# Thermodynamic Properties of Mixtures Containing Ionic Liquids. 9. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in Trimethyl-butylammonium Bis(trifluoromethylsulfonyl) Imide Using Gas-Liquid Chromatography and Static Method

Andreas Heintz,\* Tatiana V. Vasiltsova, Javid Safarov,<sup>†</sup> Eckard Bich, and Sergey P. Verevkin

Department of Physcal Chemistry, University of Rostock, Hermannstrasse 14, D-18055 Rostock, Germany

Activity coefficients at infinite dilution  $\gamma_i^{\infty}$  of solutes such as alkanes, alkenes, and alkylbenzenes as well as of the linear and branched C<sub>1</sub>-C<sub>6</sub> alcohols, esters, and aldehydes in the ionic liquids trimethyl-butylammonium bis(trifluoromethylsulfonyl) imide [Me<sub>3</sub>BuN][NTf<sub>2</sub>] have been determined by gas chromatography using the ionic liquids as stationary phase. The measurements were carried out at different temperatures between 302 K and 393 K. From the temperature dependence of the limiting activity coefficients, partial molar excess enthalpies at infinite dilution  $H_i^{E,\infty}$  of the solutes in the ionic liquids have been derived. Vapor-liquid equilibria (VLE) of binary mixtures containing methanol, ethanol, and propan-1-ol in [Me<sub>3</sub>BuN][NTf<sub>2</sub>] were studied by using a static method. VLE measurements were carried out covering the whole concentration range at four different temperatures between 298.15 K and 313.15 K. Activity coefficients  $\gamma_i$  of solutes in the ionic liquid and their osmotic coefficients  $\phi_i$  in the [Me<sub>3</sub>BuN][NTf<sub>2</sub>] have been determined from the VLE data and are described formally by using the NRTL equation.  $\gamma_i^{\infty}$  and  $H_i^{E,\infty}$  for methanol, ethanol, and propan-1-ol in [Me<sub>3</sub>BuN][NTf<sub>2</sub>] are derived from the both the GC and the static method.

## Introduction

This work continues our study of thermodynamic properties of mixtures containing ionic liquids.<sup>1–11</sup> Our interest in ionic liquids is focused on providing systematic data on activity coefficients in mixtures with organic solvents. In this work, we extend our measurements of activity coefficients in infinite dilution  $\gamma_i^{\infty}$  in ionic liquids to the compound trimethyl-butylammonium bis(trifluoromethylsulfonyl) imide (C<sub>9</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>F<sub>6</sub>)

$$\begin{bmatrix} Me & Me \\ N & \\ Me & Bu \end{bmatrix}^+ (CF_3SO_2)_2N^2$$

having the molar mass 396.33 and the common abbreviation [Me<sub>3</sub>BuN][NTf<sub>2</sub>].

Since ionic liquids (ILs) have a negligible vapor pressure, the most suitable method for measuring limiting activity coefficients of volatile solutes in ionic liquids is the gas—liquid chromatographic method using the ionic liquid as stationary phase. A series of hydrocarbons such as alkanes, alkenes, and alkylbenzenes as well as linear and branched  $C_1-C_6$  alcohols, esters, aldehydes, and several common solvents (acetone, acetonitrile, trichloromethane, 1,4-dioxane, *N*-methylpyrrolidone, and *N*,*N*-dimethylformamide) in [Me<sub>3</sub>BuN][NTf<sub>2</sub>] have been studied over the temperature range (302 to 393) K.

In addition, vapor pressure measurements of the three solutes methanol, ethanol, and propan-1-ol in the ionic liquid [Me<sub>3</sub>-BuN][NTf<sub>2</sub>] have been carried out over the whole range of binary concentrations. In contrast to previous work where VLE

<sup>†</sup> On the leave from Department "Heat and Refrigeration Techniques", Azerbaijan Technical University, H. Javid Avn. 25, AZ1073 Baku, Azerbaijan. data of low volatile solutes in ILs were measured using the transpiration method,<sup>10,11</sup> in the present work the VLE data have been obtained by using a static vapor pressure method.<sup>5</sup> From the pressure data, activity coefficients  $\gamma_i$  at different temperatures have been obtained. Furthermore, activity coefficients in infinity dilution  $\gamma_i^{\infty}$  of methanol, ethanol, and propan-1-ol in the ionic liquid [Me<sub>3</sub>BuN][NTf<sub>2</sub>] have been derived by extrapolation to  $x_i = 0$  and compared with those obtained from the GC method.

### **Experimental Procedure**

*Materials.* The samples of solutes studied were of commercial origins. GC analysis gave a purity >99.9 % in agreement with specifications stated by the suppliers. All chemicals were used without further purification. The [Me<sub>3</sub>BuN][NTf<sub>2</sub>] was supplied by the research group of Prof. Wasserscheid in Erlangen. Prior to experiments, the IL was subjected to vacuum evaporation at 333 K for more than 24 h to remove possible traces of solvents and moisture. The water concentration (<100 ppm) was determined by Karl Fischer titration. Chromosorb W/AW-DMCS 100/120 mesh was used as solid support for the ionic liquid in the GC column. The chromosorb has been subjected to vacuum treatment at high temperature in order to remove traces of adsorbed moisture.

*GC Method: Experimental Procedure.* Coating the solid support material with the ionic liquid was performed by dispersing a certain portion of chromosorb in a solution of the ionic liquid in dichloromethane followed by evaporation of the solvent using a rotating evaporator. The chromosorb was weighed before and after the coating process. The experiments were performed with a Varian-3600 gas-chromatograph equipped with a flame ionization detector and a Hewlett-Packard 3390A integrator. Nitrogen was used as carrier gas. A GC column (stainless steel) with length 43 cm with an inside diameter of 0.40 cm was used. The amount of stationary phase (ionic liquid)

<sup>\*</sup> Corresponding author. Tel.: +49-381-498-6500. Fax: +49-381-498-6502. E-mail: andreas.heintz@uni-rostock.de.

was 2.46 mmol. The mass of the stationary phase was determined gravimetrically with a precision of  $\pm$  0.0003 g. To avoid possible residual adsorption effects of the solutes on chromosorb, the amount of ionic liquid was about 35 mass % of the support material.

According to Cruickshank et al.,<sup>12</sup> the following equation for the data treatment was used:

$$\ln \gamma_{i,3}^{\infty} = \ln \left( \frac{n_3 RT}{V_N p_1^0} \right) - \frac{B_{11} - V_1^0}{RT} p_1^0 + \frac{2B_{12} - V_1^{\infty}}{RT} J p_0 \qquad (1)$$

where  $\gamma_{i,3}^{\infty}$  is the activity coefficient of component *i* at infinite dilution in the stationary phase (index 3),  $p_1^0$  is the vapor pressure of the pure liquid solute,  $n_3$  is the number of moles of the stationary phase component (ionic liquid) on the column, and  $V_{\rm N}$  is the standardized retention volume obtained by

$$V_{\rm N} = JU_0(t_{\rm r} - t_{\rm G}) \frac{T_{\rm col}}{T_{\rm f}} \left[ 1 - \frac{p_{\rm ow}}{p_{\rm o}} \right]$$
(2)

where  $t_r$  is the retention time;  $t_G$  is the dead time; and  $U_0$  is the flow rate, measured by a soap bubble flowmeter;  $T_{col}$  is the column temperature;  $T_f$  is flowmeter temperature;  $p_{ow}$  is saturation pressure of water at  $T_f$ ; and  $p_o$  is the pressure at the column outlet.

The second and third terms in eq 1 are correction terms that arise from the nonideality of mobile gaseous phase.  $B_{11}$  is the second virial coefficient of the solute, and  $B_{12}$  is the mixed virial coefficient of the solute (1) with the carrier gas nitrogen (2).  $V_1^0$  is the liquid molar volume of pure solute, and  $V_1^\infty$  is the partial molar volume of solute in the ionic liquid at infinite dilution. The factor *J* appearing in eqs 1 and 2 corrects for the influence of the pressure drop along the column given by<sup>13</sup>

$$J = \frac{3}{2} \frac{(p_i/p_o)^2 - 1}{(p_i/p_o)^3 - 1}$$
(3)

where  $p_i$  and  $p_o$  are the inlet and the outlet pressure of the GC column, respectively.

The outlet pressure  $p_0$  was kept equal to the atmospheric pressure. The pressure drop  $(p_i - p_0)$  was varied between (20.3 and 101.3 kPa), providing suitable retention times with sharp peaks. The pressure drop and the outlet pressure were measured using a membrane manometer with an uncertainty of  $\pm 0.2$  kPa.

Volumes of the samples injected into the GC probes were (0.5 to 2  $\mu$ L). No differences in retention times  $t_r$  were found by injecting individual pure components or their mixtures with both columns containing different masses of the ionic liquids, respectively. This fact indicates that different concentrations of the solute in the stationary phase caused by different ratios of the injected amounts of solute and the amount of stationary phase do not affect the results, and it can be concluded that in all cases the state of infinite dilution was realized to a high degree of approximation. Experiments were carried out at four to five temperatures (in 10 deg steps) between 301 K and 396 K. The temperature of the GC column was maintained constant to within  $\pm$  0.01 K. At a given temperature, each experiment was repeated at least twice to check the reproducibility. Retention times were generally reproducible within (0.01 to 0.03) min. Absolute values of retention times varied between (3 to 30) min depending on the individual solute. At each temperature, values of the dead time  $t_{G}$  identical to the retention time of a non-retainable component were measured. While our GC was equipped with a flame-ionization detector, methane<sup>1</sup>

was used as non-retainable component under the assumption that the effect of solubility of methane in IL is negligible. This assumption has been justified by attestation of our experimental procedure with the reliable data on  $\gamma_i^{\infty}$  of hexane, heptane, and benzene in hexadecane.<sup>1</sup>

To check the stability of the experimental conditions, such as the possible eluation of the stationary phase by the nitrogen stream, the measurements of retention times were repeated systematically every (2 to 3) days for three selected solutes. No changes of the retention times were observed during several months of continuous operation.

Data needed for calculating the correction terms in eq 1 have been obtained in the following way. Molar volumes of solutes  $V_1^0$  were estimated using experimental values of their densities, partial molar volumes of solute at infinite dilution  $V_1^\infty$  have been assumed to be equal of  $V_1^0$ . Values of  $B_{11}$  have been estimated according to Tsonopolous' method.<sup>14</sup> Critical parameters needed for the calculations were available from the literature.<sup>14</sup> If these data were not available, values of the critical pressure  $P_c$ , the critical temperature  $T_c$ , and the critical volume  $V_c$  were estimated using Lydersen's method.<sup>15</sup> Acentric factors  $\omega_i$  were calculated by Edminster equation.<sup>15</sup> More details are given in the Supporting Information. Values of  $B_{12}$  have also been estimated according to Tsonopolous' method. The mixed critical properties  $P_{cij}$ ,  $T_{cij}$ ,  $V_{cij}$ , and  $Z_{cij}$  and mixed acentric factor  $\omega_{ij}$  were calculated by equations given in the literature.<sup>14,15</sup>

Values of vapor pressures  $p_1^0$  of pure solutes are of a crucial importance for the reliability of  $\gamma_i^{\infty}$ . For alkanes, these values were calculated using parameters of the Cox equation recommended by Ruzicka and Majer.<sup>16</sup> For alkanes values of  $p_1^0$  were calculated using parameters of the Cox equation recommended by Steele and Chirico.<sup>17</sup> Vapor pressures of pure alcohols were calculated using coefficients of Wagner's equation recommended by Ambrose and Walton.<sup>18</sup> Specification of the sources of vapor pressures of other solutes was given in the previous papers of this series.<sup>8,9</sup>

The validity of the experimental procedure has been checked by comparison of our measured values of  $\gamma_i^{\infty}$  for hexane, heptane, and benzene in hexadecane with those available in the literature.<sup>1</sup> The procedure of the experimental error estimation was described in our previous work.<sup>1</sup> Values of  $\gamma_i^{\infty}$  are estimated to be accurate within to  $\pm 3 \%$ .

Static Vapor Pressure Method: Experimental Procedure. The VLE measurements of binary solutions of [Me<sub>3</sub>BuN][NTf<sub>2</sub>] with (CH<sub>3</sub>OH, or C<sub>2</sub>H<sub>5</sub>OH, or C<sub>3</sub>H<sub>7</sub>OH) have been performed by using a static method.<sup>5</sup> The experimental setup consisted of a bolted-top glass cell surrounded by a water bath. which was kept at constant temperature ( $\pm$  0.02 K). The measuring cell is equipped with an injection port containing a septum. A special construction of the injection port allows evacuation of the injection port before and after injecting a liquid sample and prevents pressure fluctuation in the measuring cell during the injection procedure. The pressure was measured using a calibrated high accuracy sensor head (type 615A, MKS Baratron) connected to the signal conditioner (type 670A, MKS Baratron) attached to the top of the cell. The sensor head and the connecting line from the cell to the sensor were thermostated at 333.15  $\pm$  0.01 K. This temperature is always kept above the temperatures of the measuring cell in order to avoid any condensation in the pressure head. The experimental uncertainties were  $\pm$ 0.01 K for the temperature and  $\pm$  10 Pa for the pressure.

To start an experimental series of measurements a certain amount of degassed IL was placed into the cell using a weighted syringe. The cell loaded with the IL is kept at room temperature

| Table 1. Experimental Results of $\gamma_i^{\infty}$ for Different Solutes in the [Me <sub>3</sub> BuN][NTf <sub>2</sub> ]: | : Temperature Ranges, Coefficients of Equation 4, Correlation |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Coefficients $R^2$ , $\gamma_i^{\infty}$ at 298 K Calculated Using Equation 4, and Values of $H_i^{E,\infty}$ Derive        | red from Equation 5                                           |
|                                                                                                                             |                                                               |

| solute <i>i</i>            | temperature interval/K | а             | b/K      | $R^2$ | $\gamma_i^{\infty}$ (298 K) | $H_i^{\mathrm{E},\infty}/\mathrm{kJ}\mathrm{\cdot mol}^{-1}$ |  |  |
|----------------------------|------------------------|---------------|----------|-------|-----------------------------|--------------------------------------------------------------|--|--|
| Alkanes                    |                        |               |          |       |                             |                                                              |  |  |
| 1-pentane                  | 301.85-322.85          | 2.49          | 38.789   | 1.000 | 13.70                       | 0.32                                                         |  |  |
| 1-hexane                   | 301.9-333.4            | 1.11          | 560.44   | 0.999 | 19.85                       | 4.66                                                         |  |  |
| 1-heptane                  | 301.7-333.3            | 0.745         | 804.04   | 0.998 | 31.23                       | 6.69                                                         |  |  |
| 1-octane                   | 301.7-333.3            | 0.808         | 906.89   | 1.000 | 46.98                       | 7.54                                                         |  |  |
| 1-nonane                   | 301.7-375.0            | 0.500         | 1120.0   | 0.999 | 70.55                       | 9.31                                                         |  |  |
| 1-decane                   | 302.2-354.1            | 0.445         | 1254.5   | 0.998 | 104.86                      | 10.43                                                        |  |  |
| 1-undecane                 | 322.8-364.6            | 0.583         | 1317.4   | 0.998 | 154.67                      | 11.58                                                        |  |  |
| 1-dodecane                 | 333.3-354.1            | -0.715        | 1857.0   | 0.996 | 248.09                      | 15.44                                                        |  |  |
|                            |                        | Allzanas      |          |       |                             |                                                              |  |  |
| 1 pentene                  | 3010 - 3124            | 0.45          | 407.5    | 0 000 | 6.17                        | 3 30                                                         |  |  |
| 1 havena                   | 305.9 - 364.55         | 0.45          | 407.5    | 0.999 | 10.60                       | 3.01                                                         |  |  |
| 1 haptana                  | 306.8-354.1            | 0.70          | 737 /1   | 0.000 | 16.60                       | 6.13                                                         |  |  |
| 1-neptene<br>1-octene      | 306.8-364.6            | 0.54          | 807.03   | 0.996 | 24.87                       | 6.71                                                         |  |  |
| 1-nonene                   | 306.7-364.6            | 0.36          | 936.04   | 0.998 | 24.07                       | 8.12                                                         |  |  |
| 1 decene                   | 306.7 - 354.0          | 0.50          | 1023.0   | 0.998 | 55 53                       | 8.12                                                         |  |  |
| 1-undecene                 | 322 6-375 0            | 0.59          | 11/9.0   | 0.996 | 87.88                       | 0.51                                                         |  |  |
| 1-dodecene                 | 333 3-385 5            | 0.20          | 1353 /   | 0.990 | 124.9                       | 11.25                                                        |  |  |
| 1-dodeeene                 | 333.3 363.5            | 0.27          | 1555.4   | 0.777 | 124.7                       | 11.23                                                        |  |  |
|                            |                        | Cyclic Hydroc | arbons   |       |                             |                                                              |  |  |
| cyclohexane                | 301.0-333.3            | -0.40         | 641.3    | 0.999 | 5.76                        | 5.33                                                         |  |  |
| cyclohexene                | 312.1-354.2            | -0.31         | 462.2    | 0.991 | 7.65                        | 5.90                                                         |  |  |
| 1,3-cyclohexadiene         | 306.0-364.6            | -0.29         | 480.09   | 0.995 | 3.76                        | 3.99                                                         |  |  |
|                            |                        | Alkylbenze    | ene      |       |                             |                                                              |  |  |
| benzene                    | 322.8-364.5            | -0.39         | 209.45   | 0.962 | 1.37                        | 1.74                                                         |  |  |
| toluene                    | 322.8-364.5            | 0.28          | 89.18    | 0.999 | 1.78                        | 0.74                                                         |  |  |
| ethyl benzene              | 322.9-354.3            | 0.16          | 280.36   | 0.964 | 3.01                        | 2.33                                                         |  |  |
| propyl benzene             | 333.3-364.5            | 0.60          | 259.16   | 0.992 | 4.33                        | 2.15                                                         |  |  |
| butyl benzene              | 333.3-375.0            | 0.75          | 336.1    | 0.996 | 6.5                         | 2.79                                                         |  |  |
| pentyl benzene             | 354.1-385.5            | 0.65          | 503.24   | 0.991 | 10.39                       | 4.18                                                         |  |  |
|                            |                        | A 1 1 - 1     |          |       |                             |                                                              |  |  |
| mathanal                   | 204 0-242 7            | _2 17         | 1000.2   | 0.008 | 1.67                        | 0.14                                                         |  |  |
| athenal                    | 304.0 - 343.7          | -2.70         | 1099.2   | 1.000 | 2.20                        | 9.14                                                         |  |  |
| 1 propanol                 | 301 8-333 4            | -2.79         | 1078.1   | 1.000 | 2.29                        | 0.90                                                         |  |  |
| 1 butanol                  | 302 6-343 7            | -2.93         | 1221.5   | 1.000 | 2.91                        | 10.16                                                        |  |  |
| 1-pentanol                 | 322.9-364.5            | -2.60         | 1221.5   | 1.000 | 5 32                        | 10.10                                                        |  |  |
| 1-beyanol                  | 3/37-3856              | -2.35         | 1285.5   | 1.000 | 7.1                         | 10.00                                                        |  |  |
| 2-propanol                 | 302 6-354 1            | -2.98         | 1167.0   | 0.000 | 2.54                        | 9.70                                                         |  |  |
| iso-butanol                | 302.6 - 354.1          | -2.50         | 1217.6   | 0.999 | 4 23                        | 10.12                                                        |  |  |
| sec-butanol                | 3332 - 3750            | -2.04         | 1190.8   | 0.998 | 3.16                        | 9.9                                                          |  |  |
| <i>tert</i> -butyl alcohol | 3026 - 3541            | -2.04         | 1064.6   | 1 000 | 2 36                        | 8.85                                                         |  |  |
| tert-pentanol              | 302.6 - 354.1          | -1.93         | 864 19   | 1.000 | 2.64                        | 7.19                                                         |  |  |
| cyclohexanol               | 343.7-385.6            | -4.05         | 1816.5   | 0.995 | 7.74                        | 15.10                                                        |  |  |
|                            |                        |               |          |       |                             |                                                              |  |  |
|                            |                        | Aldehyde      | S 204.15 | 0.050 | 0.50                        | 0.07                                                         |  |  |
| propanal                   | 301.7-343.6            | -1.49         | 284.15   | 0.958 | 0.59                        | 2.36                                                         |  |  |
| Dutanal                    | 301.8-354.2            | -0.65         | 152.4    | 0.992 | 0.81                        | 1.1                                                          |  |  |
| pentanai                   | 301.8-354.2            | -0.52         | 321.32   | 0.980 | 1.74                        | 2.07                                                         |  |  |
| nexanal                    | 322.8-304.7            | 0.25          | 129.45   | 0.978 | 1.99                        | 1.08                                                         |  |  |
| neptanal                   | 354.2-396.0            | -2.23         | 210.01   | 0.995 | 3.17                        | 8.39                                                         |  |  |
| octalial                   | 504.0-590.0            | 0.09          | 210.01   | 0.988 | 4.02                        | 1.75                                                         |  |  |
|                            |                        | Esters        |          |       |                             |                                                              |  |  |
| methyl propanoate          | 311.7-343.8            | -0.48         | 130.97   | 0.992 | 0.96                        | 1.09                                                         |  |  |
| methyl butanoate           | 311.7-364.5            | -0.33         | 188.12   | 1.000 | 1.35                        | 1.56                                                         |  |  |
| methyl pentanoate          | 322.8-364.6            | -1.04         | 503.35   | 0.960 | 1.92                        | 4.19                                                         |  |  |
| methyl hexanoate           | 343.7-375.0            | -0.97         | 640.19   | 0.992 | 3.24                        | 5.32                                                         |  |  |
| methyl heptanoate          | 343.6-385.5            | -1.30         | 846.26   | 0.989 | 4.68                        | 7.04                                                         |  |  |
|                            |                        | Polar Solve   | ents     |       |                             |                                                              |  |  |
| acetone                    | 301.9-343.8            | -1.30         | 131.83   | 0.982 | 0.42                        | 1.10                                                         |  |  |
| acetonitrile               | 301.8-343.8            | -1.65         | 299.3    | 0.991 | 0.52                        | 2.49                                                         |  |  |
| 1.4-dioxane                | 343.8-354.3            | -0.35         | 13.027   | 0.999 | 0.74                        | 0.11                                                         |  |  |
| trichloromethane           | 301.8-333.3            | 0.25          | -67.311  | 0.969 | 1.02                        | -0.56                                                        |  |  |
| N-methyl-pyrrolidone       | 312.35-375.15          | -4.86         | 2990.2   | 1.000 | 175.49                      | 24.86                                                        |  |  |
| N,N-dimethyl-formamide     | 375.15-396.15          | -0.68         | -208.4   | 0.960 | 0.25                        | -1.73                                                        |  |  |

under vacuum for ca. 12 h (until the pressure sensor indicates zero point). Exactly known amounts of the degassed solvent were injected stepwise into the thermostated equilibrium cell with the help of special glass injectors. Phase equilibrium was reached in each step by using a magnetic stirrer with a Tefloncoated magnet inside the cell. The vapor phase consists exclusively of the solvent, and equilibration in the cell is a rapid process. A constant pressure is reached within 15 min. Equilibrium pressure readings are registered in 10 min intervals. The method was checked<sup>9</sup> by measuring the vapor pressure of pure methanol<sup>19</sup> as well as the vapor—liquid equilibrium of the binary mixture (benzene + tetradecane), where reliable VLE data exist in the literature.<sup>20</sup> The experiments were carried out in the temperature range T = (298.15 to 313.15) K. The experimental



**Figure 1.** Values of  $\ln \gamma_i^{\infty}$  as function the number of carbon atoms for different classes of solutes in [Me<sub>3</sub>BuN][NTf<sub>2</sub>] at 298.15 K:  $\bullet$ , alkanes;  $\bigcirc$ , alkenes;  $\triangle$ , alkylbenzenes;  $\blacktriangledown$ , alcohols;  $\blacksquare$ , aldehydes;  $\square$ , esters.

vapor pressure is assessed to be reliable to within  $\pm$  1 % according to the test measurements.

### **Results and Discussion**

*GC Method.* The values of  $\gamma_i^{\infty}$  of different solutes in [Me<sub>3</sub>-BuN][NTf<sub>2</sub>] obtained at different temperatures are listed in Table 1. Altogether 256 data points for 55 solutes have been obtained in the temperature range (302 to 393) K. The complete set of data is available in the Supporting Information. The values of  $\gamma_i^{\infty}$  have been approximated by the linear regression:

$$\ln \gamma_i^{\infty} = a + \frac{b}{T} \tag{4}$$

The coefficients *a* and *b*, the correlation coefficients  $R^2$ , and the values of  $\gamma_i^{\infty}(298 \text{ K})$  calculated with these coefficients are also given in Table 1. The quality of the linear regression was very good because the correlation coefficients lie between 0.96 and 0.99.

The activity coefficients of the linear *n*-alkanes, *n*-alkenes, alkylbenzenes, aldehydes, and esters increase with increasing chain length (see Figure 1). Cyclization of the alkane skeleton (e.g., cyclohexane) reduces the value of  $\gamma_i^{\infty}$  in comparison to the corresponding linear alkanes (e.g., hexane). Introduction of the double bond in the six membered ring (cyclohexene, cyclohexadiene) also causes a decrease of  $\gamma_i^{\infty}$ . This indicates a better solubility of molecules with double bonds in the ionic liquid due to their higher polarizability.

Values of  $\gamma_i^{\infty}$  for benzene and the alkylbenzenes are distinctly lower in comparison with those of the alkanes and alkenes. However, as with alkanes,  $\gamma_i^{\infty}$  values increase with increasing size of the alkyl group. The activity coefficients of the linear *n*-alkanols increase slightly with increasing chain length. The branching of the alkane skeleton (e.g., 2-propanol or *tert*-butyl alcohol) reduces the value of  $\gamma_i^{\infty}$  in comparison to the corresponding linear alcohol. Values of  $\gamma_i^{\infty}$  of aldehydes and esters are distinctly lower than those obtained for alkanes and alkenes.

The value for the partial molar excess enthalpy at infinite dilution  $H_i^{\text{E},\infty}$  can be directly obtained from the slope of a straight line derived from eq 5:

$$\left(\frac{\partial \ln \gamma_i^{\infty}}{\partial (1/T)}\right) = \frac{H_i^{\text{E},\infty}}{R}$$
(5)

| Table 2.  | Experimental | Vapor | Pressure | Values | of | Investigated |
|-----------|--------------|-------|----------|--------|----|--------------|
| Solutions | 5            |       |          |        |    |              |

|                       | 298.  | 15 K               | 303.1       | 15 K            | 308.15 K              |                    | 313.15 K |            |
|-----------------------|-------|--------------------|-------------|-----------------|-----------------------|--------------------|----------|------------|
| <i>x</i> <sub>1</sub> | p/Pa  | $\gamma_1$         | p/Pa        | $\gamma_1$      | p/Pa                  | $\gamma_1$         | p/Pa     | $\gamma_1$ |
|                       |       | xCH <sub>3</sub> C | H + (1 - 1) | – <i>x</i> )[Me | 3BuN][N               | ITf <sub>2</sub> ] |          |            |
| 0.0000                | 0     | 1.279              | 0           | 1.219           | 0                     | 1.147              | 0        | 1.120      |
| 0.0850                | 1980  | 1.328              | 2411        | 1.274           | 2823                  | 1.205              | 3419     | 1.171      |
| 0.1093                | 2502  | 1.339              | 3040        | 1.287           | 3658                  | 1.219              | 4379     | 1.183      |
| 0.1308                | 2923  | 1.347              | 3608        | 1.297           | 4315                  | 1.230              | 5171     | 1.192      |
| 0.2069                | 4799  | 1.367              | 5917        | 1.323           | 7202                  | 1.261              | 8650     | 1.219      |
| 0.2166                | 5034  | 1.368              | 6230        | 1.325           | 7561                  | 1.264              | 9102     | 1.222      |
| 0.2539                | 5963  | 1.371              | 7386        | 1.331           | 8945                  | 1.273              | 10746    | 1.229      |
| 0.2973                | 7051  | 1.369              | 8729        | 1.333           | 10553                 | 1.279              | 12748    | 1.234      |
| 0.4400                | 10047 | 1.328              | 12605       | 1.304           | 15457                 | 1.263              | 18703    | 1.222      |
| 0.5989                | 12676 | 1.232              | 16044       | 1.218           | 19893                 | 1.194              | 24271    | 1.163      |
| 0.6450                | 13302 | 1.198              | 16902       | 1.186           | 20913                 | 1.166              | 25631    | 1.140      |
| 0.7410                | 14489 | 1.125              | 18386       | 1.118           | 22840                 | 1.106              | 28317    | 1.090      |
| 0.8624                | 15756 | 1.044              | 20028       | 1.041           | 25170                 | 1.037              | 31522    | 1.031      |
| 0.9046                | 16118 | 1.023              | 20583       | 1.021           | 26007                 | 1.019              | 32503    | 1.016      |
| 0.93664               | 16409 | 1.011              | 20997       | 1.010           | 26561                 | 1.009              | 33321    | 1.008      |
| 0.96865               | 16750 | 1.003              | 21546       | 1.003           | 27400                 | 1.002              | 34573    | 1.002      |
| 1.0000                | 16958 | 1.000              | 21880       | 1.000           | 27960                 | 1.000              | 35450    | 1.000      |
|                       |       | $xC_2H_5C$         | OH + (1)    | – x)[Me         | e <sub>3</sub> BuN][N | NTf <sub>2</sub> ] |          |            |
| 0.0000                | 0     | 2.378              | 0           | 2.199           | 0                     | 1.983              | 0        | 1.815      |
| 0.0575                | 1097  | 2.225              | 1369        | 2.061           | 1625                  | 1.864              | 1910     | 1.706      |
| 0.1524                | 2222  | 2.019              | 2678        | 1.874           | 3184                  | 1.705              | 3872     | 1.562      |
| 0.1651                | 2420  | 1.995              | 2913        | 1.852           | 3461                  | 1.687              | 4235     | 1.546      |
| 0.2540                | 3652  | 1.845              | 4555        | 1.720           | 5423                  | 1.575              | 6280     | 1.447      |
| 0.3305                | 4665  | 1.737              | 5748        | 1.625           | 7000                  | 1.497              | 7947     | 1.379      |
| 0.4141                | 5486  | 1.637              | 6839        | 1.539           | 8218                  | 1.427              | 9774     | 1.320      |
| 0.5078                | 6226  | 1.538              | 7889        | 1.457           | 9677                  | 1.361              | 11885    | 1.267      |
| 0.5919                | 6771  | 1.458              | 8652        | 1.391           | 10769                 | 1.311              | 13488    | 1.229      |
| 0.6555                | 7219  | 1.399              | 9215        | 1.343           | 11596                 | 1.275              | 14490    | 1.203      |
| 0.7041                | 7616  | 1.352              | 9736        | 1.307           | 12248                 | 1.249              | 15212    | 1.185      |
| 0.7364                | 7731  | 1.320              | 9991        | 1.282           | 12607                 | 1.230              | 15701    | 1.173      |
| 0.7969                | 7825  | 1.256              | 10227       | 1.230           | 13127                 | 1.193              | 16569    | 1.149      |
| 0.8705                | 7837  | 1.165              | 10364       | 1.156           | 13501                 | 1.138              | 17338    | 1.112      |
| 0.94893               | 7854  | 1.052              | 10430       | 1.053           | 13690                 | 1.053              | 17790    | 1.051      |
| 0.96847               | 7857  | 1.025              | 10439       | 1.027           | 13723                 | 1.028              | 17856    | 1.029      |
| 1.0000                | 7876  | 1.000              | 10468       | 1.000           | 13768                 | 1.000              | 17928    | 1.000      |
|                       |       | $xC_3H_7C_3$       | DH + (1)    | – x)[Me         | e <sub>3</sub> BuN][N | NTf <sub>2</sub> ] |          |            |
| 0.0000                | 0     | 3.888              | 0           | 3.625           | 0                     | 3.248              | 0        | 3.112      |
| 0.0223                | 247   | 3.723              | 316         | 3.478           | 382                   | 3.137              | 492      | 3.003      |
| 0.0336                | 332   | 3.644              | 422         | 3.408           | 514                   | 3.083              | 644      | 2.951      |
| 0.0785                | 710   | 3.356              | 905         | 3.152           | 1125                  | 2.883              | 1424     | 2.758      |
| 0.1456                | 1193  | 2.994              | 1535        | 2.830           | 1941                  | 2.626              | 2504     | 2.512      |
| 0.1742                | 1355  | 2.860              | 1750        | 2.710           | 2223                  | 2.529              | 2839     | 2.419      |
| 0.1841                | 1416  | 2.816              | 1824        | 2.670           | 2305                  | 2.497              | 2951     | 2.389      |
| 0.2518                | 1772  | 2.543              | 2289        | 2.427           | 2917                  | 2.295              | 3770     | 2.199      |
| 0.2937                | 1977  | 2.396              | 2567        | 2.295           | 3280                  | 2.184              | 4200     | 2.096      |
| 0.3317                | 2134  | 2.274              | 2802        | 2.187           | 3615                  | 2.091              | 4598     | 2.010      |
| 0.3857                | 2330  | 2.117              | 3082        | 2.046           | 4012                  | 1.969              | 5122     | 1.898      |
| 0.4575                | 2519  | 1.931              | 3364        | 1.879           | 4410                  | 1.823              | 5654     | 1.764      |
| 0.5025                | 2594  | 1.825              | 3478        | 1.783           | 4583                  | 1.737              | 5955     | 1.687      |
| 0.5622                | 2665  | 1.694              | 3587        | 1.665           | 4766                  | 1.630              | 6259     | 1.590      |
| 0.62471               | 2702  | 1.566              | 3658        | 1.549           | 4895                  | 1.523              | 6471     | 1.494      |
| 0.65725               | 2715  | 1.502              | 3686        | 1.490           | 4940                  | 1.469              | 6550     | 1.445      |
| 0.78237               | 2737  | 1.274              | 3737        | 1.275           | 5041                  | 1.267              | 6723     | 1.260      |
| 0.87331               | 2747  | 1.125              | 3755        | 1.130           | 5076                  | 1.127              | 6775     | 1.128      |
| 0.91542               | 2 750 | 1.066              | 3 755       | 1.070           | 5 076                 | 1.069              | 6 782    | 1.071      |
| 1.0000                | 2786  | 1.000              | 3826        | 1.000           | 5199                  | 1.000              | 6986     | 1.000      |

where *R* is the gas constant. The values of  $H_i^{E,\infty}$  for the compounds studied are also listed in Table 1. The uncertainties of  $H_i^{E,\infty}$  are estimated to be not better than  $\pm 10$  % due to the small slope of ln  $\gamma_i^{\infty}$  versus 1/T plots and taking into account the experimental uncertainty of the  $\gamma_i^{\infty}$  values. This is also confirmed by results of  $H_i^{E,\infty}$  for systems where a comparison between the results obtained by eq 5 and direct calorimetric data is possible.<sup>10</sup>

Values of  $H_i^{\text{E},\infty}$  are positive and increase slightly with increasing chain length of the linear alkanes. The introduction of double bonds lower the positive values of  $H_i^{\text{E},\infty}$ . Values of  $H_i^{\text{E},\infty}$  of linear alcohols are positive and do not change with increasing

Table 3. Vapor Pressure of Pure Solutes  $p^*$ , Second Virial Coefficient  $B_s$  of Vapor Solute and Molar Volume  $V_s^*$  of Liquid Solute at Different Temperatures

| Т      | $p^*$ | $B_{\rm s}$                       | $V_{\rm s}*$          |
|--------|-------|-----------------------------------|-----------------------|
| K      | Pa    | m <sup>3</sup> ·mol <sup>-1</sup> | $m^3 \cdot mol^{-1}$  |
|        |       | CH <sub>3</sub> OH                |                       |
| 298.15 | 16958 | $-2172.5 \cdot 10^{-6}$           | $4.075 \cdot 10^{-5}$ |
| 303.15 | 21880 | $-1942.3 \cdot 10^{-6}$           | $4.099 \cdot 10^{-5}$ |
| 308.15 | 27960 | $-1746.6 \cdot 10^{-6}$           | $4.124 \cdot 10^{-5}$ |
| 313.15 | 35450 | $-1579.0 \cdot 10^{-6}$           | $4.150 \cdot 10^{-5}$ |
|        |       | C <sub>2</sub> H <sub>5</sub> OH  |                       |
| 298.15 | 7878  | $-1723.5 \cdot 10^{-6}$           | $5.868 \cdot 10^{-5}$ |
| 303.15 | 10467 | $-1598.8 \cdot 10^{-6}$           | $5.901 \cdot 10^{-5}$ |
| 308.15 | 13765 | $-1485.5 \cdot 10^{-6}$           | $5.933 \cdot 10^{-5}$ |
| 313.15 | 17906 | $-1382.50 \cdot 10^{-6}$          | $5.967 \cdot 10^{-5}$ |
|        |       | C <sub>3</sub> H <sub>7</sub> OH  |                       |
| 298.15 | 2786  | $-4290.0 \cdot 10^{-6}$           | $7.514 \cdot 10^{-5}$ |
| 303.15 | 3826  | $-4013.9 \cdot 10^{-6}$           | $7.553 \cdot 10^{-5}$ |
| 308.15 | 5199  | $-3713.3 \cdot 10^{-6}$           | $7.592 \cdot 10^{-5}$ |
| 313.15 | 6986  | $-3401.1 \cdot 10^{-6}$           | $7.631 \cdot 10^{-5}$ |

Table 4. Parameters of the NRTL Equation

| Т      | $g_{12} - g_{22}$       | $g_{21} - g_{11}$   | α         |
|--------|-------------------------|---------------------|-----------|
| K      | kJ•mol <sup>−1</sup>    | $kJ \cdot mol^{-1}$ |           |
|        | [Me <sub>3</sub> BuN][] | $NTf_2] + CH_3OH$   |           |
| 298.15 | 14.4371                 | -8.7766             | 0.0739247 |
| 303.15 | 16.5879                 | -10.5958            | 0.0611245 |
| 308.15 | 17.5388                 | -11.5650            | 0.0564698 |
| 313.15 | 17.1496                 | -11.6591            | 0.0547772 |
|        | [Me <sub>3</sub> BuN][N | $MTf_2] + C_2H_5OH$ |           |
| 298.15 | 10.1683                 | 1.0862              | 0.550942  |
| 303.15 | 10.1726                 | 1.0994              | 0.604492  |
| 308.15 | 9.9069                  | 1.0652              | 0.689704  |
| 313.15 | 9.4340                  | 1.0696              | 0.820402  |
|        | [Me <sub>3</sub> BuN][N | $MTf_2] + C_3H_7OH$ |           |
| 298.15 | 8.0361                  | 1.5344              | 0.456086  |
| 303.15 | 8.3361                  | 1.5185              | 0.475931  |
| 308.15 | 8.3059                  | 1.3299              | 0.491408  |
| 313.15 | 8.3703                  | 1.4014              | 0.523682  |

chain length. For trichloromethane and *N*,*N*-dimethylformamide  $H_i^{E,\infty}$  becomes negative.

*Static Method.* Experimental vapor pressures p of binary mixtures of [Me<sub>3</sub>BuN][NTf<sub>2</sub>] with (CH<sub>3</sub>OH, or C<sub>2</sub>H<sub>5</sub>OH, or C<sub>3</sub>H<sub>7</sub>OH) measured at T = (298.15 to 313.15) K are listed in Table 2.

Binary mixtures of IL with nonelectrolyte components belong to the class of electrolyte solutions covering the whole range of composition including the pure liquid electrolyte. Since there exist



**Figure 2.** Plot of activity coefficient  $\gamma^x$  of methanol in CH<sub>3</sub>OH + [Me<sub>3</sub>-BuN][NTf<sub>2</sub>] mixture vs mole fraction *x* of CH<sub>3</sub>OH:  $\blacklozenge$ , 298.15 K;  $\blacktriangle$ , 303.15 K;  $\blacksquare$ , 308.15 K;  $\blacklozenge$ , 313.15 K; points and solid lines, eq 8.



**Figure 3.** Plot of activity coefficient  $\gamma$  of ethanol in C<sub>2</sub>H<sub>5</sub>OH + [Me<sub>3</sub>-BuN][NTf<sub>2</sub>] mixture vs mole fraction *x* of C<sub>2</sub>H<sub>5</sub>OH:  $\blacklozenge$ , 298.15 K;  $\blacktriangle$ , 303.15 K;  $\blacksquare$ , 308.15 K;  $\blacksquare$ , 313.15 K; points and solid lines, eq 8.



**Figure 4.** Plot of activity coefficient  $\gamma^{x}$  of propanol in C<sub>3</sub>H<sub>7</sub>OH + [Me<sub>3</sub>-BuN][NTf<sub>2</sub>] mixture vs mole fraction *x* of C<sub>3</sub>H<sub>7</sub>OH:  $\blacklozenge$ , 298.15 K;  $\blacktriangle$ , 303.15 K;  $\blacksquare$ , 308.15 K;  $\blacksquare$ , 313.15 K; points and solid lines, eq 8.

no reliable theoretical models for the Gibbs energy of mixing of this kind of mixtures, we have tried to describe the results of activity coefficients using purely empirical expressions that are well-known in thermodynamics of nonelectrolyte mixtures. It turned out<sup>5</sup> that the NRTL equation gives the best empirical description of the activity coefficients. Equation 6 has been used to determine activity coefficients  $\gamma_1$  from experimental data of partial pressures  $p_1$  including the vapor pressure of the pure solutes  $p_{10}$ :

$$p_1 \frac{\phi_1}{\phi_{10}} = p_{10} x_1 \gamma_1^{\text{NRTL}}$$
(6)

Corrections due to fugacity coefficients  $\varphi_1$  and  $\varphi_{10}$  have been accounted for by

$$\frac{\varphi_1}{\varphi_{10}} = \exp[-(V_1 - B_{11})(p_1 - p_{10})/RT]$$
(7)

The second virial coefficients  $B_{11}$  of the alcohols have been

taken from ref 21, and the molar liquid volumes  $V_1$  are from ref 22. These data are presented in Table 3. It turned out that the eq 7 is only a small correction for the values of  $\gamma_1$  that is within  $\pm 1$  %. The expression for ln  $\gamma_1$  is

$$\ln \gamma_1^{\text{NRTL}} = x_2^2 \left[ \tau_{21} \left( \frac{G_{21}}{x_1 + x_2 G_{21}} \right)^2 + \frac{\tau_{12} G_{12}}{\left(x_2 + x_1 G_{12}\right)^2} \right] \tag{8}$$

with  $G_{ij} = \exp(-\alpha_{ij}\tau_{ij})$ ,  $\tau_{ij} = (g_{ij}-g_{jj})/RT$  and  $\alpha_{ij} = \alpha_{ji} = \alpha$  (*i*,  $j = 1, 2; i \neq j$ ). Table 4 contains the parameters  $\alpha_{ij}$  and  $(g_{ij}-g_{jj})$  obtained by fitting  $\gamma_1^{\text{NRTL}}$  to the experimental VLE data. The plots of eq 8 of IL with alcohols versus the mole fractions  $x_1$  of solvent are shown in Figures 2 to 4.

The activity of the solvent,  $a_s$ , and osmotic coefficients,  $\phi$ , were calculated from the experimental vapor pressure values using the following equations:

$$\ln a_{\rm s} = \ln(p/p^*) + (B_{\rm s} - V_{\rm s}^*)(p - p^*)/RT$$
(9)

$$\phi = -\ln a_{\rm s} / (\nu m M_{\rm s}) \tag{10}$$

where *p* and *p*<sup>\*</sup> are the vapor pressures of the solution and pure solvent, respectively;  $B_s$  and  $V_s^*$  are the second virial coefficient of solvent vapor and molar volume of pure liquid solvent, respectively; *v* is the sum of stoichiometric numbers of anion and cation ( $v_- + v_+$ ); *m* is molality of salt; and  $M_s$  is the molecular weight of solvent, respectively. The second term on the righthand side of eq 9 takes into account the nonideality of the solvent vapor using the virial equation. The obtained values for  $a_s$ and  $\phi$  are tabulated in Table 5. The values of  $p^*$ ,  $B_s$ , and  $V_s^*$ required for calculations were taken from refs 19–21 and are shown in Table 3. The plots of eq 10 of IL with alcohols versus the molality of solvent are shown in Figures 5 to 7.

Values of  $\gamma_1$  decrease with temperature for all mixtures (except for the mixture methanol + [Me<sub>3</sub>BuN][NTf<sub>2</sub>]). In case

Table 5. Calculated Activity of Solutes  $a_s$  and Osmotic Coefficients  $\phi$  of the Investigated Solutions

|         | 298.15   | 5 K    | 303.15    | δK                         | 308.15                | 308.15 K |          | 308.15 K |  |
|---------|----------|--------|-----------|----------------------------|-----------------------|----------|----------|----------|--|
| $x_1$   | as       | $\phi$ | as        | $\phi$                     | as                    | $\phi$   | as       | $\phi$   |  |
|         |          |        | rCH2OH +  | (1 - x)[Me <sub>2</sub> Bu | NIINTf <sub>2</sub> ] |          |          |          |  |
| 0.96865 | 0 987918 | 0.188  | 0.984994  | 0.234                      | 0.980354              | 0.307    | 0.975793 | 0.379    |  |
| 0.93664 | 0.968100 | 0.240  | 0.960311  | 0.300                      | 0.950892              | 0.373    | 0.941190 | 0.449    |  |
| 0.9046  | 0.951179 | 0.238  | 0.941683  | 0.286                      | 0.931419              | 0.338    | 0.918552 | 0.404    |  |
| 0.8624  | 0.930117 | 0.228  | 0.916691  | 0.274                      | 0.901969              | 0.325    | 0.891373 | 0.362    |  |
| 0.7410  | 0.856291 | 0.224  | 0.842624  | 0.247                      | 0.819805              | 0.287    | 0.802341 | 0.318    |  |
| 0.6450  | 0.786973 | 0.220  | 0.775518  | 0.234                      | 0.751649              | 0.263    | 0.727451 | 0.293    |  |
| 0.5989  | 0.750357 | 0.218  | 0.736648  | 0.232                      | 0.715497              | 0.254    | 0.689435 | 0.282    |  |
| 0.4400  | 0.596131 | 0.208  | 0.580317  | 0.219                      | 0.557670              | 0.235    | 0.533116 | 0.253    |  |
| 0.2973  | 0.419486 | 0.189  | 0.403099  | 0.198                      | 0.382045              | 0.210    | 0.364723 | 0.220    |  |
| 0.2539  | 0.355102 | 0.182  | 0.341441  | 0.189                      | 0.324195              | 0.198    | 0.307828 | 0.207    |  |
| 0.2166  | 0.300028 | 0.172  | 0.288263  | 0.178                      | 0.274299              | 0.185    | 0.261001 | 0.192    |  |
| 0.2069  | 0.286082 | 0.169  | 0.273848  | 0.175                      | 0.261341              | 0.181    | 0.248110 | 0.188    |  |
| 0.1308  | 0.174541 | 0.136  | 0.167288  | 0.139                      | 0.156895              | 0.144    | 0.148643 | 0.148    |  |
| 0.1093  | 0.149458 | 0.121  | 0.141015  | 0.125                      | 0.133067              | 0.128    | 0.125938 | 0.132    |  |
| 0.0850  | 0.118331 | 0.103  | 0.111893  | 0.106                      | 0.102752              | 0.110    | 0.098388 | 0.112    |  |
|         |          |        | rC2HeOH + | (1 - r)[Me <sub>2</sub> B] | NIINTfal              |          |          |          |  |
| 0.96847 | 0 997349 | 0.041  | 0 997343  | 0.041                      | 0 996974              | 0.047    | 0 997290 | 0.042    |  |
| 0.94893 | 0.996971 | 0.028  | 0.996489  | 0.033                      | 0.994596              | 0.050    | 0.993641 | 0.042    |  |
| 0.8705  | 0.994825 | 0.020  | 0.990227  | 0.033                      | 0.990977              | 0.050    | 0.968637 | 0.057    |  |
| 0.7969  | 0.993310 | 0.013  | 0.977225  | 0.035                      | 0.954018              | 0.003    | 0.926069 | 0.151    |  |
| 0.7364  | 0.981444 | 0.026  | 0.954823  | 0.045                      | 0.916513              | 0.122    | 0.920009 | 0.183    |  |
| 0.7041  | 0.966925 | 0.020  | 0.930609  | 0.005                      | 0.890607              | 0.122    | 0.850863 | 0.103    |  |
| 0.6555  | 0.916784 | 0.040  | 0.881111  | 0.121                      | 0.843529              | 0.163    | 0.810803 | 0.193    |  |
| 0.5919  | 0.860166 | 0.110  | 0.827585  | 0.121                      | 0.783761              | 0.105    | 0.755154 | 0.201    |  |
| 0.5078  | 0 791241 | 0.122  | 0.754981  | 0.137                      | 0.704750              | 0.183    | 0.665998 | 0.200    |  |
| 0.4141  | 0.697568 | 0.122  | 0.654948  | 0.152                      | 0.599022              | 0.184    | 0 548345 | 0.212    |  |
| 0.3305  | 0.593525 | 0.131  | 0.550862  | 0.150                      | 0.510615              | 0.169    | 0 446297 | 0.203    |  |
| 0.2540  | 0 464980 | 0.133  | 0.436873  | 0.144                      | 0.395957              | 0.161    | 0.353006 | 0.181    |  |
| 0.1651  | 0.308392 | 0.119  | 0.279690  | 0.129                      | 0.253002              | 0.139    | 0.238324 | 0.145    |  |
| 0.1524  | 0.283201 | 0.116  | 0.257166  | 0.125                      | 0.232792              | 0.134    | 0.217940 | 0.140    |  |
| 0.0575  | 0.139929 | 0.062  | 0.131577  | 0.064                      | 0.118920              | 0.067    | 0.107623 | 0.071    |  |
|         |          |        | rCaH=OH + | (1 - r)[Me <sub>2</sub> B] | NIINTfal              |          |          |          |  |
| 0.91542 | 0 987141 | 0.075  | 0.981556  | 0.108                      | 0.976519              | 0.138    | 0.971063 | 0.171    |  |
| 0.87331 | 0.986069 | 0.072  | 0.981556  | 0.069                      | 0.976519              | 0.088    | 0.970070 | 0.112    |  |
| 0.78237 | 0.982497 | 0.034  | 0.976879  | 0.045                      | 0.969836              | 0.059    | 0.962691 | 0.073    |  |
| 0.65725 | 0.974637 | 0.026  | 0.963627  | 0.038                      | 0.950547              | 0.052    | 0.938136 | 0.075    |  |
| 0.62471 | 0.969993 | 0.020  | 0.956351  | 0.040                      | 0.941951              | 0.054    | 0.926919 | 0.068    |  |
| 0.5622  | 0.956772 | 0.031  | 0.937896  | 0.044                      | 0.917302              | 0.060    | 0.896805 | 0.075    |  |
| 0.5025  | 0.931399 | 0.039  | 0.909557  | 0.052                      | 0.882319              | 0.068    | 0.853594 | 0.086    |  |
| 0.4575  | 0.904589 | 0.046  | 0.879907  | 0.058                      | 0.849230              | 0.074    | 0.810774 | 0.095    |  |
| 0.3857  | 0.836996 | 0.060  | 0.806514  | 0.073                      | 0.773043              | 0.087    | 0.735008 | 0.104    |  |
| 0.3317  | 0.766853 | 0.071  | 0.733575  | 0.083                      | 0.696957              | 0.097    | 0.660276 | 0.111    |  |
| 0.2937  | 0.710631 | 0.077  | 0.672308  | 0.089                      | 0.632684              | 0.103    | 0.603444 | 0.114    |  |
| 0.2518  | 0.637174 | 0.082  | 0.599769  | 0.093                      | 0.562966              | 0.105    | 0.541974 | 0.112    |  |
| 0.1841  | 0.509483 | 0.082  | 0.478289  | 0.090                      | 0.445256              | 0.099    | 0.424699 | 0.105    |  |
| 0.1742  | 0.487588 | 0.082  | 0.458940  | 0.089                      | 0.429468              | 0.097    | 0.408641 | 0.102    |  |
| 0.1456  | 0.429415 | 0.078  | 0.402696  | 0.084                      | 0.375144              | 0.091    | 0.360583 | 0.094    |  |
| 0.0785  | 0.255779 | 0.063  | 0.237663  | 0.067                      | 0.217696              | 0.071    | 0.205356 | 0.073    |  |
| 0.0336  | 0.119683 | 0.040  | 0.110909  | 0.042                      | 0.099553              | 0.044    | 0.092969 | 0.045    |  |
| 0.0223  | 0.089055 | 0.030  | 0.083064  | 0.031                      | 0.074001              | 0.032    | 0.071040 | 0.033    |  |
|         |          |        |           |                            |                       |          |          |          |  |



**Figure 5.** Plot of osmotic coefficient  $\phi$  of CH<sub>3</sub>OH + [Me<sub>3</sub>BuN][NTf<sub>2</sub>] mixture vs molality  $m^{1/2}$  of CH<sub>3</sub>OH:  $\blacklozenge$ , 298.15 K;  $\blacktriangle$ , 303.15 K;  $\blacksquare$ , 308.15 K;  $\blacklozenge$ , 313.15 K.



**Figure 6.** Plot of osmotic coefficient  $\phi$  of C<sub>2</sub>H<sub>5</sub>OH + [Me<sub>3</sub>BuN][NTf<sub>2</sub>] mixture vs molality  $m^{1/2}$  of C<sub>2</sub>H<sub>5</sub>OH:  $\blacklozenge$ , 298.15 K;  $\blacktriangle$ , 303.15 K;  $\blacksquare$ , 308.15 K;  $\blacklozenge$ , 313.15 K.



**Figure 7.** Plot of osmotic coefficient  $\phi$  of C<sub>3</sub>H<sub>7</sub>OH + [Me<sub>3</sub>BuN][NTf<sub>2</sub>] mixture vs molality  $m^{1/2}$  of C<sub>3</sub>H<sub>7</sub>OH:  $\blacklozenge$ , 298.15 K;  $\blacktriangle$ , 303.15 K;  $\blacksquare$ , 308.15 K;  $\blacklozenge$ , 313.15 K.

of methanol +  $[Me_3BuN][NTf_2] \gamma_1$  passes a maximum at high mole fractions of the solvents. Such a behavior is similar to the results obtained for  $[BMIM][NTf_2]$  investigated in our previous work.<sup>5</sup>

Comparison of the Infinite Dilution Activity Coefficients and Excess Enthalpies at Infinite Dilution from GC Method and Static Method. Values of  $\gamma_i^{\infty}$  in [Me<sub>3</sub>BuN][NTf<sub>2</sub>] at 298 K extrapolated from the present VLE results agree only very

Table 6. Comparison of Values of  $\gamma_i^{\infty}$  and  $H_i^{E,\infty}$  of Methanol, Ethanol, and Propan-1-ol at 298 K in [Me<sub>3</sub>BuN][NTf<sub>2</sub>] Derived in This Work from GC Method and Static Method

|                 | $\gamma_i^{\infty}$ at | 298 K  | $H^{\mathrm{E},\infty}_i$ a | ıt 298 K |
|-----------------|------------------------|--------|-----------------------------|----------|
| solute <i>i</i> | GC                     | static | GC                          | static   |
| methanol        | 1.67                   | 1.28   | 8.7                         | 7.1      |
| ethanol         | 2.29                   | 2.38   | 9.0                         | 14.2     |
| propan-1-ol     | 2.91                   | 3.89   | 9.9                         | 12.1     |

moderately with the results obtained by GC techniques (see Table 6) indicating no completely consistency for all three systems. The deviation in case of methanol arises most probably from some inherent problems involved with methanol by using the GC technique, discussed in ref 9. The deviation in case of pronane-1-ol arises most probably from an insufficient extrapolation based on VLE data with mole fractions not small enough to justify an extrapolation within the uncertainty of experimental error of the GC method.

Values of  $H_i^{\text{E},\infty}$  in [Me<sub>3</sub>BuN][NTf<sub>2</sub>] at 298 K extrapolated from the present VLE results are still in acceptable agreement with the results obtained by GC techniques (see Table 6) considering the estimated experimental error sources.

#### **Supporting Information Available:**

Two tables. This material is available free of charge via the Internet at http://pubs.acs.org.

#### Literature Cited

- (1) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-*N*-butylpyridinium tetrafluoroborate using gas-liquid chromatography. *J. Chem. Eng. Data* **2001**, *46*, 1526–1529.
- (2) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. activity coefficients at infinite dilution of polar solvents in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Thermodyn. 2002, 34, 1341–1347.
- (3) Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethylimidazolium-bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis-(trifluoromethyl-sulfonyl) amide using gasliquid chromatography. J. Chem. Eng. Data 2002, 47, 894–899.
- (4) Verevkin, S. P.; Vasiltsova, T. V.; Bich, E.; Heintz, A. Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients of aldehydes and ketones in 1-methyl-3-ethyl-imidazolium bis-(trifluoromethyl-sulfonyl) imide using the transpiration method. *Fluid Phase Equilib.* 2004, 218, 165–175.
- (5) Verevkin, S. P.; Safarov, J.; Bich, E.; Hassel, E.; Heintz, A. Thermodynamic properties of mixtures containing ionic liquids. Vapor pressures and activity coefficients of *n*-alcohols and benzene in binary mixtures with in 1-methyl-3-butyl-imidazolium bis(trifluoromethylsulfonyl) imide. *Fluid Phase Equilib.* 2005, 236, 222–228.
- (6) Safarov, J.; Verevkin, S. P.; Bich, E.; P.; Heintz, A. Thermodynamic properties of mixtures containing ionic liquids. Vapor pressures and activity coefficients of *n*-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium octyl sulfate or 1-methyl-3-octyl-imidazolium tetrafluoroborate. *J. Chem. Eng. Data* (in press).
- (7) Heintz, A.; Martinez Casás, L.; Nesterov, I. A.; Emel'yanenko, V. N.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 5. Activity coefficients at infinite dilution of hydrocarbons alcohols, ester and aldehydes in 1-methyl-3-butyl-imidazolium bis-(trifluoromethyl-sulfonyl) imide using gas-liquid chromatography. J. Chem. Eng. Data 2005, 50, 1510–1514.
- (8) Heintz, A.; Verevkin, S. P. Thermodynamic properties of mixtures containing ionic liquids. 6. Activity coefficients at infinite dilution of hydrocarbons alcohols, ester and aldehydes in 11-methyl-3-octylimidazolium tetrafluoroborate using gas-liquid chromatography. J. Chem. Eng. Data 2005, 50, 1515-1519.
- (9) Vasiltsova, T. V.; Verevkin, S. P.; Bich, E.; Heintz, A., Bogel-Lukasik, R.; Domanska, U. Thermodynamic properties of mixtures containing ionic liquids. 7. Activity coefficients of aliphatic and aromatic esters, and benzylamine in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-

sulfonyl) imide using the transpiration method. J. Chem. Eng. Data 2006, 51, 213–218.

- (10) Heintz, A.; Marczak, W.; Verevkin, S. P. Activity coefficients and heats of dilution in mixtures containing ionic liquids. In *Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities*; Rogers, R. D., Seddon, K., Eds.; ACS Symposium Series 901; American Chemical Society: Washington, DC, 2005; Chapter 14, pp 187–206.
- (11) Heintz, A. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. *J. Chem. Thermodyn.* 2005, *37*, 525–535.
  (12) Cruickshank, A. J. B.; Windsor, M. L.; Young, C. L. The use of gas-
- (12) Cruickshank, A. J. B.; Windsor, M. L.; Young, C. L. The use of gasliquid chromatography to determine activity coefficients and second virial coefficients of mixtures. *Proc. R. Soc.* **1966**, *A295*, 259–270.
- (13) Grant, D. W. *Gas–Liquid Chromatography*; Van Nostrand Reinhold Company: London, 1971.
  (14) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. *The Properties of Gases*
- (14) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases and Liquids, 3rd ed.; McGraw-Hill: New York, 1977.
- (15) Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed.; Prentice-Hall: New York, 1986.
- (16) Ruzicka, K.; Majer, V. Simultaneous treatment of vapor pressures and related thermal data between the triple and normal boiling temperatures for *n*-alkanes C<sub>5-20</sub>. J. Phys. Chem. Ref. Data **1994**, 23, 1–39.
- (17) Steele, W. V.; Chirico, R. D. Thermodynamic properties of alkenes (mono-olefins larger than C<sub>4</sub>). J. Phys. Chem. Ref. Data **1993**, 22, 377-430.

- (18) Ambrose, D.; Walton, J. Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols. *Pure Appl. Chem.* **1989**, *61*, 1395–1403.
- (19) Ambrose, D.; Sprake, C. H. S. Thermodynamic properties of organic oxygen compounds. XXV. Vapor pressures and normal boiling temperatures of aliphatic alcohols. *J. Chem. Thermodyn.* **1970**, *2*, 631– 645.
- (20) Mokbel, I.; Blondel-Telouk, A.; Vellut, D.; Jose, J. Vapor-liquid equilibria of two binary mixtures: benzene + *n*-tetradecane and benzene + squalane. *Fluid Phase Equilib.* **1998**, *149* (1-2), 287-308.
- (21) Dymond, J. H.; Smith, E. B. *The Virial Coefficients of Pure Gases*; Clarendon Press: Oxford, 1980.
- (22) Lide, D. R.; Kehiaian, H. V. CRC Handbook of Thermophysical and Thermochemical Data; CRC Press. Inc.: Boca Raton, FL, 1994.

Received for review October 20, 2005. Accepted December 4, 2005. J.S. acknowledges gratefully a research scholarship from the Alexander von Humboldt Foundation. T.V. acknowledges gratefully a research scholarship from the DAAD.We are grateful to Prof. P. Wasserscheid (Technical University of Erlangen, Germany) for supplying the ionic liquid [BuMe<sub>3</sub>][NTf<sub>2</sub>] and to the German Science Foundation (DFG) for financial support.

JE050440B