Densities and Viscosities of Aqueous Ternary Mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol with Diethanolamine, Triethanolamine, *N*-Methyldiethanolamine, or 2-Amino-1-methyl-1-propanol from 298.15 to 323.15 K

Estrella Álvarez,*^{,†} Diego Gómez-Díaz,[‡] M. Dolores La Rubia,[§] and José M. Navaza[‡]

Department of Chemical Engineering, E.T.S.E.I., University of Vigo, Rúa Maxwell s/n, 36310 Vigo, Spain, Department of Chemical Engineering, University of Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain, and Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain

Densities and kinematic viscosities of aqueous ternary solutions of 2-(methylamino)ethanol and 2-(ethylamino)ethanol with diethanolamine, triethanolamine, *N*-methyldiethanolamine, or 2-amino-1-methyl-1-propanol were measured at temperatures from (298.15 to 323.15) K. The total amine concentration was held constant at 50 mass %, and the (MAE or EAE)/(DEA, TEA, MDEA, or AMP) mass % ratio was varied from 0/50 to 50/0, in 10 mass % steps. The experimental values were correlated with temperature and mole fraction.

Introduction

Some industrial processes, such as natural and refinery gas purification, involve the removal of acid impurities (e.g., hydrogen sulfide (H_2S) and carbon dioxide (CO_2)). They are absorbed in chemical solvents, which are generally alkanolamines in an aqueous solution.

The aqueous solutions of blended amines have received increasing attention in the past few years. They have been demonstrated to be highly efficient in the absorption of acid gases because by utilizing the advantages of each amine and varying the relative concentrations of the amines, an optimum absorption system can be designed for a specific application. Furthermore, the addition of a small amount of sterically hindered amines to the aqueous solution of blended alkanolamines can enhance the capacity and rate of absorption of CO_2 with good stripping characteristics and degradation resistance of the formulated solvent.^{1,2}

On the other hand, knowledge of the physical properties of process solutions is necessary for the operation of process equipment. Solution density and viscosity are also important in the mass transfer rate modeling of absorbers and regenerators because these properties affect the liquid–film coefficient for mass transfer.^{3,4}

In this work, the density and the kinematic viscosity of ternary aqueous mixtures of either of two amines (2-(methylamino)ethanol (MAE) and 2-(ethylamino)ethanol (EAE)) with one of diethanolamine (DEA), triethanolamine (TEA), *N*-methyldiethanolamine (MDEA), or 2-amino-1-methyl-1-propanol (AMP) were measured over the range 298.15 to 323.15 K. The total amine concentration was held constants at 50 mass %, and the (MAE or EAE)/(DEA, TEA, MDEA, or AMP) mass % ratio was varied from 0/50 to 50/0, in 10 mass % steps.

[‡] University of Santiago de Compostela.

[§] University of Jaén.

Figure 1. Density dependence with the temperature for aqueous ternary mixtures of (a) MAE (1) + AMP (2) and (b) EAE (1) + TEA (2): \triangle , 0/50; \bigcirc , 10/40; \Box , 20/30; \blacktriangle , 30/20; \bigcirc , 40/10; \blacksquare , 50/0; -, calculated from eq 2.

Experimental Section

Aqueous ternary mixtures were prepared with double-distilled water. The solutes were Merck reagents of nominal purity > 98 % for MAE, EAE, AMP, MDEA, and DEA and > 99 % for

10.1021/je050463q CCC: \$33.50 © 2006 American Chemical Society Published on Web 02/24/2006

^{*} Corresponding author. E-mail: ealvarez@uvigo.es. Phone: +34 986 812213. Fax: +34 986 812201.

[†] University of Vigo.

Table 1.	Review of the	Literature Data	a for the	Density and	d the V	Viscosity of	Water and Ethano	l
								_

		wa	ter		ethanol			
	ρ/g•c	$\rho/g \cdot cm^{-3}$		Pa•s	$\rho/g \cdot cm^{-3}$		η/mPa•s	
T/K	this work	lit (ref)	this work	lit (ref)	this work	lit (ref)	this work	lit (ref)
298.15	0.997057	0.99704 ^a	0.8899	0.8900 ^a	0.785260	0.78525^{e} 0.78549^{f}	1.0912	1.090^{e} 1.084^{f}
303.15	0.995637	0.99565 ^a 0.99560 ^c	0.7956	0.7970°	0.780756	0.78080^{e} 0.78079^{g}	0.9575	0.950^{e}
308.15	0.994036	0.99403 ^a	0.7220		0.776452	0.77650^{e}	0.8758	0.870^{e}
313.15	0.992185	0.99221 ^a 0.99220 ^c	0.6550	0.6560^d 0.6530^c	0.772339	0.77220^{e}	0.7915	0.790^{e}
318.15	0.990220	0.99021 ^b	0.5950	0.5950^{a}	0.767850	0.76760^{e}	0.7218	0.720^{e}
323.15	0.987978	0.98804^{a} 0.98803^{b}	0.5460	0.5470^{a}	0.763486	0.76320^{e}	0.6323	0.630^{e}

^{*a*} Henni et al.⁶ ^{*b*} Bernal-García et al.⁷ ^{*c*} Comesaña et al.⁸ ^{*d*} Bernal-García et al.⁹ ^{*e*} Gómez and Solimo.¹⁰ ^{*f*} Peng and Tu.¹¹ ^{*g*} Pan et al.¹²

Table 2.	Density of A	queous Ternary	Mixtures o	f 2-(Methy	lamino)ethanol	and DEA,	TEA, AMP	, or MDEA
----------	--------------	----------------	------------	------------	----------------	----------	----------	-----------

			ho/g•	cm ⁻³		
mass %/mass %	T = 298.15 K	T = 303.15 K	T = 308.15 K	T = 313.15 K	T = 318.15 K	T = 323.15 K
		2-(Methy	lamino)ethanol/Diethan	olamine		
0/50	1.058259	1.055607	1.052879	1.050068	1.047178	1.044200
10/40	1.044520	1.041638	1.038773	1.035627	1.032500	1.029690
20/30	1.032037	1.029069	1.026028	1.022717	1.019538	1.016453
30/20	1.020413	1.017208	1.014035	1.010695	1.007293	1.004012
40/10	1.009206	1.005890	1.002513	0.999075	0.995572	0.992203
50/0	1.000225	0.996840	0.993406	0.989916	0.986394	0.982806
		2-(Methyl	amino)ethanol/Triethan	olamine		
0/50	1.074721	1.071838	1.069172	1.066505	1.063347	1.060200
10/40	1.058612	1.055723	1.052748	1.049689	1.046538	1.043303
20/30	1.042724	1.039688	1.036565	1.033359	1.030073	1.026706
30/20	1.027019	1.023927	1.020742	1.017459	1.014226	1.010756
40/10	1.013273	1.010037	1.006734	1.003360	0.999910	0.996453
		2-(Methylamino)	ethanol/2-Amino-2-me	thyl-1-propanol		
0/50	0.992713	0.988942	0.985138	0.981292	0.977398	0.973460
10/40	0.993268	0.989589	0.985865	0.982098	0.978275	0.974403
20/30	0.994258	0.990607	0.986906	0.983160	0.979360	0.975507
30/20	0.995113	0.991484	0.987808	0.984079	0.980300	0.976465
40/10	0.996919	0.993408	0.989845	0.986227	0.982551	0.978846
		2-(Methylami	no)ethanol/N-Methvldie	thanolamine		
0/50	1.042463	1.039311	1.036077	1.032745	1.029233	1.025854
10/40	1.032756	1.029548	1.026259	1.022893	1.019444	1.015915
20/30	1.023518	1.020219	1.016851	1.013405	1.009888	1.006279
30/20	1.014218	1.010947	1.007632	1.004191	1.000710	0.997190
40/10	1.006604	1.003120	0.999863	0.996505	0.992930	0.989364

Table 3. Density of Aqueous Ternary Mixtures of 2-(Ethylamino)ethanol and DEA, TEA, AMP, or MDEA

			ρ/g^{*}	cm ³		
mass %/mass %	T = 298.15 K	T = 303.15 K	T = 308.15 K	T = 313.15 K	T = 318.15 K	T = 323.15 K
		2-(Ethyl	amino)ethanol/Diethano	lamine		
0/50	1.058259	1.055607	1.052879	1.050068	1.047178	1.044200
10/40	1.043678	1.040795	1.037856	1.034844	1.031771	1.028583
20/30	1.028699	1.025575	1.022383	1.019120	1.015786	1.012385
30/20	1.015096	1.011756	1.008359	1.004899	1.001375	0.997766
40/10	1.000513	0.997278	0.993492	0.989530	0.986242	0.982179
50/0	0.984792	0.981056	0.977274	0.973445	0.969563	0.965630
		2-(Ethyla	amino)ethanol/Triethano	olamine		
0/50	1.074721	1.071838	1.069172	1.066505	1.063347	1.060200
10/40	1.057417	1.054469	1.051437	1.048318	1.045111	1.041823
20/30	1.038339	1.035273	1.031985	1.028684	1.025282	1.021868
30/20	1.021473	1.018153	1.014681	1.011175	1.007534	1.003964
40/10	1.003376	0.999847	0.996246	0.992611	0.988816	0.985096
		2-(Ethylamino)e	ethanol/2-Amino-2-meth	yl-1-propanol		
0/50	0.992713	0.988942	0.985138	0.981292	0.977398	0.973460
10/40	0.991265	0.987457	0.983624	0.979755	0.975960	0.972017
20/30	0.989904	0.985933	0.982120	0.978353	0.974544	0.970602
30/20	0.987342	0.984616	0.980877	0.976895	0.973115	0.969178
40/10	0.986751	0.982893	0.979208	0.975322	0.971387	0.967598
		2-(Ethylamin	o)ethanol/N-Methyldiet	hanolamine		
0/50	1.042463	1.039311	1.036077	1.032745	1.029233	1.025854
10/40	1.030807	1.027527	1.024175	1.020727	1.017211	1.013614
20/30	1.019284	1.015954	1.012448	1.008893	1.005405	1.001655
30/20	1.008191	1.004459	1.000749	0.997602	0.993704	0.989746
40/10	0.996384	0.993077	0.988920	0.985204	0.981632	0.977504

MEA and TEA. All solutions were prepared by mass using a KERN 770 analytical balance with a precision of \pm 0.0001 g.

The uncertainty of the samples preparation in mole fraction was \pm 0.0004.

Table 4. Kinematic Viscosity of Aqueous Ternary Mixtures of 2-(Methylamino)ethanol and DEA, TEA, AMP, or MDEA

			v/mn	1 ² •S ⁻¹		
mass %/mass %	T = 298.15 K	T = 303.15 K	T = 308.15 K	<i>T</i> = 313.15 K	<i>T</i> = 318.15 K	T = 323.15 K
		2-(Methyl	amino)ethanol/Diethar	olamine		
0/50	9.5728	7.7416	6.3597	5.3135	4.5366	3.9129
10/40	9.3022	7.5174	6.1751	5.1591	4.3999	3.7493
20/30	9.0319	7.2887	5.9819	5.0069	4.2434	3.6317
30/20	8.7457	7.0614	5.7867	4.8558	4.1055	3.5105
40/10	8.4610	6.8362	5.6211	4.7041	3.9838	3.3835
		2-(Methyla	amino)ethanol/Triethai	nolamine		
0/50	6.4977	5.4776	4.5673	3.8746	3.3566	2.9119
10/40	6.8851	5.7466	4.8108	4.0730	3.4794	3.0195
20/30	7.1915	5.9603	4.9919	4.1953	3.5749	3.0992
30/20	7.4924	6.1828	5.1516	4.3140	3.6688	3.1526
40/10	7.8670	6.4327	5.2909	4.4242	3.7628	3.1946
50/0	8.1909	6.6142	5.4077	4.5440	3.8338	3.2360
		2-(Methylamino)	ethanol/2-Amino-2-me	thyl-1-propanol		
0/50	11.0092	8.5399	6.8043	5.4428	4.4903	3.7998
10/40	10.4098	8.1594	6.5288	5.3022	4.3722	3.6548
20/30	9.9351	7.7788	6.2934	5.0753	4.2437	3.5752
30/20	9.4715	7.3768	6.0235	4.8967	4.0593	3.4409
40/10	8.7901	7.1030	5.7031	4.6446	3.9142	3.3240
		2-(Methylamin	o)ethanol/N-Methyldio	ethanolamine		
0/50	9.3827	7.6064	6.1970	5.1733	4.4222	3.7893
10/40	9.1276	7.4066	6.0371	5.0486	4.3029	3.6758
20/30	8.8864	7.2078	5.8790	4.9243	4.1837	3.5624
30/20	8.6525	7.0084	5.7241	4.7977	4.0661	3.4491
40/10	8.4202	6.8109	5.5635	4.6721	3.9498	3.3454

Table 5. Kinematic Viscosity of Aqueous Ternary Mixtures of 2-(Ethylamino)ethanol and DEA, TEA, AMP, or MDEA

			v/mn	$1^{2} \cdot s^{-1}$		
mass %/mass %	T = 298.15 K	<i>T</i> = 303.15 K	T = 308.15 K	<i>T</i> = 313.15 K	<i>T</i> = 318.15 K	T = 323.15 K
		2-(Ethyla	mino)ethanol/Diethano	olamine		
0/50	9.5728	7.7416	6.3597	5.3135	4.5366	3.9129
10/40	9.4538	7.6292	6.2422	5.1979	4.4245	3.7974
20/30	9.3342	7.5187	6.1269	5.0840	4.3087	3.6849
30/20	9.2152	7.4030	6.0148	4.9725	4.1950	3.5700
40/10	9.0958	7.2905	5.8969	4.8552	4.0832	3.4578
50/0	8.9763	7.1788	5.7780	4.7394	3.9686	3.3436
		2-(Ethyla	mino)ethanol/Triethan	olamine		
0/50	6.4977	5.4776	4.5673	3.8746	3.3566	2.9119
10/40	6.9889	5.7878	4.8090	4.0485	3.4787	2.9956
20/30	7.4902	6.1345	5.0504	4.2217	3.6006	3.0813
30/20	7.9899	6.4747	5.2925	4.3950	3.7234	3.1687
40/10	8.4844	6.8393	5.5349	4.5676	3.8471	3.2543
		2-(Ethylamino)e	thanol/2-Amino-2-met	hyl-1-propanol		
0/50	11.0091	8.5399	6.8043	5.4428	4.4903	3.7998
10/40	10.6566	8.2763	6.6539	5.3066	4.4350	3.7109
20/30	10.2359	7.9853	6.3994	5.2122	4.2728	3.6122
30/20	9.9325	7.7745	6.1890	5.0427	4.1878	3.5465
40/10	9.5725	7.5940	6.0645	4.9252	4.0906	3.4744
		2-(Ethylamin	o)ethanol/N-Methyldie	thanolamine		
0/50	9.3827	7.6064	6.1970	5.1733	4.4222	3.7893
10/40	9.3083	7.5151	6.1147	5.0849	4.3313	3.6983
20/30	9.2292	7.4294	6.0279	4.9963	4.2387	3.6125
30/20	9.1439	7.3471	5.9427	4.9125	4.1488	3.5228
40/10	9.0599	7.2556	5.8622	4.8247	4.0584	3.4335

The density, ρ , was measured at 5 K intervals, at temperatures between (298.15 and 323.15) K, using an Anton Paar DSA 5000 densimeter with a precision of $\pm 1 \cdot 10^{-6} \text{ g} \cdot \text{cm}^{-3}$. The apparatus allows varying the temperature in the range used in the present study. The uncertainty in the density measurement was $\pm 5 \cdot 10^{-5} \text{ g} \cdot \text{cm}^{-3}$.

The kinematic viscosity, v, was determined from the transit time of the liquid meniscus through a capillary supplied by Schott (cap no. I, (0.58 ± 0.01) mm i.d., K = 0.009918

mm²·s⁻²) measured with a an uncertainty of $\pm 0.0005 \text{ mm}^{2}$ ·s⁻¹ using

$$\nu = K(t - \theta) \tag{1}$$

where t is the efflux time, K is the characteristic constant of the capillary viscometer, and θ is a correction value to correct the final effects.

The glass capillary was connected to a Schott-Geräte AVS 350 automatic Ubbelohde viscometer. An electronic stopwatch

Table 6. Density Parameters A_0 and A_1 (in eq 2) for Aqueous Terr	ary Mixtures of 2-(Methylamino)ethanol	+ (DEA, TEA, AMP, or MDEA)
and 2-(Ethylamino)ethanol + (DEA, TEA, AMP, or MDEA) ^{a}		

mass %/mass %	$A_0/g \cdot cm^{-3}$	$A_1 \cdot 10^4 / \text{g} \cdot \text{cm}^{-3} \cdot \text{K}^{-1}$	$\sigma_{\rm st}$ ·10 ²	$A_0/g \cdot cm^{-3}$	$A_1 \cdot 10^4 / g \cdot cm^{-3} \cdot K^{-1}$	$\sigma_{\rm st}$ •10 ²		
	2-(M	ethylamino)ethanol/Diethanola	mine	2-(Etl	2-(Ethylamino)ethanol/Diethanolamine			
0/50	1.2260	5.6224	0.012	1.2260	5.6224	0.013		
10/40	1.2230	5.9834	0.011	1.2236	6.0319	0.012		
20/30	1.2193	6.2757	0.010	1.2234	6.5257	0.011		
30/20	1.2166	6.5766	0.008	1.2218	6.9287	0.010		
40/10	1.2127	6.8233	0.006	1.2195	7.3394	0.021		
50/0	1.2080	6.9670	0.007	1.2134	7.6639	0.008		
	2-(M	ethylamino)ethanol/Triethanola	umine	2-(Ethylamino)ethanol/Triethanolamine				
0/50	1.2465	5.7568	0.022	1.2465	5.7568	0.022		
10/40	1.2413	6.1234	0.014	1.2435	6.2379	0.014		
20/30	1.2339	6.4080	0.013	1.2355	6.6074	0.012		
30/20	1.2209	6.4972	0.013	1.2310	7.0233	0.011		
40/10	1.2142	6.7346	0.010	1.2218	7.3216	0.010		
	2-(Methylan	nino)ethanol/2-Amino-2-methy	l-1-propanol	2-(Ethylamir	o)ethanol/2-Amino-2-methyl	-1-propanol		
0/50	1.2223	7.6996	0.009	1.2223	7.6996	0.009		
10/40	1.2183	7.5448	0.007	1.2206	7.6914	0.004		
20/30	1.2179	7.4995	0.009	1.2189	7.6825	0.006		
30/20	1.2176	7.4583	0.009	1.2172	7.6746	0.010		
40/10	1.2126	7.2316	0.008	1.2154	7.6668	0.008		
	2-(Methy	lamino)ethanol/N-Methyldietha	nolamine	2-(Ethylar	nino)ethanol/N-Methyldietha	nolamine		
0/50	1.2413	6.6635	0.013	1.2413	6.6635	0.013		
10/40	1.2338	6.7362	0.012	1.2360	6.8778	0.012		
20/30	1.2292	6.8934	0.012	1.2296	7.0484	0.013		
30/20	1.2176	6.8167	0.011	1.2256	7.2935	0.024		
40/10	1.2113	6.8645	0.012	1.2222	7.5686	0.022		

 $a \sigma_{st} = [\sum (\rho_{cal} - \rho_{exp})^2 / (N - n)]^{1/2}$ where N is the number of data points and n is the number of parameters.

Table 7. Viscosity Parameters A_2 and A_3 (in eq 3) for Aqueous Ternary Mixtures of 2-(Methylamino)ethanol + (DEA, TEA, AMP, or MDEA) and 2-(Ethylamino)ethanol + (DEA, TEA, AMP, or MDEA)^a

mass %/mass %	$A_2/\text{mm}^{2}\cdot\text{s}^{-1}$	$A_3 \cdot 10^{-8} / \mathrm{K}^3$	$\sigma_{ m st}$	$A_2/\text{mm}^2 \cdot \text{s}^{-1}$	$A_3 \cdot 10^{-8} / \text{K}^3$	$\sigma_{ m st}$		
	2-(Methyla	amino)ethanol/Diethanola	mine	2-(Ethylan	2-(Ethylamino)ethanol/Diethanolamine			
0/50	0.1462	1.1061	0.055	0	1.1061	0.055		
10/40	0.1358	1.1187	0.038	0.1333	1.1275	0.049		
20/30	0.1295	1.1233	0.037	0.1213	1.1496	0.041		
30/20	0.1247	1.1250	0.034	0.1099	1.1727	0.032		
40/10	0.1196	1.1273	0.023	0.0994	1.1962	0.028		
50/0	0.1108	1.1397	0.026	0.0892	1.2216	0.024		
	2-(Methyla	mino)ethanol/Triethanola	mine	2-(Ethylan	2-(Ethylamino)ethanol/Triethanolamine			
0/50	0.1514	0.9974	0.029	0.1514	0.9974	0.029		
10/40	0.1456	1.0230	0.017	0.1338	1.0485	0.015		
20/30	0.1399	1.0448	0.016	0.1185	1.0987	0.016		
30/20	0.1316	1.0721	0.016	0.1068	1.1431	0.018		
40/10	0.1188	1.1115	0.013	0.0967	1.1854	0.023		
	2-(Methylamino)e	thanol/2-Amino-2-methy	l-1-propanol	2-(Ethylamino)eth	nanol/2-Amino-2-methyl	l-1-propanol		
0/50	0.0706	1.3373	0.058	0.0706	1.3373	0.058		
10/40	0.0791	1.2922	0.027	0.0737	1.3171	0.059		
20/30	0.0841	1.2626	0.055	0.0787	1.2883	0.048		
30/20	0.0845	1.2482	0.065	0.0801	1.2751	0.065		
40/10	0.0910	1.2114	0.046	0.0820	1.2605	0.042		
	2-(Methylamin	o)ethanol/N-Methyldietha	nolamine	2-(Ethylamino)	ethanol/N-Methyldietha	nolamine		
0/50	0.1357	1.1210	0.053	0.1357	1.1210	0.053		
10/40	0.1311	1.1233	0.042	0.1251	1.1406	0.048		
20/30	0.1258	1.1273	0.034	0.1154	1.1597	0.045		
30/20	0.1203	1.1322	0.028	0.1063	1.1795	0.037		
40/10	0.1159	1.1349	0.026	0.0977	1.1997	0.029		

 $a \sigma_{st} = [\sum (v_{cal} - v_{exp})^2 / (N - n)]^{1/2}$ where N is the number of data points and n is the number of parameters.

with an accuracy of ± 0.01 s was used for measuring efflux times. The viscometer was immersed in a bath, and the precision of the temperature control in all these measurements was \pm 0.05 K. Each measurement was repeated at least five times with a maximum deviation of less than 0.4 %. The dynamic viscosity, η , was calculated by multiplying the kinematic viscosity by the corresponding density ($\eta = \nu \rho$). included in Table 1 and are compared with values published by other authors. $^{6-12}$

Results and Discussion

Experimental data for the ternary mixtures studied are presented in Tables 2 to 5. In all systems, the density and viscosity decreased with increasing temperature for any given mass percent ratio of amine.

The densimeter and the viscometer were calibrated with double-distilled water and absolute ethanol (reagent supplied by Merck with a purity of ≥ 99.5 %), as is recommended by Marsh.⁵ The values measured to the temperature of work are

The influence of the temperature on the density was a linear dependence in the range temperature studied, whereas several authors in the literature have found nonlinear dependences over

Table 8. Density Parameters A_{ii} (in eq 4) for Aqueous Ternary	Mixtures of 2-(Methylamino)ethanol + (D	EA, TEA, AMP, or MDEA) and
2-(Ethylamino)ethanol + (DEA, TEA, AMP, or MDEA) ^{a}		

			T	ΊK		
	298.15	303.15	308.15	313.15	318.15	323.15
		2-(Methylamino)et	hanol (1) + Diethanola	mine (2) + Water (3)		
A_{12}	-0.1927	-0.1931	-0.1950	-0.1967	-0.2007	-0.2039
A_{13}	0.0903	0.0806	0.0717	0.0635	0.0560	0.0494
A_{23}	0.4743	0.4674	0.4615	0.4560	0.4513	0.4476
$\sigma_{\rm st}$ ·10 ²	0.053	0.055	0.057	0.065	0.071	0.057
		2-(Methylamino)eth	nanol (1) + Triethanola	mine (2) + Water (3)		
A_{12}	0.1288	0.1166	0.1044	0.0629	0.1019	0.1254
A_{13}	0.0926	0.0831	0.0743	0.0664	0.0590	0.0526
A_{23}	0.6707	0.6572	0.6475	0.6396	0.6282	0.6190
$\sigma_{\rm st}$ ·10 ²	0.028	0.033	0.028	0.027	0.022	0.019
	2	2-(Methylamino)ethanol	+ 2-Amino-2-methyl-	1-propanol (2) + Water	r (3)	
A_{12}	-0.2480	-0.2552	-0.2634	-0.2717	-0.2819	-0.2920
A_{13}	0.0923	0.0826	0.0738	0.0656	0.0582	0.0516
A_{23}	0.0498	0.0361	0.0236	0.0119	0.0010	-0.0083
$\sigma_{\rm st}$ ·10 ²	0.036	0.037	0.039	0.042	0.045	0.047
		2-(Methylamino)ethano	l(1) + N-Methyldietha	nolamine (2) + Water	(3)	
A_{12}	-0.2120	-0.2253	-0.2048	-0.2103	-0.2114	-0.2430
A_{13}	0.0918	0.0822	0.0735	0.0657	0.0576	0.0507
A_{23}	0.3556	0.3431	0.3309	0.3199	0.3092	0.3013
$\sigma_{\rm st}$ ·10 ²	0.052	0.054	0.049	0.047	0.050	0.051
		2-(Ethylamino)eth	anol (1) + Diethanolar	nine (2) + Water (3)		
A_{12}	0.1441	0.1463	0.1437	0.1351	0.1403	0.1458
A_{13}	0.0155	0.0023	-0.0106	-0.0236	-0.0335	-0.1523
A_{23}	0.4686	0.4616	0.4558	0.4510	0.4460	0.4425
$\sigma_{\rm st}$ ·10 ²	0.040	0.044	0.040	0.034	0.040	0.034
		2-(Ethylamino)eth	anol (1) + Triethanolai	nine (2) + Water (3)		
A_{12}	0.6366	0.6562	0.6291	0.5980	0.6058	0.6834
A_{13}	0.0137	-0.0001	-0.0126	-0.0241	-0.0351	-0.1533
A_{23}	0.6704	0.6567	0.6470	0.6389	0.6281	0.6193
$\sigma_{\rm st}$ ·10 ²	0.037	0.036	0.036	0.034	0.035	0.035
	2-	(Ethylamino)ethanol (1)) + 2-Amino-2-methyl	-1-propanol (2) + Wate	er (3)	
A_{12}	0.0261	0.0431	0.0498	0.0592	0.0673	0.0712
A_{13}	0.0127	-0.0004	-0.0128	-0.0245	-0.0355	-0.1536
A_{23}	0.0488	0.0345	0.0216	0.0097	-0.0014	-0.0112
$\sigma_{\rm st}$ ·10 ²	0.031	0.018	0.022	0.012	0.015	0.015
		2-(Ethylamino)ethanol	(1) + N-Methyldiethau	nolamine (2) + Water (3)	
A_{12}	0.1640	0.1552	0.1335	0.0998	0.1128	0.1772
A_{13}	0.0138	0.0002	-0.0124	-0.0241	-0.0352	-0.1532
A_{23}	0.3523	0.3397	0.3284	0.3179	0.3068	0.2978
$\sigma_{st} \cdot 10^2$	0.011	0.026	0.020	0.024	0.025	0.019

Table 9. Density and Dynamic Viscosity for Pure DEA, TEA, AMP, MDEA, MAE, EAE, and Water from 298.15 K to 323.15 K

				р	ure component			
T/K		DEA	TEA	AMP	MDEA	MAE	EAE	water
298.15	$\rho/g \cdot cm^{-3}$	1.094019	1.120993	0.930516	1.036832	0.937683	0.913386	0.997057
	η/mPa•s	566.3	666.88	132.30	77.19	10.996	12.348	0.8899
303.15	$\rho/g \cdot cm^{-3}$	1.090788	1.118209	0.926403	1.033056	0.933789	0.909401	0.995637
	η/mPa•s	383.9	460.48	99.48	57.86	8.7976	9.9379	0.7956
308.15	$\rho/g \cdot cm^{-3}$	1.087508	1.115384	0.922259	1.029261	0.929880	0.905405	0.994036
	η/mPa•s	262.4	326.69	69.98	44.14	7.3105	8.1387	0.7220
313.15	$\rho/g \cdot cm^{-3}$	1.084199	1.112570	0.918079	1.025447	0.925948	0.901388	0.992185
	η/mPa•s	188.2	236.09	47.8	34.31	6.6098	6.5974	0.6550
318.15	$\rho/g \cdot cm^{-3}$	1.080862	1.109783	0.913866	1.021622	0.921996	0.897344	0.990220
	η/mPa•s	145.6	162.69	32.17	26.53	4.9956	5.5664	0.5950
323.15	$\rho/g \cdot cm^{-3}$	1.077491	1.106929	0.909622	1.017781	0.918024	0.893275	0.987978
	η/mPa•s	119.5	99.76	24.21	21.67	4.3481	4.6264	0.5460

large ranges of temperature. For this reason the experimental data, $\rho_{\rm m}$, were correlated with the temperature, *T*, by the following equation:

$$\rho_{\rm m} = A_0 - A_1 T \tag{2}$$

where A_0 and A_1 are two fitted parameters whose values are listed in Table 6.

However, the influence of the temperature on the kinematic viscosity was a nonlinear dependence. For this reason, several equations have been used to fit our experimental values. The best one is an exponential equation:

$$v = A_2 \exp\left(\frac{A_3}{T^3}\right) \tag{3}$$

Figure 2. Viscosity dependence with the temperature for aqueous ternary mixtures of (a) MAE (1) + DEA (2) and (b) EAE (1) + AMP (2): \triangle , 0/50; \bigcirc , 10/40; \Box , 20/30; \blacktriangle , 30/20; \bigcirc , 40/10; \blacksquare , 50/0; -, calculated from eq 3.

where A_2 and A_3 are the fitting parameters whose values are reported in Table 7 for all the studied systems. Equations 2 and 3 fit satisfactorily the experimental data of density and kinematic viscosity (see Figures 1 and 2).

Furthermore, for a given temperature the experimental densities were correlated with the mole fraction by means of eq 4, similar to Nissan's equation¹³ for the dynamic viscosity of ternary mixtures:

$$\rho_{\rm m} = \sum_{i=1}^{3} x_i \rho_i + \sum_{i \neq j} A_{ij} x_i x_j \tag{4}$$

In this equation, ρ_i is the density of pure *i*-component at the working temperature, and A_{ij} are the fitting parameters whose values are reported in Table 8. All the ρ_i values used in this work were those determined experimentally (Table 9).

Finally, the model of Grunberg and Nissan^{13,14} for the viscosity of liquid mixtures was used to correlate the viscosity data of the amine mixtures. For a ternary mixture, the equation of Grunberg and Nissan has the following form:

$$\ln \eta_{\rm m} = x_1 \ln \eta_1 + x_2 \ln \eta_2 + x_3 \ln \eta_3 + x_1 x_2 G_{12} + x_1 x_3 G_{13} + x_2 x_3 G_{23}$$
(5)

where η_m is the dynamic viscosity of the mixture; η_1 , η_2 , and η_3 are the viscosity of pure liquids (Table 9); and G_{12} , G_{13} , and G_{23} are three fitting parameters, whose values are reported in Table 10. Viscosities of pure DEA, TEA, AMP, and MDEA

Figure 3. Experimental and calculated densities, ρ , for aqueous ternary mixtures of (a) MAE (1) + TEA (2) and (b) EAE (1) + MDEA (2): \triangle , 298.15 K; \bigcirc , 303.15 K; \square , 308.15 K; \triangle , 313.15 K; \bigcirc , 318.15 K; \blacksquare , 323.15 K; -, calculated from eq 4.

Figure 4. Experimental and calculated dynamic viscosities, η , for aqueous ternary mixtures of (a) MAE (1) + MDEA (2) and (b) EAE (1) + DEA (2): \triangle , 298.15 K; \bigcirc , 303.15 K; \square , 308.15 K; \triangle , 313.15 K; \bigcirc , 318.15 K; \square , 323.15 K; \neg , calculated from eq 5.

were obtained from the literature,¹⁴ and viscosities of pure MAE, EAE, and water were obtained experimentally.

<i>p</i> (1
MDEA
or
AMP,
TEA,
DEA,
+
thanol
mino)6
Ethylaı
2-(F
) and
MDEA
, or
, AMP
TEA
(DEA,
+ lo
ethan)
amino)
ethyl
2-(M
s of
lixture
ary N
Tern
Jueous
for A
q 5)
(in e
s G_{ij}
rameter
ty Pa
Viscosi
10.
lable

				χ		
	298.15	303.15	308.15	313.15	318.15	323.15
		2-(Methylamine	(1) + Diethanolamine	2(2) + Water (3)		
G_{12}	0.3982	0.2876	0.5069	0.4704	0.2385	0.5183
G_{13}	10.9774	10.4492	9.9120	9.5369	9.1618	8.6934
G_{23}	11.9133	11.4145	10.9670	10.5726	10.2613	9.8631
$\sigma_{\rm st}$	0.003	0.003	0.002	0.002	0.002	0.003
		2-(Methylaminc) $(1) + Triethanolamin)$	e (2) + Water (3)		
G_{12}	-2.1830	-1.3298	1.1846	0.1322	-0.4563	1.6785
G_{13}	10.9839	10.4633	9.9060	9.5256	9.1639	8.6743
G_{23}	14.0552	13.6911	13.1188	12.6840	12.4619	12.3247
$\sigma_{\rm st}$	0.005	0.003	0.003	0.005	0.002	0.003
		2-(Methylamino)etha	nol + 2-Amino-2-methyl-1-pro	panol $(2) + Water (3)$		
G_{12}	2.25468	0.88154	1.45262	-0.15265	-0.42231	-0.53111
G_{13}	11.12551	10.61114	10.02901	9.61574	9.23837	8.77927
G_{23}	11.90520	11.08888	10.46970	9.93504	9.58506	9.19497
$\sigma_{\rm st}$	0.006	0.006	0.002	0.008	0.007	0.004
		2-(Methylamino)eth	anol $(1) + N$ -Methyldiethanola	mine $(2) + Water (3)$		
G_{12}	-0.02451	0.31067	0.35135	0.39341	0.37641	0.38208
G_{13}	10.99564	10.46383	9.91778	9.54827	9.16744	8.69048
G_{23}	15.89108	15.21133	14.48125	13.91582	13.55440	13.07679
$\sigma_{\rm st} \cdot 10$	0.008	0.007	0.008	0.005	0.006	0.007
		2-(Ethylamino))ethanol $(1) + Diethanolamine$	(2) + Water (3)		
G_{12}	0.34662	0.42726	0.58578	0.69975	0.78192	0.92328
G_{13}	13.25744	12.55949	11.83409	11.22999	10.72103	10.21326
G_{23}	11.89471	11.39689	10.95031	10.55871	10.24437	9.87087
$\sigma_{\rm st}$	0.001	0.001	0.001	0.001	0.001	0.001
		2-(Ethylamino)	(1) + Triethanolamine	(2) + Water (3)		
G_{12}	-1.54979	-2.83207	-2.11184	-2.07050	-2.12264	-2.14939
G_{13}	13.27416	12.58264	11.84702	11.24473	10.73480	12.54232
G_{23}	14.12874	13.76787	13.19809	12.74137	10.22566	12.39592
$\sigma_{\rm st}$	0.006	0.006	0.005	0.005	0.005	0.005
		2-(Ethylamino)ethano	1(1) + 2-Amino-2-methyl-1-pr	opanol $(2) + Water (3)$		
G_{12}	2.35447	1.23711	0.93091	1.45153	0.61501	0.83031
G_{13}	13.30669	12.61467	11.86644	11.25079	10.73321	10.24921
G_{23}	11.90901	11.07395	10.48414	9.88952	9.57371	9.18423
$\sigma_{\rm st}$	0.007	0.008	0.006	0.004	0.005	0.005
		2-(Ethylamino)etha	nol $(1) + N$ -Methyldiethanolar	nine $(2) + Water (3)$		
G_{12}	0.55001	0.36635	0.53439	0.57153	0.83952	1.21015
\widetilde{G}_{13}	13.28368	12.58886	11.86585	11.26623	10.75840	10.25021
C_{23}	15.97862	15.29223	14.56276	13.99379	13.62884	13.14458
$\sigma_{\rm st} \cdot 10$	0.004	0.006	0.004	0.006	0.004	0.005
$^{a}\sigma_{\rm st} = [\Sigma(\ln \eta_{\rm cal} - \ln \eta_{\rm exp})^2]$	N(N - n) where N is the nu	mber of data points and n is the	he number of parameters.			

The calculated densities and viscosities from eqs 4 and 5 are in excellent agreement with the experimental data of this study (see Figures 3 and 4). The deviations in all cases are less than 0.5 %.

Literature Cited

- Sartori, G.; Savage, D. W. Sterically hindered amines for CO₂ removal from gases. *Ind. Eng. Chem. Fundam.* **1983**, *22*, 239.
- (2) Rebolledo-Libreros, M. E.; Trejo, A. Gas solubility of H₂S in aqueous solutions of *n*-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol at 313, 343 and 393 K in the range 2.5–1036 kPa. *Fluid Phase Equilib.* **2004**, 224, 83.
- (3) Vázquez, G.; Cancela, M. A.; Riverol, C.; Álvarez, E.; Navaza, J. M. Mass transfer and influence of physical properties of solutions in a bubble column. *IChemE Trans.* 2000, 78, 889–893.
- (4) Álvarez, E.; Correa, J. M.; Riverol, C.; Navaza, J. M. Model based in neural networks for the prediction of the mass transfer coefficients in bubble columns. Study in newtonian and non-newtonian fluids. *Int. Comm. Heat Mass Transfer* **2000**, *27*, 93–98.
- (5) Marsh, K. N. Recommended Reference Materials for the Realization of Physicochemical Properties; Blackwell Scientific Publications: Oxford, 1987.
- (6) Henni A.; Hromek, J. J.; Tontiwachwuthikul; P.; Chakma, A. Volumetric properties and viscosities for aqueous AMP solutions from 25 °C to 70 °C. J. Chem. Eng. Data 2003, 48, 551–556.
- (7) Bernal-García, J. M.; Ramos-Estrada, M.; Iglesias-Silva, G. A.; Hall K. R. Densities and excess molar volumes of aqueous solutions of n-methyldiethanolamine (MDEA) at temperatures from (283.15 to 363.15) K. J. Chem. Eng. Data 2003, 48, 1442–1445.
- (8) Comesaña, J. F.; Otero, J. J.; García, E.; Correa, A. Densities and viscosities of ternary systems of water + glucose + sodium chloride at several temperatures. J. Chem. Eng. Data 2003, 48, 362–366.

- (9) Bernal-García, J. M.; Galicia-Luna, L. A.; Hall K. R.; Ramos-Estrada, M.; Iglesias-Silva, G. A. Viscosities for aqueous solutions of nmethyldiethanolamine from 313.15 to 363.15 K. J Chem. Eng. Data 2004, 49, 864–866.
- (10) Gómez, A. C.; Solimo, H. N. Density, viscosity, excess molar volume, viscosity deviation, and their correlations for formamide + three alkan-1-ols binary systems. J. Chem. Eng. Data 2002, 47, 796–800.
- (11) Peng, H.; Tu, C.-H. Densities and viscosities of acetone, diisopropyl ether, ethanol, and methyl ethyl ketone with a five-component hydrocarbon mixture from 288.15 K to 308.15 K. J. Chem. Eng. Data 2002, 47, 1457–1461.
- (12) Pan, I.-C.; Tang, M.; Chen, Y.-P. Densities and viscosities of binary liquid mixtures of vinyl acetate, diethyl oxalate, and dibutyl phthalate with normal alkanols at 303.15 K. J. Chem. Eng. Data 2000, 45, 1012–1015.
- (13) Li, M.-H.; Lie, Y.-C. Densities and viscosities of solutions of monoethanolamine + *n*-methyldiethanolamine + water and monoethanolamine + 2-amino-2-methyl-1-propanol + water. *J. Chem. Eng. Data* **1994**, *39*, 444–447.
- (14) Mandal, B. P.; Kundu, M.; Bandyopadhyay, S. S. Density and viscosity of aqueous solutions of (*n*-methyldiethanolamine + monoethanolamine), (*n*-methyldiethanolamine + diethanolamine), (2-amino-2methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1propanol + diethanolamine). J. Chem. Eng. Data 2003, 48, 703– 707.

Received for review October 28, 2005. Accepted January 25, 2006. The authors acknowledge the Galician Regional Government for their financial support (Grant PGIDIT03PXIB30301PR).

JE050463Q