Ion-Pair Formation of 3m-Crown-*m* Ether (m = 5, 6) and Its Monobenzo Derivative Complex Ions with Several Pairing Anions in Water

Yoshihiro Kudo,* Ryo Fujihara, Toshiaki Ohtake, Masaomi Wakasa, Shoichi Katsuta, and Yasuyuki Takeda

Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Ion-pair formation constants (K_{MLX} in mol⁻¹·dm³) for M(B18C6)⁺, M(15C5)⁺, or M(B15C5)⁺ with pairing anions (X⁻) in water were determined by potentiometry with ion-selective electrodes at 25 °C over wide ranges of the ionic strength (*I*). The symbols B18C6, 15C5, and B15C5 denote benzo-18-crown-6 ether, 15-crown-5 ether, and benzo-15C5, respectively; metal salts, MX, used are sodium picrate (NaPic), KPic, NaBPh₄, NaMnO₄, and KMnO₄. The K_{MLX} values at I = 0 mol dm⁻³ (K_{MLX} °) were evaluated from analyzing the *I* dependence of the log K_{MLX} values determined. Then, effects of shapes of X⁻, the benzo group of the ethers, their ring sizes, and the shielding of the metal ions, M⁺, by the ethers on these K_{MLX} ° values were discussed in comparison with the values previously reported on M(18C6)X, M(15C5)Pic, and M(B15C5)Pic. Also, center-to-center distances in the M(18C6 derivatives)⁺-X⁻ or M(15C5 ones)⁺-X⁻ pairs were estimated from Bjerrum's equation.

Introduction

Ion-pair formation of crown ether-complex ions (ML^{z+} with a charge magnitude of z) with pairing anions (X^{-}) in water is required to elucidate extraction-ability and -selectivity of crown ethers, L, against the metal ions, M^{z+} , in solvent extraction. This is based on the fact that its overall extraction equilibrium is expressed as combination of this ion-pair formation with other component equilibria,¹ such as the complex formation of M^{z+} with L in water and the distribution of L. Since a pioneering work¹ in which one of the authors used solvent extraction to determine an ion-pair formation constant (K_{MLX} in mol⁻¹·dm³) for K(benzo-18-crown-6 ether)⁺ {K(B18C6)⁺} with picrate ion (Pic⁻) in water, several studies have been developed by other methods, such as capillary zone electrophoresis (CZE)^{2,3} and potentiometry⁴⁻⁸ with ion-selective electrodes (ISEs). Then, many constants have been determined so far by potentiometry for Pic⁻ (at M = Na, K, Ag),⁴⁻⁷ nitrated phenolates (Na),⁸ tetraphenylborate (Na),⁶ and permanganate ions (Na, K)⁴ with M(18-crown-6 ether)⁺ { $M(18C6)^+$ } and by CZE for Pic^{-,2,3} nitrated benzoates, nitrated benzenesulfonates, nitrated phenolates, perchlorate, and thiocyanate ions³ (at M = Na, K) with $M(18C6)^+$, $M(B18C6)^+$, or $M(dibenzo-18C6)^+$ { $M(DB18C6)^+$ }. Whereas, from the extraction experiments, the K_{MLX} have been reported anew on the ion-pair formation of Pic⁻ or perchlorate ion with $M(18C6)^+$ of M = Li-Cs,⁹ $M(B18C6)^+$ of Na, K (reevaluated), and Rb,^{10,11} M(DB18C6)⁺ of Na-Cs,^{11,12} and on that of Pic⁻ with ML⁺ containing L of smaller sizes.^{13,14} Nevertheless, discussion about influences of X⁻ or L on the magnitude of $K_{\rm MLX}$ seems to be insufficient.

In the present paper, we determined potentiometrically the K_{MLX} values for some alkali metal salts (MX = NaMnO₄, KMnO₄, NaPic, KPic, NaBPh₄) with B18C6, 15-crown-5 ether (15C5), and benzo-15C5 (B15C5) in water at 25 °C over wide ranges of the ionic strength (*I*). Also, the K_{MLX} values at I = 0 mol·dm⁻³ (K_{MLX}°) were evaluated from a nonlinear regression analysis⁶ of *I* dependence of the determined log K_{MLX} values. Using these values and those reported before on M(18C6)X,

M(15C5)Pic, and M(B15C5)Pic, changes of an interaction of ML⁺ with X⁻ caused by changing kinds of X⁻ and L were discussed. Besides, center-to-center distances in the ML⁺-X⁻ pairs were estimated from Bjerrum's equation.

Experimental Section

Chemicals. Procedures for preparing the MX salts employed and purifying B18C6, 15C5, and B15C5 were the same as those^{5,6} described before. All aqueous solutions were prepared by using water that passed through a Milli-Q Labo ultrapure water system (Millipore).⁷

Measurements of emf. Cells used for emf measurements at 25 ± 0.3 °C were as follows: Ag|AgCl|0.1 mol·dm⁻³ (C₂H₅)₄-NCl or 0.05 mol·dm⁻³ MgCl₂|test solution|ISE.^{4,6} In every measurements, the emf reading after 1 min from immersing ISE in the test solution was recorded for the NaBPh₄-15C5 system, while those were recorded after 5 min for the other systems: in the former system, a gradual decrease in the emf was observed over 5 min. The ratios, $[L]_t/[MX]_t$, of total concentrations of L = B18C6, 15C5, or B15C5 to those of MX in the test solutions were fixed at unity. The K_{MLX} values were obtained in I ranges of (1.1 to 6.8) \times 10⁻³ mol·dm⁻³ for MLX = Na(B18C6)Pic, (0.1 to 2.2) \times 10⁻³ mol·dm⁻³ for K(B18C6)Pic, (0.9 to 4.3) \times 10^{-4} mol·dm⁻³ for Na(B18C6)BPh₄, (0.5 to 2.5) × 10^{-3} mol·dm⁻³ for Na(B18C6)MnO₄, (0.6 to 6.0) \times 10⁻³ mol·dm⁻³ for K(B18C6)MnO₄, (0.2 to 2.2) \times 10⁻³ mol·dm⁻³ for Na- $(15C5)BPh_4$, $(0.1 \text{ to } 1.3) \times 10^{-3} \text{ mol} \cdot dm^{-3}$ for Na(B15C5)-BPh₄, (0.4 to 8.3) \times 10⁻³ mol·dm⁻³ for Na(15C5)MnO₄, (0.4 to 10) \times 10⁻³ mol·dm⁻³ for Na(B15C5)MnO₄, (0.2 to 4.1) \times $10^{-3}~mol \cdot dm^{-3}$ for K(15C5)MnO4, and (0.2 to 4.4) $\times~10^{-3}$ mol·dm⁻³ for K(B15C5)MnO₄. Fine precipitates were found in the emf measurements of M(B18C6)Pic (M = Na, K), $NaLBPh_4$ (L = B18C6, 15C5, B15C5), and K(B15C5)MnO₄, when the I values were beyond the upper limits described. Measurement method, a pH/ion meter, the ISEs for Na⁺ and K⁺, and the reference electrodes employed were the same as those reported before.⁶

Calculation. Data sets of the concentration ion-pair formation constant, K_{MLX} , and I have been obtained as a result of a

^{*} Corresponding author. E-mail: iakudo@faculty.chiba-u.jp.

Figure 1. Plot of $\log(K_{K(B18C6)Pic}/y_{\pm}^2)$ vs [Pic⁻]. Solid line shows the curve fitted to eq 1 by the nonlinear regression using $K_{KPic}^{\circ} = 5.8^{-6}$ and $K_{KB18C6} = 10^{1.664} \text{ mol}^{-1} \cdot \text{dm}^{3.15}$

successive approximation with an estimate of the liquid junction potential between the test solution and the aqueous one of $(C_2H_5)_4NCl$ or MgCl₂.⁶ Calculations of K_{MLX}° from these data sets were performed by using the procedure⁶ described previously.

Results and Discussion

Determination of K_{MLX}° for ML^+ with X^- in Water. Figure 1 shows a plot of $\log(K_{K(B18C6)Pic}/y_{\pm}^2)$ vs [Pic⁻]. Here, [Pic⁻] denotes an equilibrium concentration of Pic- in the test solution and is equivalent to the *I* value of the test solution in practice: namely, $I = (1/2)\{[K^+] + [K(B18C6)^+] + [Pic^-]\} = [Pic^-]$ with a charge balance equation of $[K^+] + [K(B18C6)^+] =$ [Pic⁻].⁶ Since this [Pic⁻] value is expressed as the function of $[K^+]$ (see eq 3), it was immediately calculated from the experimental [K⁺] value by the successive approximation with the estimate of the liquid junction potential.⁶ Also, y_{\pm} refers to a mean ionic activity coefficient for the electrolyte ML⁺X⁻ or M⁺X⁻ and was estimated by using either the Debye-Hückel limiting law (DHL)¹⁶ or the Davies equation.¹⁷ A hyperbolalike tendency was observed in this plot, as shown in that of the KPic-18C6 system.⁶ Namely, the $log(K_{K(B18C6)Pic}/y_{\pm}^2)$ values, obtained from eq 2 (see below) and DHL, seem to approach an asymptotic limit of about three with an increase in [Pic⁻].

For the K_{MLX}° determination, the plot has been analyzed using the following equation:⁶

$$\log \frac{K_{\rm MLX}}{y_{\pm}^{2}} = \log \left(K_{\rm MLX}^{\circ} + \frac{b_{\rm m}}{y_{\pm}^{2} [\rm ML^{+}][X^{-}]} \right)$$
(1)

with

$$K_{\rm MLX} \equiv \frac{[\rm MLX]}{[\rm ML^+][X^-]} = \frac{[\rm MX]_t - [X^-](1 + K_{\rm MX}[\rm M^+])}{([X^-] - [\rm M^+])[X^-]} \quad (2)$$

and

$$[X^{-}] = \frac{[M^{+}](1 + K_{ML}[M^{+}])}{1 - K_{ML}K_{MX}[M^{+}]^{2}}$$
(3)

at the conditions of $1 + K_{ML}[M^+] \gg K_{ML}(b_m - b')$ and $[MX]_t$ = [L]_t.^{6,7} Here, $K_{\rm ML}$ and $b_{\rm m}$ (or b') are referred to a complex formation constant (mol⁻¹·dm³) of ML⁺ in water and a curvefitting parameter reflecting a mean amount (mol·dm⁻³) of some species with MX (or L) lost from the bulk of the test solution,⁶ respectively. A derivation of eq 1 is grounded on mass balances with $b_{\rm m}$ (and b') and the following three equilibria: $^{6} {\rm M}^{+} + {\rm X}^{-}$ \Rightarrow MX, M⁺ + L \Rightarrow ML⁺, and ML⁺ + X⁻ \Rightarrow MLX. Also, the K_{MX} value in eqs 2 and 3 is defined as $[MX]/[M^+][X^-]$ and expressed as the usual function^{5,6} of *I*, $K_{\rm MX} = y_{\pm}^2 K_{\rm MX}^{\circ}$, from the extended Debye-Hückel law.16 In many cases, this function has been employed for calculation of the K_{MLX} value,⁶ because the $K_{\rm MX}$ values experimentally obtained in the range of a lower *I* have a positive deviation from values proper. Determining $[M^+]$ potentiometrically and utilizing literature values of K_{MX}° (or K_{MX}) and K_{ML} , then we could easily calculate [X⁻] from eq 3 and obtain the experimental K_{MLX} values from eq 2. Moreover, the $K_{\rm MLX}^{\circ}$ value was determined by the nonlinear regression fitting of eq 1 to the plot together with the parameter $b_{\rm m}$.^{4–6} In a previous study,¹⁸ it was differentially demonstrated that the $K_{\rm MLX}^{\circ}$ value, obtained from such an analysis of the plot, is not influenced by the magnitude of $b_{\rm m}$. Namely, the $K_{\rm MLX}/y_{\pm}^2$ value, which is equivalent to the K_{MLX}° one, at $[X^{-}] \rightarrow +\infty$ in eq 1 is equal to that at $b_{\rm m} \rightarrow 0$.

A curve calculated by the nonlinear regression with eq 1⁴⁻⁶ is shown with a solid line in Figure 1. It has correlation coefficient (*R*) of 0.993 at n = 56 (n = the data number of K_{MLX}) and yields the parameters: $K_{\text{K}(\text{B18C6})\text{Pic}^\circ} = (1.37 \pm 0.12) \times 10^3 \text{ mol}^{-1} \cdot \text{dm}^3$ and $b_{\text{m}} = (7.4 \pm 0.3) \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$. Thus, eq 1 reproduces well the tendency that the plot approaches constant value in the range of the higher [Pic⁻].⁴⁻⁶ Similar results were also obtained in the other MX-L systems. Table 1 summarizes the K_{MLX}° values together with those reported before on M(18C6)X,⁴⁻⁶ M(15C5)Pic, and M(B15C5)Pic.^{5,18} These K_{MLX}° values, except for the $K_{\text{K}(15C5)\text{Pic}}^\circ$ and $K_{\text{K}(B15C5)\text{Pic}}^\circ$ ones, were much larger than the K_{MX}° ones⁴⁻⁶ reported on the corresponding MX salts in water. This fact indicates that the hydrated ion, Na⁺ or K⁺, dehydrates in complex formation with B18C6, 15C5, and B15C5, as described often for various L.¹⁹

The other data (b_m , R, and n) obtained from the regression analysis were as follows: $b_m = (1.8 \pm 0.08) \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3}$ and R = 0.990 for the curve of the NaMnO₄-B18C6 system (n = 30); (1.0 ± 0.07) × 10^{-4} mol·dm⁻³ and 0.953 for that of KMnO₄-B18C6 (n = 84); (3.4 ± 0.2) × 10^{-4} mol·dm⁻³ and 0.946 for that of NaPic-B18C6 (n = 65); (2.2 ± 0.2) × 10^{-4} mol·dm⁻³ and 0.970 for that of NaBPh₄-B18C6 (n = 31); (1.3 ± 0.1) × 10^{-4} mol·dm⁻³ and 0.975 for that of NaMnO₄-15C5 (n = 52); (1.8 ± 0.2) × 10^{-4} mol·dm⁻³ and 0.972 for that of

Table 1. Ion-Pair Formation Constants K_{MLX}° of ML⁺ with X⁻ in Water at T = 298 K

	$K_{\rm MLX}^{\circ a/({ m mol}^{-1}\cdot { m dm}^3)}$		$K_{\rm MLX}^{\circ a/({ m mol}^{-1} \cdot { m dm}^3)}$		
MX	L = 18C6	B18C6	L = 15C5	B15C5	
NaMnO ₄	231 ^b	$(1.63 \pm 0.41) \times 10^3$	38 ± 21	354 ± 75	
KMnO ₄	93^{b}	72 ± 12	239 ± 80	137 ± 110	
NaPic	62^{c}	642 ± 96	34^e	517^{e}	
AgPic	191^{d}	157^{d}	556^{d}	$1.6 \times 10^{3 d}$	
KPic	738 ^c	$(1.37 \pm 0.12) \times 10^3$	6.0^{e}	12^{e}	
NaBPh ₄	$2.9 \times 10^{5 c}$	$(1.24 \pm 1.02) \times 10^5$	$(7.36 \pm 1.51) \times 10^3$	$(9.07 \pm 6.30) \times 10^3$	

^{*a*} Values at $I = 0 \text{ mol} \cdot \text{dm}^{-3}$. ^{*b*} Ref 4. ^{*c*} Ref 6. ^{*d*} Ref 5. ^{*e*} Ref 18.

	Table 2.	Center-to-Center	Distances a of ML	+ with Pic	Estimated at 2	$\Gamma = 298$ K from the K_N	$_{\rm MLX}^{\circ}$ and I	K _{MLX} ^{a,b} Values	by P	jerrum's Ec	juatio
--	----------	------------------	-------------------	------------	----------------	---------------------------------	------------------------------	--	------	-------------	--------

			$a/\text{\AA} \{K_{\text{MLX}}/(\text{mol}^{-1}\cdot\text{dm}^2)\}$	³)}
MX	L	solvent = H_2O	$CH_2Cl_2^c$	DCE^d
NaPic	18C6	0.6	6.0 $\{1.1 imes 10^4\}^{b.f}$	$4.9 \\ \{10^{4.07}\}^{b,e}$
	B18C6	0.4	g	4.5 $\{10^{4.38}\}^{b,e}$
	DB18C6	<i>h</i>	4.4 $\{1.11 \times 10^5\}^{b,i}$	4.0 $\{10^{4.70}\}^{b,j}$
KPic	18C6	0.4	4.6, 5.7 ^{<i>i</i>} $\{7.44 \times 10^4\}^{a,i}$	5.0, 4.9 $\{9.68 \times 10^3\}^{a,k}, \{10^{4.06}\}^{b,e}$
	B18C6	0.4	-8	4.4 $\{10^{4.46}\}^{b,e}$
	DB18C6	h	3.8, 4.3 ^{<i>i</i>} $\{5.06 \times 10^5\}^{a,i}$	$\frac{4.1}{\{10^{4.58}\}^{b,j}}$

^{*a*} K_{MLX} values estimated from conductance data. ^{*b*} K_{MLX} values estimated from extraction data. ^{*c*} Saturated with water. ^{*d*} 1,2-Dichloroethane saturated with water. ^{*e*} Ref 22. ^{*f*} Ref 26. ^{*g*} Not estimated, since K_{MLX} is not available. ^{*h*} Not estimated, since K_{MLX} could not be determined potentiometrically from less solubility of DB18C6 to water. ^{*i*} Ref 24. ^{*j*} Ref 25.

NaMnO₄-B15C5 (n = 42); (4.5 ± 0.4) × 10⁻⁵ mol·dm⁻³ and 0.992 for that of KMnO₄-15C5 (n = 29); (6.4 ± 0.5) × 10⁻⁵ mol·dm⁻³ and 0.989 for that of KMnO₄-B15C5 (n = 44); (5.8 ± 0.7) × 10⁻⁵ mol·dm⁻³ and 0.960 for that of NaBPh₄-15C5 (n = 37); and (8.1 ± 0.7) × 10⁻⁵ mol·dm⁻³ and 0.975 for that of NaBPh₄-B15C5 (n = 35). A further treatment of b_m will be omitted because its physical meaning is not clear yet, as described previously.⁶

Center-to-Center Distances of ML⁺ with X^- in Water. Based on Bjerrum's model,^{20,21} we tried estimating the center-to-center distances in the ML⁺-X⁻ pairs from the K_{MLX}° values in Table 1. According to this model, an ion-pair formation constant (K_B in mol⁻¹·dm³) at 25 °C has been expressed as

$$K_{\rm B} = \frac{1.332 \times 10^6}{D^3} Q(b) \tag{4}$$

with

$$Q(b) = \int_2^b \frac{\exp(x)}{x^4} dx$$

and

$$b = \frac{560.5}{aD}$$

where *D* and *a* denote a dielectric constant of a solvent and the center-to-center distance (Å unit) of the ions in contact, respectively. In calculation, we assumed $K_{\rm B} = K_{\rm MLX}^{\circ}$ and D = the dielectric constant of the pure solvent and then estimated the *b* value from calculating numerically the *Q*(*b*) value by Simpson's rule with (b - 2)/N = 0.2 (N = 1, 2, 3, ...).

Table 2 summarizes the *a* values calculated from the K_{MLX}° values for M(18C6 derivatives)Pic (M = Na, K) together with those from the K_{MLX} values of other solvent systems reported by conductometric or solvent extraction experiments.^{22–26} Their uncertainties were presumed to be about \pm 0.1 Å from calculation errors of Q(b). The *a* values estimated for water-saturated CH₂Cl₂ and 1,2-dichloroethane (DCE) systems appear reasonable. Also, although exceptions are present, the K_{MLX} values for the DCE system seem to decrease with an increase in the ionic radii, evaluated by Shannon,²⁷ of central M⁺: NaLPic > KLPic > RbLPic > CsLPic for L = DB18C6,²³ KLPic > NaLPic > CsLPic > RbLPic for B18C6,²⁶ LiLPic > RbLPic > CsLPic > RbLPic > CsLPic or NaLPicCl₂ > KLPicCl₂ > CsLPicCl₂ for 18C6, where the symbol PicCl₂⁻ denotes dichloropicrate ion.²⁴ These results indicate that the

major interaction between ML^+ and X^- is Coulombic in the DCE system.

The estimated *a* values of the ML⁺-Pic⁻ pairs in water were much smaller than those^{22–26} in both CH₂Cl₂ and DCE saturated with water (Table 2). These facts suggest that, in addition to the Coulombic interaction, there are interactions such as hydrophobic or ion-dipole one, coming from specificity of water structure, for the ML⁺-Pic⁻ pairs in water. Similar values were obtained for the AgLPic systems (a/Å = 0.5 for both the L), NaLMnO₄ (0.5 for L = 18C6 and 0.4 for B18C6), KLMnO₄ (0.5), and NaLBPh₄ (0.3). The NaL⁺-BPh₄⁻ pairs have the smallest *a* values of all the L employed. This fact is in agreement with the speculation that the hydrophobic interactions are present between these component ions or around the pairs. Values from a/Å = 0.4 to 0.9 were obtained for the M(15C5)X and M(B15C5)X systems.

Effect of an Addition of a Benzo Group on K_{MLX}°. From Table 1, the ratios of $K_{M(B18C6)X}^{\circ}/K_{M(18C6)X}^{\circ}$ were calculated to be 7.1 for MLX = NaLMnO₄, 0.77 (or its inverse = 1.3) for KLMnO₄, 10 for NaLPic, 0.82 (or 1.2) for AgLPic, 1.9 for KLPic, and 0.43 (or 2.3) for NaLBPh₄. This order was NaLBPh₄ < KLMnO₄ < AgLPic (<1) < KLPic < NaLMnO₄ < NaLPic. Taking account of simply these L sizes and the major interaction of the ML^+-X^- pairs and assuming that the size is a dominant factor determining the K_{MLX}° value, we have the relation, $K_{M(B18C6)X}^{\circ} < K_{M(18C6)X}^{\circ}$, namely, $K_{M(B18C6)X}^{\circ}/K_{M(18C6)X}^{\circ} < 1$. The ratios were close to unity in medial cases, such as KLMnO₄, KLPic, and AgLPic. This fact means that the interaction of AgL^+ or KL^+ with X^- does not largely change in the addition of a benzo group to 18C6 and also that a steric hindrance of the benzo groups on K(B18C6)⁺ and Ag(B18C6)⁺ against Pic⁻ or MnO_4^- does not drastically decrease the K_{MLX} values. Hence, there must be similarity in conformation around M⁺ between $K(18C6)^+$ and $K(B18C6)^+$ or $Ag(18C6)^+$ and $Ag(B18C6)^+$. Moreover, this suggests a close resemblance in structure between $K(B18C6)^+$ and $Ag(B18C6)^+$ in water. The higher cases can indicate that 18C6 shields more effectively the electric charge of Na⁺ trapped in its cavity than B18C6 does, resulting comparatively a decrease in the $K_{\text{Na}(18\text{C6})\text{X}}^{\circ}$ values (X⁻ = MnO₄⁻ and Pic⁻). Only the NaBPh₄-L systems suggest the steric hindrance of the benzo group in Na(B18C6)⁺ against BPh₄⁻.

The same ratios, $K_{\rm M(B15C5)X}^{\circ}/K_{\rm M(15C5)X}^{\circ}$, for the ion-pair complexes of MX with the 15C5 derivatives were calculated: 9.4 for MLX = NaLMnO₄, 0.62 (or its inverse = 1.6) for KLMnO₄, 15 for NaLPic, 2.0 for KLPic, 2.8 for AgLPic, and 0.94 (or 1.1) for NaLBPh₄ (Table 1). This order was KLMnO₄ < NaLBPh₄ (\leq 1) < KLPic < AgLPic < NaLMnO₄ < NaLPic. From the fact that the lower cases from KLMnO₄ to KLPic are close to unity, it is clear that the benzo group attached to 15C5 does not change the interaction between KL⁺ and X⁻ (= MnO_4^- and Pic⁻) or NaL⁺ and BPh₄⁻ in the pairs. On the other hand, the higher cases suggest that the shielding against Na⁺ trapped in 15C5 is higher than in B15C5.

Effect of X^- *on* K_{MLX}° . To compare strength of the interaction of X^- with a fixed NaL⁺, we calculated the ratio of $K_{NaLN}^\circ/K_{NaLPic}^\circ$ based on the NaPic-L systems. The ratios were in the order $X^- = \text{Pic}^- (K_{NaLX}^\circ/K_{NaLPic}^\circ = 1.0) < \text{MnO4}^- (3.7) <$ $\text{BPh4}^- (4.7 \times 10^3)$ for Na(18C6)⁺ and Pic⁻ (1.0) $\leq \text{MnO4}^-$ (1.1) $< \text{BPh4}^- (2.6 \times 10^2)$ for Na(15C5)⁺ (Table 1). The same order was also observed for Na(B18C6)⁺ and the free Na⁺,⁶ though the magnitude of each ratio decreased; while the order of MnO4⁻ (0.68) $< \text{Pic}^- (1.0) < \text{BPh4}^- (18)$ was for Na-(B15C5)⁺. From these orders, we can see immediately that, among X⁻ employed, the tetrahedral and bulky BPh4⁻ most strongly interacts with the NaL⁺.

Similarly, the ratios of $K_{\text{KLX}}^{\circ}/K_{\text{KLPic}}^{\circ}$ were estimated: a relation in the magnitude for K(18C6)⁺ was X⁻ = MnO₄⁻ (0.13) < Pic⁻ (1.0) (Table 1). A similar result was obtained for the ratio, $K_{\text{K(B18C6)X}}^{\circ}/K_{\text{K(B18C6)Pic}}^{\circ}$. The reverse, Pic⁻ < MnO₄⁻, is true of the relation for K(15C5)⁺, K(B15C5)⁺, and the free K^{+,6} These facts show that the planar Pic⁻ is easy to bind K(18C6)⁺ and K(B18C6)⁺.

Effects of the Ring Size of L and a Shielding of the Charge of M^+ on K_{MLX}° . We calculated from Table 1 $K_{M(18C6)X}^\circ$ $K_{M(15C5)X}^{\circ}$ and $K_{M(B18C6)X}^{\circ}/K_{M(B15C5)X}^{\circ}$ ratios as follows: $K_{M(18C6)X}^{\circ}/K_{M(15C5)X}^{\circ} = 6.1$ for MLX = NaLMnO₄, 0.39 (or its inverse = 2.6) for KLMnO₄, 1.8 for NaLPic, 0.34 for AgLPic, 1.2×10^2 (or 0.008) for KLPic, and 39 for NaLBPh₄; $K_{M(B18C6)X}^{\circ}/K_{M(B15C5)X}^{\circ} = 4.6, 0.53 \text{ (or } 1.9), 1.2, 0.098, 1.1 \times$ 10^2 (or 0.009), and 14 in the same order of MLX. These ratios were in the orders of $X^- = (1 <) \text{Pic}^- < \text{MnO}_4^- < \text{BPh}_4^-$ for NaLX and MnO_4^{-} (<1) \ll Pic⁻ for KLX. Taking account of the ring sizes of L and the major interaction as described above, we obtain the following relation: $K_{M(18C6)X}^{\circ} < K_{M(15C5)X}^{\circ}$ and $K_{M(B18C6)X}^{\circ} < K_{M(B15C5)X}^{\circ}$. This shows the ratio < 1, when the ring size is a dominant factor determining the $K_{\rm MLX}^{\circ}$ value. The systems satisfying this requirement are of KLMnO₄ and AgLPic. To us, the other systems suggest another factor: the larger the shielding effect of the charge of the M⁺ trapped in L is, the smaller the K_{MLX}° value becomes. Such an effect can act in the case that the size of M⁺ fits well the cavity of L: for example, Na⁺ and K⁺ fit into 15C5 and 18C6, respectively. By a relation between these two factors, therefore, a magnitude of $K_{\rm MLX}^{\circ}$ should be determined.

The above results indicate that the shielding effect of M⁺ is rather dominant than the effect of the ring size, except for the AgLPic system. The order of the NaLX system means that the effect of 15C5 shielding Na⁺ from X⁻ = Pic⁻, MnO₄⁻, and BPh₄⁻ is apparently superior to that of 18C6. In addition to the size effect described above, the ratio of the KLMnO₄ system can be explained also in terms of the effect that 18C6 shields K⁺ from MnO₄⁻; its effect is superior to 15C5 one. On the other hand, the fact of $K_{K(18C6)Pic}^{\circ}/K_{K(15C5)Pic}^{\circ} \gg 1$ suggests any specific affinity between K(18C6)⁺ and Pic⁻ over the shielding effect on K(18C6)⁺. Similar discussions should hold essentially for the ion-pair complexes with the benzo derivatives.

Literature Cited

 Takeda, Y.; Sato, H.; Sato, S. Solvent effects on extraction of potassium picrate with benzo-18-crown-6. A new equation for the determination of ion-pair formation of crown ether-metal salt complexes in water. *J. Solution Chem.* **1992**, *21*, 1069–1080.

- (2) Takayanagi, T.; Iwachido, T.; Motomizu, S. Analysis of ion association reactions between crown ether complexes of alkali metal ions and hydrophobic anions by capillary zone electrophoresis. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 1373–1379.
- (3) Manege, L. C.; Takayanagi, T.; Oshima, M.; Motomizu, S. Analysis of ion association reactions in aqueous solutions between alkali metalcrown ether complexes and pairing anions by capillary zone electrophoresis. *Analyst* 2000, *125*, 699–703.
- (4) Kudo, Y.; Usami, J.; Katsuta, S.; Takeda, Y. Solvent extraction of permanganates (Na, K) by 18-crown-6 ether from water into 1,2dichloroethane: elucidation of an extraction equilibrium based on component equilibria. *Talanta* 2003, 59, 1213–1218.
- (5) Kudo, Y.; Usami, J.; Katsuta, S.; Takeda, Y. Solvent extraction of silver picrate by 3m-crown-m ethers (m = 5, 6) from water into benzene or chloroform: elucidation of an extraction equilibrium using component equilibrium constants. *Talanta* **2004**, *62*, 701–706.
- (6) Kudo, Y.; Wakasa, M.; Ito, T.; Usami, J.; Katsuta, S.; Takeda, Y. Determination of ion-pair formation constants of univalent metal-crown ether complex ions with anions in water using ion-selective electrodes: application of modified determination methods to several salts. *Anal. Bioanal. Chem.* **2005**, *381*, 456–463.
- (7) Kudo, Y.; Katsuta, S.; Takeda, Y. Potentiometric determination of the ion-pair formation constant of a univalent cation-neutral ligand complex with an anion in water using an ion-selective electrode. *Anal. Sci.* **1999**, *15*, 597–599.
- (8) Katsuta, S.; Yamada, H.; Kudo, Y.; Takeda, Y. Ion-pair formation in water and extraction into benzene of 18-crown-6-sodium ion complex with nitrated phenolate ions. *Anal. Chim. Acta* 2000, *416*, 145–150.
- (9) Takeda, Y.; Kawarabayashi, A.; Endô, K.; Yahata, T.; Kudo, Y.; Katsuta, S. Solvent extraction of alkali metal (Li-Cs) picrates with 18-crown-6 into various diluents. Elucidation of fundamental equilibria which govern the extraction-ability and -selectivity. *Anal. Sci.* 1998, 14, 215–223.
- (10) Takeda, Y.; Kawarabayashi, A.; Takahashi, K.; Kudo, Y. Extraction of alkali metal picrates with benzo-18-crown-6 into various organic solvents. Fundamental equilibria which govern the highest extraction selectivity for K⁺ among alkali metal ions. *Bull. Chem. Soc. Jpn.* **1995**, 68, 1309–1314.
- (11) Takeda, Y.; Yasui, A.; Katsuta, S. Extraction of sodium and potassium perchlorates with dibenzo-18-crown-6 into various organic solvents. Quantitative elucidation of anion effects on the extraction-ability and -Selectivity. J. Inclusion Phenom. Macrocyclic Chem. 2004, 50, 157– 164.
- (12) Yajima, S.; Yahata, T.; Takeda, Y. Extraction of alkali metal (Li– Cs) picrates with dibenzo-18-crown-6 into various organic solvents. Elucidation of fundamental equilibria which govern the extractionability and -Selectivity. J. Inclusion Phenom. Macrocyclic Chem. 2000, 38, 305–322.
- (13) Takeda, Y.; Hatai, S.; Hayakawa, H.; Ono, Y.; Yahata, T.; Endô, K.; Katsuta, S. Solvent effects on extraction of alkali metal picrates with 15-crown-5 into various organic solvents. Elucidation of fundamental equilibria which govern extraction-efficiency and -selectivity. *Talanta* **1998**, 47, 67–75.
- (14) Takeda, Y.; Hashimoto, K.; Yoshiyama, D.; Katsuta, S. Extraction of alkali metal (Li, Na, K) picrates with benzo-15-crown-5 into various organic solvents. Elucidation of fundamental equilibria determining the extraction-ability and -selectivity. J. Inclusion Phenom. Macrocyclic Chem. 2002, 42, 313–321.
- (15) Katsuta, S.; Tachibana, H.; Takeda, Y. Stabilities in water of alkali metal ion complexes with dibenzo-24-crown-8 and dibenzo-18crown-6 and their transfer activity coefficients from water to nonaqueous solvents. J. Solution Chem. 2002, 31, 499–510.
- (16) Compton, R. G.; Sanders, G. H. W. *Electrode Potentials*; Davies, S. G. Ed.; Oxford Chemistry Primers 41; Oxford University Press: New York, 1996; pp 43–50.
- (17) de Levie, R. Aqueous Acid–Base Equilibria and Titrations; Compson R. G. Ed.; Oxford Chemistry Primers 80; Oxford University Press: New York, 1999; pp 60–62.
- (18) Kudo, Y.; Usami, J.; Katsuta, S.; Takeda, Y. On the difference between ion-pair formation constants of crown-ether complex ions with picrate ion in water determined by solvent extraction and by potentiometry. *J. Mol. Liq.* **2006**, *123*, 29–37.
- (19) Katsuta, S.; Takeda, Y. Transfer activity coefficients of crown ethers and their alkali metal ion complexes between water and polar nonaqueous solvents. *Bunseki Kagaku* 2003, *52*, 89–105 (in Japanese).
- (20) Harned, H. S.; Owen, B. B. *The Physical Chemistry of Electrolytic Solutions*, 3rd ed.; ACS Monograph Series 137; Reinhold: New York, 1958; pp 70–74.
- (21) Izutsu, K. Electrochemistry in Nonaqueous Solutions; Wiley-VCH Verlag: Weinheim, Germany, 2002; pp 50-55.
- (22) Kikuchi, Y.; Sakamoto, Y. Complex formation of alkali metal ions with 18-crown-6 and its derivatives in 1,2-dichloroethane. *Anal. Chim. Acta* 2000, 403, 325–332.

- (23) Kikuchi, Y.; Sakamoto, Y. Fundamental equilibrium analysis on the ion-pair extraction of dibenzo-18-crown-6 complex of alkali metal ions with picrate ion into 1,2-dichloroethane. *Anal. Chim. Acta* **1998**, *370*, 173–179.
- (24) Kolthoff, I. M.; Chantooni, M. K., Jr. Crown ether complexed alkali metal picrate ion pairs in water-saturated dichloromethane as studied by electrolytic conductance and by partitioning into water. Effect of lithium chloride on partitioning. J. Chem. Eng. Data 1997, 42, 49– 53.
- (25) Kolthoff, I. M.; Chantooni, M. K., Jr.; Wang, W.-J. Partitioning of crwon ether complexed univalent metal dichloropicrates between water

and 1,2-dichloroethane at 298 K. J. Chem. Eng. Data 1993, 38, 556-559.

- (26) Kolthoff, I. M. Ionic strength effect on extraction of potassium complexed with crown ether 18-crown-6. Preliminary communication. *Can. J. Chem.* **1981**, *59*, 1548–1551.
- (27) Shannon, R. D. Revised effective ionic radii and studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr.* 1976, A32, 751–767.

Received for review October 14, 2005. Accepted January 17, 2006.

JE050423M