# Solubility of Organic Systems Containing 1,4-Dioxan-2-one

## Sung-Il Kim,<sup>†</sup> Chul-Ung Kim,<sup>†,\*</sup> and So-Jin Park<sup>‡</sup>

Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon, 305-600 Korea, and Department of Chemical Engineering, Chungnam National University, Yuseong, Daejeon, 305-764 Korea

The mole fraction solubility of 1,4-dioxan-2-one ( $x_1$ ) in tetrahydrofuran, acetone, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol were measured over the temperature range from 263.05 K to 288.45 K. The solubility of 1,4-dioxan-2-one in alcohols increases with increasing polarity of the solvent. The results were fitted by the exponential equation. The result of the solubility was well-correlated by the empirical equations:  $x_1 = \alpha e^{\beta}(T/K)$  where *T* is absolute temperature and  $\alpha$  and  $\beta$  are parameters.

### Introduction

The present paper is a contribution to our ongoing research on the thermodynamic properties of binary mixtures containing 1,4-dioxan-2-one (*p*-dioxanone), a monomer of biodegradable polymer.<sup>1–3</sup>

An exceptionally high purity over 99.9 % of the 1,4-dioxan-2-one monomer is required for polymerization to a high molecular weight polymer. Solution crystallization has been applied to the purification of this compound due to the property of a thermally unstable ether group. For the effective removal of impurity and the kinetic of crystallization such as nucleation and crystal growth, the solubility and the density of 1,4-dioxan-2-one in solution must be known, and selecting the proper solvent is very important.<sup>1-4</sup> However, there appears to be few previous measurements on the solubility and density for the system including 1,4-dioxan-2-one in solvent.

In this work, the measurement has been conducted on the solubility of 1,4-dioxan-2-one in various solvents such as tetrahydrofuran, acetone, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol over the temperature range from 263.05 K to 293.05 K, which are adequate operating conditions of solution crystallization of 1,4-dioxan-2-one.

#### **Experimental Section**

*Materials.* 1,4-Dioxan-2-one (solid below 301.41 K) was prepared and purified in our pilot plant according to procedures in refs 2 and 3. The materials were analyzed by flame ionization detection gas chromatograph (FID, Hewlett-Packard 5890 series II) equipped with capillary columns (BP20 1.0 UM, SGE). The mass fraction purity was >99.9 %. The solvents were from commercial sources (Aldrich, Merck) and analytical reagent grade with a minimum purity >99 %. Before their use, all compounds were stored over molecular sieves to avoid contamination with water. For 1,4-dioxan-2-one, the enthalpy of fusion ( $\Delta_{fus}H_1$ ) and melting point were determined by differential scanning calorimeter (DSC 2910; TA Instruments,

 Table 1. Comparison of Experimental Melting Point and Enthalpy of Fusion with Literature Values

| melting             | point/K             | enthalpy of fu     | sion/kJ•mol <sup>-1</sup> |  |  |
|---------------------|---------------------|--------------------|---------------------------|--|--|
| exptl               | lit <sup>5</sup>    | exptl              | lit <sup>5</sup>          |  |  |
| 301.41 <sup>a</sup> | 301.69 <sup>b</sup> | 15.70 <sup>a</sup> | 16.14 <sup>c</sup>        |  |  |

<sup>*a*</sup> Determined by differential scanning calorimeter. <sup>*b*</sup> Determined using the dependence of thermodynamically equilibrium triple points on the fractional content of melt. <sup>*c*</sup> Using a method of continuous energy supply.

USA) with an uncertainty of  $\pm 0.05 \text{ kJ} \cdot \text{mol}^{-1}$  and are compared with the literature values in Table 1.

*Measurement of Solubility.* The mixtures were prepared by mass using a Mettler AG 204 balance with an uncertainty of  $\pm$ 0.0001 g. The estimated uncertainty in the mole fraction is better than  $\pm 2 \times 10^{-4}$ . The solubility of 1,4-dioxan-2-one in the various solvents (tetrahydrofuran, acetone, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol) were measured using a polythermal method described in detail previously.<sup>6–8</sup> The equilibrium cell, a cylindrical glass vessel (50 mm inside diameter, 120 mm long), was placed by ground-glass joint in a triple-jacketed vessel. The outer jacket was evacuated, and either heated or cooled fluid from a thermostated bath could be circulated through the middle jacket. An ethylene glycol + water solution was thermostated and controlled by a thermoelectric Eurotherm 808 PID controller with  $\pm 0.1$  K uncertainty. The cell had a perforated rubber stopper through which a copper-constantan thermocouple was insertted. The contents were stirred with a magnetic spin bar. The cell was tightly sealed to protect the system from dust and moisture condensation. Mixtures of solute and solvent were cooled in the bath until an abundant amount of crystal was formed and then heated very slowly at less than 0.001 K·min<sup>-1</sup> near the equilibrium temperature. The crystal disappearance temperature, detected visually, was measured with a calibrated thermocouple connected to a recorder (Yokogawa, 180 micro R). The thermocouples were calibrated with a calibrated thermometer from Fisher Scientific (no. 15-078-7) with an uncertainty of  $\pm$  0.05 K. The uncertainty of the thermocouple measurements is believed to be  $\pm$  0.1 K. Some of the experiments were conducted in triplicate to check the reproducibility. The saturation temperature for a given mixture was uncertainty within  $\pm 0.1$  K.

<sup>\*</sup> Corresponding author. E-mail: cukim@krict.re.kr.

<sup>&</sup>lt;sup>†</sup> Korea Research Institute of Chemical Technology.

<sup>&</sup>lt;sup>‡</sup> Chungnam National University.

Table 2. Experimental Solubilities of 1,4-Dioxan-2-one (x1) in Various Solvents

| acetone tetrahy       |             | lrofuran              | meth        | methanol              |             | ethanol               |        | 1-propanol            |             | 1-butanol             |             | 1-pentanol |             |
|-----------------------|-------------|-----------------------|-------------|-----------------------|-------------|-----------------------|--------|-----------------------|-------------|-----------------------|-------------|------------|-------------|
| <i>x</i> <sub>1</sub> | <i>T</i> /K | <i>x</i> <sub>1</sub> | <i>T</i> /K | <i>x</i> <sub>1</sub> | <i>T</i> /K | <i>x</i> <sub>1</sub> | T/K    | <i>x</i> <sub>1</sub> | <i>T</i> /K | <i>x</i> <sub>1</sub> | <i>T</i> /K | $x_1$      | <i>T</i> /K |
| 0.2766                | 263.05      | 0.1531                | 263.25      | 0.0557                | 263.15      | 0.0145                | 263.45 | 0.0055                | 263.15      | 0.0029                | 263.15      | 0.0012     | 263.15      |
| 0.3114                | 265.55      | 0.1752                | 265.55      | 0.0693                | 265.75      | 0.0215                | 265.65 | 0.0086                | 265.55      | 0.0043                | 265.75      | 0.0017     | 265.75      |
| 0.3326                | 268.15      | 0.2000                | 268.15      | 0.0864                | 268.05      | 0.0272                | 268.15 | 0.0120                | 268.45      | 0.0058                | 268.05      | 0.0029     | 268.25      |
| 0.3608                | 270.55      | 0.2311                | 271.05      | 0.1084                | 270.95      | 0.0390                | 270.95 | 0.0173                | 270.65      | 0.0091                | 270.55      | 0.0040     | 270.85      |
| 0.4019                | 273.15      | 0.2683                | 273.45      | 0.1400                | 273.45      | 0.0492                | 273.15 | 0.0233                | 273.15      | 0.0134                | 273.45      | 0.0052     | 273.15      |
| 0.4395                | 275.65      | 0.2958                | 275.55      | 0.1876                | 275.75      | 0.0660                | 275.75 | 0.0345                | 275.65      | 0.0227                | 275.95      | 0.0091     | 275.95      |
| 0.4859                | 278.45      | 0.3437                | 278.15      | 0.2394                | 278.05      | 0.1016                | 278.25 | 0.0468                | 278.45      | 0.0287                | 278.15      | 0.0142     | 278.25      |
| 0.5325                | 280.75      | 0.3905                | 281.05      | 0.3166                | 280.85      | 0.1501                | 280.75 | 0.0761                | 280.65      | 0.0536                | 280.55      | 0.0219     | 280.75      |
| 0.5778                | 283.25      | 0.4561                | 283.15      | 0.4022                | 283.15      | 0.2101                | 283.15 | 0.1131                | 283.15      | 0.0681                | 283.25      | 0.0291     | 283.05      |
| 0.6371                | 285.55      | 0.5264                | 286.05      | 0.5067                | 285.65      | 0.3119                | 285.75 | 0.1757                | 285.95      | 0.1137                | 285.95      | 0.0466     | 285.65      |
| 0.6813                | 288.45      | 0.6017                | 288.35      | 0.6212                | 288.45      | 0.4094                | 288.35 | 0.2376                | 288.05      | 0.1529                | 288.15      | 0.0631     | 288.15      |

Table 3. Values of Parameters for Equation 1 in Various Solvents

| system          | α                        | $\beta/{ m K}^{-1}$ | RSD   | AAD   |
|-----------------|--------------------------|---------------------|-------|-------|
| acetone         | $2.1840 \times 10^{-5}$  | 0.0359              | 0.017 | 0.004 |
| tetrahydrofuran | $9.8757 \times 10^{-8}$  | 0.0541              | 0.017 | 0.005 |
| methanol        | $2.6211 \times 10^{-13}$ | 0.0989              | 0.040 | 0.010 |
| ethanol         | $5.7652 \times 10^{-18}$ | 0.1346              | 0.065 | 0.005 |
| 1-propanol      | $4.1658 \times 10^{-20}$ | 0.1498              | 0.062 | 0.003 |
| 1-butanol       | $9.4138 \times 10^{-22}$ | 0.1616              | 0.065 | 0.002 |
| 1-pentanol      | $3.5402 \times 10^{-22}$ | 0.1620              | 0.062 | 0.001 |

#### **Results and Discussion**

*Solubility.* The solubility of 1,4-dioxan-2-one in various solvents such as tetrahydrofuran, acetone, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol were measured over the temperature range from 263.05 K to 288.45 K, and the values are listed in Table 2 and plotted in Figure 1. The solubilities of 1,4-dioxan-2-one increase with an increase in the temperature and decrease with an increase in the number of carbon atoms in alcohols. This means that the solubility of 1,4-dioxan-2-one in alcohols increases with increasing polarity of the solvents. In different types of solvents, the temperature dependence of the solubility of 1,4-dioxan-2-one was in the order of acetone > tetrahydrofuran > alcohols, which depended on the difference between interactions of solute and solvent.

It was found that exponential temperature dependence, as shown in Figure 1, permitted a linear interpolation. Thus, the

Table 4. Activity Coefficient of 1,4-Dioxan-2-one in Various Solvents

mole fraction solubility  $x_1$  of 1,4-dioxan-2-one was analyzed using the following equation:<sup>6</sup>

$$x_1 = \alpha e^{\beta}(T/K) \tag{1}$$

where *T* is the absolute temperature and  $\alpha$  and  $\beta$  are parameters. The exponential expression describes satisfactorily the temperature dependence of the solubility, within the temperature range studied. The binary parameters for eq 1 with the relative standard deviation (RSD) and the absolute average deviation (AAD) are given in Table 3. For all studied systems, the obtained RSD and AAD are smaller than 0.065 and 0.004, respectively.

The RSD is defined by

$$RSD = \left[\frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_{1,i}(\text{calc}) - x_{1,i}}{x_{1,i}}\right)^2\right]^{1/2}$$
(2)

and the AAD is defined by

$$AAD = \frac{1}{N} \sum_{i=1}^{N} |(x_{1,i}(calc) - x_{1,i})|$$
(3)

where N is the number of data points.

Solubility data can be used to estimate the activity coefficient through the equilibrium relationship. If no solid-solid transition

| acetone te  |         | tetr         | rahydrofuran |         | methanol     |         |              | ethanol            |        |         | 1-propanol   |        |         |              |
|-------------|---------|--------------|--------------|---------|--------------|---------|--------------|--------------------|--------|---------|--------------|--------|---------|--------------|
| <i>T</i> /K | $x_1^L$ | $\gamma_1^L$ | <i>T</i> /K  | $x_1^L$ | $\gamma_1^L$ | T/K     | $x_1^L$      | $\gamma_1^{\rm L}$ | T/K    | $x_1^L$ | $\gamma_1^L$ | T/K    | $x_1^L$ | $\gamma_1^L$ |
| 263.05      | 0.2758  | 1.45         | 263.25       | 0.1513  | 2.67         | 263.15  | 0.0526       | 7.65               | 263.45 | 0.0145  | 27.96        | 263.15 | 0.0055  | 73.12        |
| 265.55      | 0.3016  | 1.42         | 265.55       | 0.1713  | 2.51         | 265.75  | 0.0681       | 6.34               | 265.65 | 0.0195  | 22.07        | 265.55 | 0.0079  | 54.32        |
| 268.15      | 0.3312  | 1.39         | 268.15       | 0.1972  | 2.33         | 268.05  | 0.0855       | 5.36               | 268.15 | 0.0273  | 16.84        | 268.45 | 0.0121  | 38.30        |
| 270.55      | 0.3610  | 1.36         | 271.05       | 0.2307  | 2.15         | 270.95  | 0.1138       | 4.35               | 270.95 | 0.0398  | 12.42        | 270.65 | 0.0169  | 29.03        |
| 273.15      | 0.3963  | 1.32         | 273.45       | 0.2626  | 2.01         | 273.45  | 0.1458       | 3.61               | 273.15 | 0.0535  | 9.78         | 273.15 | 0.0246  | 21.26        |
| 275.65      | 0.4335  | 1.28         | 275.55       | 0.2942  | 1.89         | 275.75  | 0.1830       | 3.05               | 275.75 | 0.0759  | 7.36         | 275.65 | 0.0357  | 15.60        |
| 278.45      | 0.4793  | 1.25         | 278.15       | 0.3387  | 1.75         | 278.05  | 0.2297       | 2.57               | 278.25 | 0.1062  | 5.59         | 278.45 | 0.0543  | 10.99        |
| 280.75      | 0.5206  | 1.21         | 281.05       | 0.3962  | 1.60         | 280.85  | 0.3030       | 2.09               | 280.75 | 0.1487  | 4.24         | 280.65 | 0.0755  | 8.33         |
| 283.25      | 0.5695  | 1.17         | 283.15       | 0.4439  | 1.50         | 283.15  | 0.3804       | 1.76               | 283.15 | 0.2054  | 3.25         | 283.15 | 0.1098  | 6.08         |
| 288.55      | 0.6185  | 1.14         | 286.05       | 0.5193  | 1.38         | 285.65  | 0.48716      | 1.45               | 285.75 | 0.2915  | 2.43         | 285.95 | 0.1671  | 4.27         |
| 288.45      | 0.6863  | 1.10         | 288.35       | 0.5881  | 1.28         | 288.45  | 0.6426       | 1.17               | 288.35 | 0.4136  | 1.82         | 288.05 | 0.2288  | 3.27         |
| 1-butanol   |         | 1-pentanol   |              |         |              |         |              |                    |        |         |              |        |         |              |
| T/K         | х       | L<br>1       | $\gamma_1^L$ | T/K     |              | $x_1^L$ | $\gamma_1^L$ |                    |        |         |              |        |         |              |
| 263.15      | 0.0     | 028          | 143.63       | 263.1   | 5            | 0.0012  | 335.15       |                    |        |         |              |        |         |              |
| 265.75      | 0.0     | 042          | 102.72       | 265.7   | 5            | 0.0018  | 239.68       |                    |        |         |              |        |         |              |
| 268.05      | 0.0     | 061          | 75.17        | 268.2   | .5           | 0.0026  | 177.29       |                    |        |         |              |        |         |              |
| 270.55      | 0.0     | 092          | 53.19        | 270.8   | 5            | 0.0040  | 123.30       |                    |        |         |              |        |         |              |
| 273.45      | 0.0     | 146          | 36.09        | 273.1   | 5            | 0.0058  | 90.17        |                    |        |         |              |        |         |              |
| 275.95      | 0.0     | 219          | 25.62        | 275.9   | 5            | 0.0092  | 60.98        |                    |        |         |              |        |         |              |
| 278.15      | 0.0     | 313          | 18.92        | 278.2   | .5           | 0.0134  | 44.30        |                    |        |         |              |        |         |              |
| 280.55      | 0.04    | 461          | 13.61        | 280.7   | 5            | 0.0200  | 31.53        |                    |        |         |              |        |         |              |
| 283.25      | 0.0     | 713          | 9.39         | 283.0   | 5            | 0.0291  | 22.89        |                    |        |         |              |        |         |              |
| 285.95      | 0.1     | 102          | 6.47         | 285.6   | 5            | 0.0443  | 15.98        |                    |        |         |              |        |         |              |
| 288.15      | 0.1     | 573          | 4.77         | 288.1   | 5            | 0.0664  | 11.29        |                    |        |         |              |        |         |              |



**Figure 1.** Mole fraction solubility of 1,4-dioxan-2-one (1) with various solvents:  $\bullet$ , acetone;  $\blacksquare$ , tetrahydrofuran;  $\diamond$ , methanol;  $\bigtriangledown$ , ethanol;  $\bigcirc$ , 1-propanol;  $\triangle$ , 1-butanol;  $\Box$ . 1-pentanol.

occurs in the temperature range, the following equation can be used to calculate the solid—liquid-phase equilibria:<sup>9,10</sup>

$$\ln x_{1}^{L} \gamma_{1}^{L} = -\frac{\Delta_{\text{fus}} H_{1}}{R} \left[ \frac{1}{T} - \frac{1}{T_{\text{fus},1}} \right]$$
(4)

where  $x_1^L$  is the mole fraction of component 1 (1,4-dioxan-2one) in the liquid phase,  $\gamma_1^L$  is the activity coefficient of component 1 in the liquid phase,  $\Delta_{fus}H_1$  is the molar enthalpy of fusion of component 1,  $T_{fus,1}$  is the melting temperature of component 1, *T* is the absolute temperature of the mixture, and *R* is the universal gas constant. The activity coefficients  $\gamma_1^L$  can be calculated using eq 4 from experimentally determined solution composition  $x_1^L$  and temperature *T*.

Table 4 gives mole fractions, equilibrium temperature, and activity coefficients. Table 4 shows that, in nearly all the cases, positive deviation from ideal solution ( $\gamma_1^L > 1$ ) is encountered in the systems showed.

## Literature Cited

- Lee, J. H.; Kim, H. R.; Han, Y. H.; Jeong, S. J.; Seo, Y. J.; Choi, B. R. Process for the production of *p*-dioxanone from diethylene glycol. Korean Patent KR 2003-0050471, 2003.
- Kim, C. U.; Kim, K. J.; Cheon, Y. H. Purification and separation of high purity *p*-dioxanone from the reaction mixtures of *p*-dioxanone. Korean Patent KR 2004-0033122, 2004.
   Moyers, C. G.; Charleston, W. Va.; Farr, M. P.; Somerville, N. J.
- (3) Moyers, C. G.; Charleston, W. Va.; Farr, M. P.; Somerville, N. J. Recovery of dioxanone by melt crystallization. U.S. Patent 5,675,-022, 1997.
- (4) Mersmann, A. Crystallization Technology Handbook; Marcel Dekker: New York, 1994.
- (5) Lebedev, B. N.; Bykova, T. A.; Kiparisova, E. G.; Velen'Kaya, G. G.; Filatova, V. N. Thermodynamics of *p*-dioxanone of its polymerization, and of poly(*p*-dioxanone) at 0–450 K. *Polym. Sci. USSR, Ser.* A **1995**, *37*, 126–137.
- (6) Kim, K. J.; Kim, M. J.; Lee, J. M.; Kim, H. S.; Park, B. S. Experimental solubility and density for 3-nitro-1,2,4-triazol-5-one + C1 to C7 1-alkanols. *Fluid Phase Equilib.* **1998**, *146*, 261–268.
- (7) Kim, K. J.; Kim, M. J.; Lee, J. M.; Kim, S. H.; Kim, H. S.; Park, B. S. Solubility, density and metastable zone width of the 3-nitro-1,2,4-triazol-5-one + water system. J. Chem. Eng. Data 1998, 43, 65–68.
- (8) Kim, K. J.; Lee, C. H.; Ryu, S. K. Solubilities of thiourea in n-C<sub>1</sub>-C<sub>6</sub> alcohols. J. Chem. Eng. Data 1994, 34, 128–131.
- (9) Gmehling, J.; Kolbe, B. *Thermodynamics*; VCH: Weinheim, 1992.
  (10) Jakob, A.; John, R.; Rose, C.; Gmehling, J. Solid–liquid equilibria in
- (10) Jakob, A.; John, R.; Rose, C.; Gmehling, J. Solid–liquid equilibria in binary mixtures of organic compounds. *Fluid Phase Equilib.* 1995, *113*, 117–126.

Received for review October 4, 2005. Accepted March 8, 2006.

JE050406X