1.074	26.23	0.1926	0.2099
0.50	3.2174	0.5362	1.090	24.79	0.1820	0.1996
1.00	3.2611	1.0870	1.123	20.83	0.1530	0.1697
1.25	3.2937	1.3724	1.136	19.65	0.1443	0.1616
1.50	3.3167	1.6584	1.154	17.76	0.1304	0.1468
2.00	3.3730	2.2487	1.186	14.83	0.1089	0.1243
2.50	3.4363	2.8636	1.213	13.18	0.0968	0.1128
3.00	3.4891	3.4891	1.243	10.01	0.0735	0.0870

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*} Experimental density of saturated solutions.

prepared at ambient temperature (24 ± 1 °C) before introducing calcium sulfate dihydrate. The other quantities of acid and salts in different units express the concentration at the conditions of the system. Figure 1 demonstrates that the solubility of dihydrate slightly increases with increasing NaCl concentration at 323 K while NaCl has limited effect on solubility of dihydrate in 0.5 mol·dm⁻³ HCl solutions at 353 K. For comparison, the solubility of dihydrate in pure NaCl from Ostroff and Metler¹² is also included in Figure 1 (indicated with a dashed line). It can be clearly seen that HCl causes a sharp increase of CaSO₄ (as DH) solubility.

Solubility of $CaSO_4 \cdot 2H_2O$ and $CaSO_4$ in $HCl + MgCl_2$ Solutions. The solubilities of calcium sulfate dihydrate and anhydrite in mixed HCl (0.5 and 3 mol·dm⁻³) + MgCl₂ solutions are shown in Tables 2 to 4 and also presented graphically in Figures 2 to 4, respectively. The concentration of MgCl₂ investigated is in the range of (0 to 3) mol·dm⁻³ and

Table 4. Solubility of CaSO₄ (1) as Anhydrite in 3 mol·dm $^{-3}$ HCl (2) + MgCl₂ (3) + H₂O (4)

	solution parameters				solubility as CaSO ₄ in different units		
<i>C</i> ₃	<i>m</i> ₂	<i>m</i> ₃	$ ho_{ m s}$	γ_1	<i>c</i> ₁	m_1	
$mol \cdot dm^{-3 a}$	$mol \cdot kg^{-1}$	$mol \cdot kg^{-1}$	$g \cdot cm^{-3 b}$	$g{\boldsymbol{\cdot}} dm^{-3}$	$mol \cdot dm^{-3}$	$mol \cdot kg^{-1}$	
		Т	= 353 K				
0.25	3.2203	0.2684	1.0586	24.81	0.1822	0.2015	
0.50	3.2407	0.5401	1.0776	23.15	0.1700	0.1886	
1.00	3.2812	1.0937	1.1059	18.77	0.1379	0.1552	
1.25	3.3130	1.3804	1.1215	16.71	0.1228	0.1392	
1.50	3.3344	1.6672	1.1377	14.89	0.1093	0.1247	
2.00	3.3881	2.2588	1.1684	11.56	0.0849	0.0983	
2.50	3.4503	2.8752	1.1980	9.41	0.0691	0.0814	
3.00	3.5001	3.5001	1.2314	7.25	0.0533	0.0636	

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*}Experimental density of saturated solutions.

temperature range up to 353 K. As demonstrated in Figures 2 and 3, the solubility of dihydrate consistently increases with increasing temperature. It can be seen from Figure 2 that at low HCl concentration the solubility of dihydrate increases with increasing MgCl₂ concentration in the range of (0.0 to 0.5) mol·dm⁻³. After passing a maximum, the solubility declines smoothly in the range of higher concentration of MgCl₂. However, addition of MgCl₂ in concentrated HCl solutions causes the solubility of dihydrate to decrease constantly as shown in Figure 3. These results show that the presence of MgCl₂ in HCl solutions markedly influences in a complex (unpredicted) fashion the dihydrate solubility. Similar trend is observed in the case of anhydrite solubility as illustrated in Figure 4.

Figure 2. Solubility of calcium sulfate dihydrate in HCl (0.5 mol·dm⁻³) + MgCl₂ solutions: ▲, 298 K; ○, 323 K; ■, 353 K.

Figure 3. Solubility of calcium sulfate dihydrate in HCl (3 mol·dm⁻³) + MgCl₂ solutions: \blacktriangle , 298 K; \bigcirc , 323 K.

Figure 4. Solubility of calcium sulfate anhydrite in HCl (3 mol·dm⁻³) + MgCl₂ solutions at 353 K.

Table 5. Solubility of CaSO₄ (1) as Dihydrate in $AlCl_3(2) + H_2O(3)$

]	solution parameters		so i	lubility as Ca n different un	SO ₄ iits
c_2	m_2	$ ho_{ m s}$	γ_1	c_1	m_1
$mol \cdot dm^{-3 a}$	mol·kg ⁻¹	$\overline{\mathbf{g}\cdot\mathbf{cm}^{-3b}}$	g•dm ⁻³	mol·dm ⁻³	mol·kg ⁻¹
		T = 29	98 K		
0.25	0.2517	1.033	9.47	0.0695	0.0702
0.50	0.5080	1.065	10.95	0.0805	0.0815
1.00	1.0386	1.117	11.12	0.0817	0.0841
1.25	1.3144	1.140	10.33	0.0759	0.0789
1.50	1.5985	1.170	8.49	0.0624	0.0651
		T = 32	23 K		
0.25	0.2516	1.027	10.79	0.0792	0.0805
0.50	0.5077	1.057	13.01	0.0956	0.0977
1.00	1.0378	1.110	13.59	0.0998	0.1035
1.25	1.3137	1.137	12.21	0.0897	0.0936
1.50	1.5975	1.164	10.69	0.0785	0.0825
		T = 35	53 K		
0.25	0.2514	1.013	13.13	0.0965	0.0997
0.50	0.5071	1.045	16.82	0.1235	0.1282
1.00	1.0363	1.101	18.70	0.1373	0.1444
1.25	1.3115	1.128	17.90	0.1314	0.1390
1.50	1.5948	1.155	16.41	0.1206	0.1284

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*} Experimental density of saturated solutions.

Solubility of $CaSO_4 \cdot 2H_2O$ in AlCl₃ Solutions. The solubility data of calcium sulfate dihydrate in aqueous AlCl₃ solutions at (298, 323, and 353) K is shown in Table 5 and Figure 5. Figure 5 shows that an increase in temperature from (298 to 353) K leads to an increase in the solubility of dihydrate, but the position

Figure 5. Solubility of calcium sulfate dihydrate in AlCl₃ solutions: \blacktriangle , 298 K; \bigcirc , 323 K; \blacksquare , 353 K.

Figure 6. Comparison of dihydrate solubility in MgCl₂ and AlCl₃ solutions: \blacktriangle , MgCl₂ at 298 K;¹¹ O, MgCl₂ at 323 K;¹¹ \bigtriangleup , AlCl₃ at 298 K; \bigcirc , AlCl₃ at 323 K.

Table 6. Solubility of CaSO₄ (1) as Dihydrate in 0.5 mol·dm $^{-3}$ HCl (2) + AlCl₃ (3) + H₂O (4)

	soluti parame	on eters		sol ir	ubility as Ca 1 different u	aSO4 nits
<i>c</i> ₃	m_2	m_3	$ ho_{\rm s}$	γ_1	c_1	m_1
$\overline{\text{mol}\cdot\text{dm}^{-3a}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{g \cdot cm^{-3b}}$	$\overline{g \cdot dm^{-3}}$	mol·dm ⁻³	mol•kg ⁻¹
		Т	= 298 K			
0.50	0.5085	0.5085	1.075	14.16	0.1040	0.1065
1.00	0.5162	1.0325	1.127	11.96	0.0879	0.0911
1.50	0.5187	1.5561	1.180	8.67	0.0637	0.0667
2.00	0.5323	2.1292	1.227	6.37	0.0468	0.0499
		Т	= 323 K			
0.50	0.5079	0.5079	1.069	18.81	0.1382	0.1428
1.00	0.5156	1.0312	1.124	16.43	0.1206	0.1259
1.50	0.5181	1.5543	1.172	12.69	0.0932	0.0986
2.00	0.5318	2.1271	1.221	9.72	0.0714	0.0768
		Т	= 353 K			
0.50	0.5069	0.5069	1.061	25.70	0.1888	0.1980
1.00	0.5145	1.0290	1.113	23.60	0.1734	0.1838
1.50	0.5170	1.5511	1.167	19.97	0.1467	0.1566
2.00	0.5307	2.1229	1.212	16.43	0.1207	0.1314

of the maximum on the diagram remains unchanged. A similar behavior was observed by Kruchenko¹¹ in the case of dihydrate solubility in MgCl₂ solutions. The two sets of data are compared in Figure 6. It can be seen that the dihydrate solubility in AlCl₃ solutions represented by solid lines is larger than that in MgCl₂ solutions. This may be due to partial hydrolysis of AlCl₃ that generates HCl, hence the increase in solubility:

$$AlCl_3(aq) + H_2O \leftrightarrow AlOHCl_2(aq) + HCl$$
 (1)

Solubility of $CaSO_4 \cdot 2H_2O$ in $HCl + AlCl_3$ Solutions. The solubility of calcium sulfate dihydrate in $AlCl_3 + HCl$ solutions with two HCl concentration levels of (0.5 and 3) mol·dm⁻³ from (298 to 353) K was measured and listed in Tables 6 and 7 and Figures 7 and 8. Figure 7 shows that in 0.5 mol·dm⁻³ HCl the solubility of calcium sulfate dihydrate increases with increasing AlCl₃ concentration at first, passes through a maximum, and then decreases with further addition of AlCl₃. However, at the higher HCl concentration (i.e., 3.0 mol·dm⁻³), the presence of AlCl₃ causes the solubility of dihydrate monotonically to decrease as depicted in Figure 8.

Solubility of $CaSO_4 \cdot 2H_2O$ in $HCl + FeCl_2$ or $FeCl_3$ Solutions. The experimental data of solubility of dihydrate in aqueous solutions containing HCl (0.5 mol·dm⁻³) + FeCl₂ at

Table 7. Solubility of CaSO₄ (1) as Dihydrate in 3 mol·dm⁻³ HCl (2) + AlCl₃ (3) + H₂O (4)

solution parameters				solubility as CaSO ₄ in different units		
<i>c</i> ₃	m_2	m_3	$ ho_{ m s}$	γ_1	<i>c</i> ₁	m_1
$mol \cdot dm^{-3 a}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	mol·kg ⁻¹	$\overline{g \cdot cm^{-3 b}}$	$\overline{g \cdot dm^{-3}}$	$mol \cdot dm^{-3}$	mol•kg ⁻¹
		Т	= 298 K			
0.50	3.2228	0.5371	1.113	14.83	0.1089	0.1179
1.00	3.2625	1.0875	1.166	10.48	0.0770	0.0842
1.50	3.3197	1.6599	1.215	7.51	0.0551	0.0613
		Т	= 323 K			
0.50	3.2162	0.5360	1.109	21.68	0.1593	0.1741
1.00	3.2563	1.0854	1.161	16.96	0.1246	0.1376
1.50	3.3144	1.6572	1.208	12.86	0.0945	0.1060

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*} Experimental density of saturated solutions.

(323 and 353) K were determined and shown in Table 8 and Figure 9. Figure 9 shows the dihydrate solubility to increase with increasing concentration of FeCl₂ up to certain level and then to decrease with further increase in FeCl₂ concentration. In addition, the influence of FeCl₃ in HCl solutions from (0.5 or 3) mol·dm⁻³ on the solubility of dihydrate was investigated, and the results are given in Tables 9 and 10 and Figures 10 and 11. Once more, upon an increase in FeCl₃ concentration the solubility of dihydrate in 0.5 mol·dm⁻³ HCl solutions increases

Figure 7. Solubility of calcium sulfate dihydrate in HCl (0.5 mol·dm⁻³) + AlCl₃ solutions: \blacktriangle , 298 K; \bigcirc , 323 K; \blacksquare , 353 K.

Figure 8. Solubility of calcium sulfate dihydrate in HCl (3 mol·dm⁻³) + AlCl₃ solutions: \blacktriangle , 298 K; \bigcirc , 323 K.

Figure 9. Solubility of calcium sulfate dihydrate in HCl (0.5 mol·dm⁻³) + FeCl₂ solutions: \bigcirc , 323 K; \blacksquare , 353 K.

Table 8. Solubility of CaSO₄ (1) as Dihydrate in 0.5 mol·dm⁻³ HCl (2) + FeCl₂ (3) + H₂O (4)

	solution parameters				solubility as CaSO ₄ in different units		
<i>C</i> 3	m_2	m_3	$ ho_{ m s}$	γ_1	c_1	m_1	
$\overline{\text{mol}\cdot\text{dm}^{-3a}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{\mathbf{g}\cdot\mathbf{cm}^{-3b}}$	$\overline{g \cdot dm^{-3}}$	$\overline{mol \cdot dm^{-3}}$	mol•kg ⁻¹	
		Т	= 323 K				
1.00	0.5148	1.0297	1.117	16.46	0.1209	0.1261	
1.50	0.5175	1.5525	1.166	15.21	0.1117	0.1180	
2.00	0.5292	2.1166	1.212	13.31	0.0978	0.1050	
3.00	0.5460	3.2760	1.306	9.88	0.0725	0.0803	
		Т	= 353 K				
1.00	0.5140	1.0281	1.103	21.62	0.1588	0.1686	
1.50	0.5167	1.5500	1.154	20.67	0.1518	0.1627	
2.00	0.5283	2.1132	1.203	18.84	0.1384	0.1503	
3.00	0.5451	3.2708	1.295	15.03	0.1104	0.1237	

Table 9. Solubility of CaSO₄ (1) as Dihydrate in 0.5 mol·dm⁻³ HCl (2) + FeCl₃ (3) + H₂O (4)

	soluti parame	on eters		sol ir	ubility as Ca n different u	aSO4 nits	
<i>c</i> ₃	m_2	m_3	$\rho_{\rm s}$	γ_1	c_1	$\frac{m_1}{\text{mol}\cdot\text{kg}^{-1}}$	
$mol \cdot dm^{-3 a}$	mol·kg ⁻¹	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{\mathbf{g}\cdot\mathbf{cm}^{-3b}}$	g•dm ⁻³	mol·dm ⁻³		
		Т	= 323 K				
0.50	0.5125	0.5125	1.079	22.25	0.1635	0.1703	
1.00	0.5222	1.0444	1.136	21.82	0.1602	0.1708	
1.50	0.5368	1.6105	1.190	18.50	0.1359	0.1485	
2.00	0.5455	2.1820	1.253	14.64	0.1075	0.1192	
		Т	= 353 K				
0.50	0.5114	0.5114	1.068	29.29	0.2151	0.2282	
1.00	0.5211	1.0422	1.125	28.77	0.2113	0.2289	
1.50	0.5356	1.6067	1.180	26.18	0.1923	0.2133	
2.00	0.5443	2.1772	1.239	21.69	0.1593	0.1796	

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*} Experimental density of saturated solutions.

up to a certain level and thereafter decreases while the solubility of dihydrate in 3 mol \cdot dm⁻³ HCl constantly decreases with increasing FeCl₃ concentration.

Comparison of Solubility Data. The effect of the various chloride salts at 323 K on the solubility of dihydrate in (0.5 and 3) mol·dm⁻³ HCl solutions is compared in Figures 12 to 15. Figure 12 depicts the influence of NaCl, MgCl₂, FeCl₂, FeCl₃, and AlCl₃ in 0.5 mol·dm⁻³ HCl solutions on dihydrate solubility as a function of chloride concentration. It is interesting to note that with the exception of largely FeCl₃ the effect of the other metal chlorides is proportional to their chloride content.

Table 10. Solubility of $CaSO_4$ (1) as Dihydrate in 3 mol·dm⁻³ HCl (2) + FeCl₃ (3) + H₂O (4)

solution parameters				solubility as CaSO ₄ in different units		
<i>c</i> ₃	m_2	m_3	$ ho_{ m s}$	γ_1	c_1	m_1
$\overline{\text{mol}\cdot\text{dm}^{-3a}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{mol{\boldsymbol{\cdot}}kg^{-1}}$	$\overline{\mathbf{g}\cdot\mathbf{cm}^{-3b}}$	g•dm ⁻³	$\overline{mol{\boldsymbol{\cdot}} dm^{-3}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$
		Т	= 298 K			
0.50	3.2541	0.5424	1.118	15.86	0.1165	0.1275
1.00	3.3377	1.1126	1.175	12.50	0.0918	0.1028
1.50	3.4253	1.7126	1.233	9.70	0.0713	0.0817
2.00	3.5130	2.3420	1.290	7.74	0.0569	0.0669
		Т	= 323 K			
0.50	3.2468	0.5411	1.114	23.37	0.1717	0.1899
1.00	3.3307	1.1102	1.169	19.37	0.1423	0.1610
1.50	3.4191	1.7096	1.225	15.46	0.1135	0.1315
2.00	3.5075	2.3383	1.277	12.57	0.0923	0.1100

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*} Experimental density of saturated solutions.

In the case of FeCl₃, the solubility of dihydrate increases substantially greater than with the other salts, although still it follows the shoulder-type dependency. Figure 13 provides a comparison of the same solubility data (as in Figure 12) but this time in terms of ionic strength. This time the effect is somewhat magnified with AlCl₃ clearly separated from the divalent chloride salts. Similarly, Figures 14 and 15 show the respective data for dihydrate solubility in 3 mol·dm⁻³ HCl as a function of total chloride concentration and ionic strength, respectively.

Solubility of $CaSO_4 \cdot 2H_2O$ in $HCl + Chloride Salts + CaCl_2$ Solutions. In this section, the effect of CaCl₂ on the solubility

Figure 10. Solubility of calcium sulfate dihydrate in HCl (0.5 mol·dm⁻³) + FeCl₃ solutions: O, 323 K; \blacksquare , 353 K.

Figure 11. Solubility of calcium sulfate dihydrate in HCl $(3 \text{ mol} \cdot \text{dm}^{-3})$ + FeCl₃ solutions: \blacktriangle , 298 K; \bigcirc , 323 K.

1 $1 $ $1 $ $1 $ $1 $ $1 $ $1 $ 1	Table 11. Sol	lubility of CaSO	(1) as Dihydrate in 0.5	$5 \text{ mol} \cdot \text{dm}^{-3} \text{ HCl} (2) + 1$	$mol dm^{-3} MgCl_2 (3) +$	$CaCl_2$ (4) + H ₂ O (5) at 323 K
-------------------------------------	---------------	------------------	-------------------------	--	----------------------------	--

solution parameters					solubi	lity as CaSO ₄ in differ	ent units
<i>C</i> 4	m_2	m_3	m_4	$ ho_{ m s}$	γ_1	<i>C</i> ₁	m_1
$mol \cdot dm^{-3 a}$	$mol \cdot kg^{-1}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$mol \cdot kg^{-1}$	$\overline{\mathbf{g}\cdot\mathbf{cm}^{-3b}}$	g•dm ⁻³	mol•dm ⁻³	$mol \cdot kg^{-1}$
0.25	0.5203	1.0406	0.2601	1.094	6.78	0.0498	0.0525
0.50	0.5210 0.5325	1.0419	0.5210	1.115	3.54	0.0260 0.0115	0.0275 0.0124
1.50	0.5440	1.0879	1.6319	1.190	0.86	0.0063	0.0069

Table 12. Solubility of CaSO₄ (1) as Dihydrate in 0.5 mol·dm⁻³ HCl (2) + 0.5 mol·dm⁻³ Chloride Salts (3) + CaCl₂ (4) + H₂O (5) at 323 K

solution parameters					solubility as CaSO ₄ in different units			
c_4	m_2	<i>m</i> ₃	m_4	$ ho_{ m s}$	γ_1	<i>C</i> ₁	m_1	
$mol \cdot dm^{-3 a}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	mol·kg ⁻¹ c	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$g \cdot cm^{-3 b}$	g•dm ⁻³	mol·dm ⁻³	mol•kg ⁻¹	
0.25	0.5467	0.5467	0.2734	1.237	3.62	0.0266	0.0294	
0.50	0.5499	0.5499	0.5499	1.251	1.75	0.0128	0.0144	
1.00	0.5653	0.5653	1.1306	1.288	0.70	0.0052	0.0059	
1.50	0.5779	0.5779	1.7336	1.326	0.39	0.0029	0.0033	

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*} Experimental density of saturated solutions. ^{*c*} The concentration of individual salt (NaCl, MgCl₂, FeCl₂, FeCl₃, and AlCl₃).

Table 13. Solubility of CaSO ₄ (1) a	as Hemihydrate in 6 mol·dm ^{-/}	³ HCl (2) + 1 mol·dm ⁻³	$MgCl_{2}(3) +$	$CaCl_{2}(4) + H_{2}O$	(5) at 333 k
---	--	---	-----------------	------------------------	--------------

solution parameters					solubil	solubility as CaSO ₄ in different units		
c_4	<i>m</i> ₂	<i>m</i> ₃	m_4	$ ho_{ m s}$	γ_1	<i>C</i> ₁	m_1	
$mol \cdot dm^{-3 a}$	$mol \cdot kg^{-1}$	$mol \cdot kg^{-1}$	$mol \cdot kg^{-1}$	g•cm ^{-3 b}	g•dm ⁻³	mol·dm ⁻³	$mol \cdot kg^{-1}$	
0.25	7.1519	1.1920	0.2980	1.165	6.22	0.0457	0.0554	
0.50	7.2324	1.2054	0.6027	1.181	3.04	0.0223	0.0274	
1.00	7.3901	1.2317	1.2317	1.218	1.27	0.0093	0.0116	
1.50	7.5826	1.2638	1.8956	1.253	0.72	0.0053	0.0068	

^a Initial concentration of solutions prepared at room temperature without calcium sulfate. ^b Experimental density of saturated solutions.

Table 14. Solubility of CaSO₄ (1) as Hemihydrate in 6 mol dm^{-3} HCl (2) + 0.2 mol dm^{-3} FeCl₂ (3) + CaCl₂ (4) + H₂O (5) at 333 K

solution parameters					solubility as CaSO ₄ in different units		
c_4	<i>m</i> ₂	<i>m</i> ₃	m_4	$ ho_{ m s}$	γ_1	<i>C</i> ₁	m_1
$mol \cdot dm^{-3 a}$	$mol \cdot kg^{-1}$	$mol \cdot kg^{-1}$	$mol \cdot kg^{-1}$	g•cm ^{-3 b}	g•dm ⁻³	$mol \cdot dm^{-3}$	$mol \cdot kg^{-1}$
0.25	6.9457	0.2315	0.2894	1.1254	11.38	0.0836	0.0987
0.50	6.9637	0.2321	0.5803	1.1380	6.12	0.0449	0.0535
1.00	7.1520	0.2384	1.1920	1.1763	2.33	0.0171	0.0207
1.50	7.3149	0.2438	1.8287	1.2097	1.23	0.0091	0.0112

^a Initial concentration of solutions prepared at room temperature without calcium sulfate. ^b Experimental density of saturated solutions.

Table 15. Solubility of CaSO₄ (1) as Hemihydrate in 6 mol dm^{-3} HCl (2) + 0.1 mol dm^{-3} Chloride Salts (3) + CaCl₂ (4) + H₂O (5) at 333 K

solution parameters					solubility as CaSO ₄ in different units			
<i>c</i> ₄	<i>m</i> ₂	<i>m</i> ₃	m_4	$\rho_{\rm s}$	γ_1	<i>c</i> ₁	m_1	
$mol \cdot dm^{-3 a}$	$mol \cdot kg^{-1}$	mol•kg ⁻¹ ^c	$mol \cdot kg^{-1}$	$g \cdot cm^{-3 b}$	g•dm ⁻³	$mol \cdot dm^{-3}$	$mol \cdot kg^{-1}$	
0.25	7.0134	0.1169	0.2922	1.138	9.51	0.0699	0.0835	
0.50	7.0329	0.1172	0.5861	1.149	5.01	0.0368	0.0445	
1.00	7.2282	0.1205	1.2047	1.192	1.89	0.0139	0.0170	
1.50	7.3788	0.1230	1.8447	1.225	1.01	0.0074	0.0094	

^{*a*} Initial concentration of solutions prepared at room temperature without calcium sulfate. ^{*b*}Experimental density of saturated solutions. ^{*c*} The concentration of individual salt (MgCl₂, FeCl₂, FeCl₃, and AlCl₃).

of dihydrate in aqueous HCl ($0.5 \text{ mol}\cdot\text{dm}^{-3}$) + various chloride salt solutions was investigated at 323 K. The solubility of dihydrate in HCl ($0.5 \text{ mol}\cdot\text{dm}^{-3}$) + MgCl₂ ($1 \text{ mol}\cdot\text{dm}^{-3}$) + CaCl₂ at 323 K is listed in Table 11 and presented graphically in Figure 16. Figure 16 shows that the solubility of dihydrate consistently decreases with increasing concentration of CaCl₂ due to the common ion effect. In addition, the solubility of CaSO₄ as dihydrate in 0.5 mol·dm⁻³ HCl + chloride salts (NaCl, MgCl₂, FeCl₂, FeCl₃, and AlCl₃ with 0.5 mol·dm⁻³ concentration for each salt) + CaCl₂ solutions at 323 K was determined and given in Table 12. Similar trend with that of Figure 16 was observed (i.e., systematic decrease of solubility with increasing CaCl₂ concentration).

Solubility of $CaSO_4 \cdot 0.5H_2O$ in HCl + Chloride Salts + CaCl₂ Solutions. In this section, the effect of CaCl₂ on the solubility of hemihydrate in aqueous HCl (6 mol·dm⁻³) + various chloride salt solutions was determined at 333 K. The solubility of hemihydrate in HCl (6 mol·dm⁻³) + MgCl₂ (1 mol·dm⁻³) + CaCl₂ at 333 K is recorded in Table 13 and graphically illustrated in Figure 17. It can be seen from this

Figure 12. Comparison of dihydrate solubility in HCl $(0.5 \text{ mol}\cdot\text{dm}^{-3})$ + various chloride salts solutions vs total concentration of chloride at 323 K: \Box , NaCl; \bigcirc , MgCl₂; \triangle , AlCl₃; \bullet , FeCl₂; \blacksquare , FeCl₃.

Figure 13. Comparison of dihydrate solubility in HCl (0.5 mol·dm⁻³) + various chloride salts solutions vs ionic strength at 323 K: \Box , NaCl; \bigcirc , MgCl₂; \triangle , AlCl₃; \bullet , FeCl₂: \blacksquare , FeCl₃.

Figure 14. Comparison of dihydrate solubility in HCl (3 mol·dm⁻³) + various chloride salts solutions vs total concentration of chloride at 323 K: \bigcirc , MgCl₂; \triangle , AlCl₃; \blacksquare , FeCl₃.

figure that the solubility of hemihydrate consistently decreases with increasing concentration of CaCl₂ due to the common ion effect. Similar results were obtained in the case of solubility of hemihydrate in HCl (6 mol·dm⁻³) + FeCl₂ (0.2 mol·dm⁻³) + CaCl₂ at 333 K (data recorded in Table 14) and in 6 mol·dm⁻³ HCl + chloride salts (MgCl₂, FeCl₃, FeCl₂ and AlCl₃ with 0.2 mol·dm⁻³ concentration for each salt) + CaCl₂ solutions at 333 K (data recorded in Table 15).

Identification of Equilibrated Solids. Partial results of solids characterization by XRD following the completion of the various solubility tests are tabulated in Table 16. The dihydrate in 3

Figure 15. Comparison of dihydrate solubility in HCl (3 mol·dm⁻³) + various chloride salts solutions vs ionic strength at 323 K: \bigcirc , MgCl₂; \triangle , AlCl₃; \blacksquare , FeCl₃.

Figure 16. Solubility of calcium sulfate dihydrate in HCl (0.5 mol·dm⁻³) + MgCl₂ (1 mol·dm⁻³) + CaCl₂ solutions at 323 K.

 Table 16. XRD Characterization of the Equilibrated Solids with

 Equilibrium Time

			equilibrated solid	
<i>T</i> /K	$c/\mathrm{mol}\cdot\mathrm{dm}^{-3}$	t/h	phase(s) ^a	Table
	Starting Material Is Calcium Su	ulfate	Dihydrate	
298	$0.5(\text{HCl}) + 3(\text{MgCl}_2)$	5	DH	2
323	$3(\text{HCl}) + 2(\text{MgCl}_2)$	5	DH	3
323	$3(\text{HCl}) + 3(\text{MgCl}_2)$	5	HH	
323	$3(\text{HCl}) + 3(\text{MgCl}_2)$	2	DH	3
353	1.5(AlCl ₃)	5	DH	5
323	$3(HCl) + 1.5(AlCl_3)$	5	DH	7
353	$0.5(\text{HCl}) + 2(\text{AlCl}_3)$	2	DH	6
353	$0.5(HCl) + 2(FeCl_3)$	2	DH	9
323	$3(\text{HCl}) + 2(\text{FeCl}_3)$	5	DH	10
353	$0.5(HCl) + 3(FeCl_2)$	2	DH	8
323	0.5(HCl) + 0.5 (NaCl, MgCl ₂ ,	5	DH	12
	$FeCl_2$, $FeCl_3$, and $AlCl_3$) +			
	$1.5(CaCl_2)$			
	Starting Material Is β -Calcium Su	ılfate l	Hemihydrate	
333	$6(\text{HCl}) + 1(\text{MgCl}_2) + 0.25(\text{CaCl}_2)$	1	нн	13
333	$6(\text{HCl}) + 1(\text{MgCl}_2) + 0.5(\text{CaCl}_2)$	1	HH	13
333	$6(\text{HCl}) + 1(\text{MgCl}_2) + 1(\text{CaCl}_2)$	1	HH	13
333	$6(\text{HCl}) + 1(\text{MgCl}_2) + 1.5(\text{CaCl}_2)$	1	HH	13

^a DH, CaSO₄•2H₂O; HH, CaSO₄•0.5H₂O.

mol·dm⁻³ HCl + 3 mol·dm⁻³ MgCl₂ solution at 323 K was converted to hemihydrate within the time of 5 h while in 3 mol·dm⁻³ HCl + 2 mol·dm⁻³ MgCl₂ solution at 323 K no hemihydrate and anhydrite were detected in equilibrated solids. The solubility data presented in Tables 1 to 12, though, are for DH only (i.e., the data associated with conversion of DH to

Figure 17. Solubility of calcium sulfate hemihydrate in HCl (6 mol·dm⁻³) + MgCl₂ (1 mol·dm⁻³) + CaCl₂ solutions at 333 K.

HH are excluded). It can be observed from Table 16 that the presence of $CaCl_2$ in HCl suppressed the transformation of hemihydrate to anhydrite, hence making possible the determination of its solubility by this isothermal dissolution method. The solubility data reported in Tables 13 to 15 refer to HH as the only equilibrated phase.

Conclusions

The effect of various chloride salts, such as NaCl, CaCl₂, MgCl₂, FeCl₂, FeCl₃, and AlCl₃ on the solubility of three CaSO₄ modifications (namely, dihydrate, hemihydrate, and anhydrite) in HCl solutions has been investigated. The solubility of dihydrate increases with increasing concentration of MgCl₂, FeCl₂, FeCl₃, and AlCl₃ up to a certain level thereafter decreasing with further increase of metal chloride concentration when the HCl concentration is 0.5 mol·dm⁻³. However, in the case of 3 mol·dm⁻³ HCl concentration, the solubility of dihydrate consistently decreases with increasing metal chloride concentration. Comparing with divalent chloride salts (MgCl₂ and FeCl₂), the trivalent chloride salts AlCl₃ and FeCl₃ were found to have a larger influence on the solubility of dihydrate for same ionic strength. CaCl₂, owing to the common ion effect, causes the solubility of dihydrate and hemihydrate in the system HCl + various chloride salts $+ H_2O$ to decrease.

Literature Cited

 Li, Z.; Demopoulos, G. P. Solubility of CaSO₄ phases in aqueous HCl + CaCl₂ from 283 K to 353 K. J. Chem. Eng. Data 2005, 50, 1971– 1982.

- (2) Li, Z.; Demopoulos, G. P. Development of an improved chemical model for the estimation of CaSO₄ solubilities in the HCl + CaCl₂ + H₂O system up to 100 °C. *Ind. Eng. Chem. Res.* Accepted for publication.
- (3) Girgin, S.; Demopoulos, G. P. Production of the high value material, α-CaSO₄ hemihydrate out of spent CaCl₂ solutions by reaction with H₂SO₄. In *EPD Congress 2004*; Schlesinger, M. E., Ed.; TMS: Warrendale, PA, 2004; pp 627–639.
- (4) Al-Othman, A.; Cheng, T. C.; Demopoulos, G. P. Regeneration of HCl and production of saleable gypsum by reaction of spent CaCl₂ leach solutions with H₂SO₄. In *Proceedings of Fifth International Symposium on Waste Processing and Recycling in Mineral and Metallurgical Industries*; Rao, S. R., et al., Eds.; CIM: Montreal, 2004; pp 453–467.
- (5) Li, Zhibao; Demopoulos, G. P. CaSO₄ Solubilities in concentrated aqueous chloride solutions. In *Chloride Metallurgy 2002: International Conference on Practice and Theory of Chloride/Metal Interaction*; Peek, E., Van Weert, G., Eds; CIM: Montreal, 2002; pp 561–574.
- (6) Dutrizac, J. E. Sulphate control in chloride leaching processes. *Hydrometallurgy* **1989**, *23*, 1–22.
- (7) Borowiec, K.; Grau, A. E.; Gueguin, M.; Turgeon, J. F. Method to upgrade titania slag and resulting product. U.S. Patent 5,830,420, Nov 3, 1998.
- (8) Ficara, P.; Chin, E.; Walker, T.; Laroche, D.; Palumbo, E.; Celik, C.; Avedesian, M. Magnola: a novel commercial process for the primary production of magnesium. *CIM Bull.* **1998**, *91*, 75–80.
- (9) McElroy, R. O.; Murray, W. Developments in the terra gaia process for the treatment of EAF dust. In *Iron Control in Hydrometallurgy*; Dutrizac, J. E., Harris, G. B., Eds.; CIM: Montreal, 1996; pp 505– 517.
- (10) Raju, K. U. G.; Atkinson, G. The thermodynamics of "scale" mineral solubilities. 3. Calcium sulfate in aqueous NaCl. J. Chem. Eng. Data 1990, 35, 361–367.
- (11) Kruchenko, V. P. The solubilities of gypsum in aqueous solutions of magnesium salts at 25, 40, and 50 °C. *Rus. J. Inorg. Chem.* 1985, 30, 892–895.
- (12) Flint, O. Increased solubility of calcium sulphate in sea water containing hydrochloric acid. *Desalination* **1968**, *4*, 328–335.
- (13) Ostroff, A. G.; Metler, A. V. Solubility of calcium sulfate dihydrate in the system NaCl-MgCl₂-H₂O from 28° to 70 °C. J. Chem. Eng. Data 1966, 11, 346-350.
- (14) Tanji, K. K. Solubility of gypsum in aqueous electrolytes as affected by ion association and ionic strengths up to 0.15 M and at 25 °C. *Environ. Sci. Technol.* **1969**, *3*, 656–661.

Received for review October 3, 2005. Accepted November 29, 2005. The support of Hatch, Noranda, Process Research Ortech, and NSERC (Natural Sciences and Engineering Research Council of Canada) is gratefully acknowledged.

JE0504055