Volumetric and Ultrasonic Studies of the Poly(ethylene glycol) Methacrylate 360 + Alcohol Systems at 298.15 K

Mohammed Taghi Zafarani-Moattar* and Shokat Sarmad

Physical Chemistry Department, University of Tabriz, Tabriz, Iran

Speed of sound and density of poly(ethylene glycol) methacrylate 360 (PEGMA) + methanol, + ethanol, + 2-propanol, and + 1-butanol systems have been measured experimentally over the whole range of composition at T = 298.15 K and atmospheric pressure. From these experimental data, the excess molar volumes, isentropic compressibility, and changes in speed of sound and isentropic compressibility have been determined for each composition. The results have been interpreted in light of polymer–solvent interactions and packing effects. Also, the excess molar volumes and the changes of the speed of sound and the isentropic compressibility were fitted to two different variable-degree polynomial equations.

Introduction

Knowledge of volumetric and acoustical properties of polymer solutions has been proven to be a very useful tool in evaluating the structural interactions occurring in these solutions.^{1,2} In this respect, the isentropic compressibility and excess molar volume evaluated from sound velocity and density measurements have been used to study the structure and the nature of molecular interactions in aqueous and nonaqueous solutions of polymers.^{3,4} With this consideration, in this work, we report the volumetric and acoustical properties of the poly(ethylene glycol)methacrylate (PEGMA) + methanol, + ethanol, + 2-propanol, and + 1-butanol systems over the whole range of composition at T =298.15 K. This is a continuation of our studies on the polymer + alcohol systems.⁵ The values of the excess molar volume and changes in isentropic compressibility were then calculated from the measured density and speed of sound data. Excess molar volume and changes for speed of sound and isentropic compressibility were fitted to the Redlich-Kister⁶ and Ott et al.7 equations. To our knowledge, no experimental density or speed of sound measurements have been reported in the literature for the PEGMA + alcohol systems.

Experimental Section

All the chemicals were obtained from Merck; except PEGMA 360, which was obtained from Aldrich. PEGMA 360 was used without further purification. Previously, the number average molar mass M_n of this polymer was determined to be 361 g·mol⁻¹.⁸

The solutions were prepared by mass using an analytical balance (Shimatzu, 321-34553, Shimatzu Co., Japan) with an accuracy of $\pm 1 \cdot 10^{-4}$ g. The speed of sound and density of mixtures were measured at 298.15 K with a digital vibrating-tube analyzer (Anton paar DSA 5000, Austria) with a proportional temperature controller that kept the samples at working temperature with an accuracy of 0.001 K. The apparatus was calibrated at 298.15 K with distilled water and dry air. The apparatus was also tested with the density of a known molality of aqueous NaCl using the data given by Pitzer et al.⁹

* Corresponding author. E-mail: zafarani47@yahoo.com. Tel: +98-411-3393135. Fax: +98-411-3340191.

Uncertainty of the measurement is \pm 0.003 kg·m⁻³ for density and 0.1 m·s⁻¹ for ultrasonic velocity.

Results and Discussion

The experimental data for the density ρ and speed of sound u of various PEGMA + alcohol solutions together with the isentropic compressibility determined by means of the Laplace equation ($\kappa_s = \rho^{-1}u^{-2}$) are given in Tables 1 to 4 at 298.15 K. The excess molar volumes $V^{\rm E}$, change in speed of sound Δu , and changes in isentropic compressibilities $\Delta \kappa_s$, which were determined by the following expressions:

$$V^{\rm E} = \frac{1}{\rho} - \left(\frac{x_2}{\rho_2} + \frac{1 - x_2}{\rho_1}\right) \tag{1}$$

$$\Delta u = u - (x_2 u_2 + (1 - x_2) u_1) \tag{2}$$

$$\Delta \kappa_{\rm s} = \kappa_{\rm s} - (x_2 \kappa_{\rm s,2} + (1 - x_2) \kappa_{\rm s,1}) \tag{3}$$

are also listed in Tables 1 to 4. In the above equations, x is the mole fraction, and subscripts 1 and 2 stand for solvent and polymer, respectively. The excess molar volumes and the changes in speed of sounds and isentropic compressibilities were correlated by means of the Redlich–Kister equation:⁶

$$\Delta Q = x_1 (1 - x_1) \sum_{p=0}^{N} A_p (1 - 2x_1)^p \tag{4}$$

here ΔQ is the changes or excess molar volumes; A_p represents the fitting coefficients; and N is the degree of the polynomic expansion. These properties were also fitted to the Ott et al. equation, which has an exponential switching factor:⁷

$$\Delta Q = x_1 (1 - x_1) [(\exp(-\alpha x_1) \sum_{i=0}^{1} B_i (1 - 2x_1)^i + (1 - \exp(-\alpha x_1)) + \sum_{i=0}^{2} C_i (1 - 2x_1)^i]$$
(5)

where α , B_i , and C_i represent the fitting coefficients. The standard deviations (σ) between the calculated (ΔQ_{calc}) and the

Table 1. Speed of Sound *u*, Density ρ , Isentropic Compressibility κ_s , Change in Speed of Sound ΔU , Excess Molar Volume $V^{\rm E}$, and Change in Isentropic Compressibility $\Delta \kappa_s$ for the System Methanol (1) + PEGMA 360 (2) at 298.15 K

	и	Δu	ρ	$V^{\rm E}$	$\kappa_{\rm s}$	$\Delta \kappa_{\rm s}$
<i>x</i> ₂	$\mathrm{m} \cdot \mathrm{s}^{-1}$	$\mathrm{m} \cdot \mathrm{s}^{-1}$	g•cm ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	TPa^{-1}	TPa ⁻¹
0	1102.53	0	0.78649	0	1045.99	0
0.0037	1112.55	8.61	0.79650	-0.052	1014.32	-29.33
0.0077	1122.64	17.21	0.80643	-0.102	983.90	-57.28
0.0119	1132.98	25.95	0.81649	-0.153	954.12	-84.40
0.0168	1144.35	35.49	0.82729	-0.206	923.05	-112.42
0.0216	1155.26	44.56	0.83744	-0.258	894.72	-137.71
0.0272	1167.11	54.31	0.84826	-0.310	865.46	-163.47
0.0335	1180.00	64.82	0.85967	-0.367	835.42	-189.55
0.0398	1192.04	74.49	0.87016	-0.421	808.76	-212.28
0.0468	1204.62	84.42	0.88090	-0.466	782.30	-234.32
0.0551	1218.59	95.27	0.89260	-0.525	754.45	-257.00
0.0631	1231.21	104.87	0.90298	-0.576	730.56	-275.85
0.0751	1248.61	117.73	0.91694	-0.642	699.53	-299.34
0.0876	1264.74	129.15	0.92969	-0.696	672.45	-318.60
0.1015	1281.08	140.23	0.94235	-0.753	646.60	-335.70
0.1157	1295.94	149.73	0.95367	-0.800	624.36	-349.04
0.1362	1315.07	161.10	0.96794	-0.862	597.39	-363.12
0.1582	1332.32	170.06	0.98083	-0.910	574.37	-372.33
0.1659	1337.83	172.67	0.98483	-0.923	567.33	-374.57
0.1748	1343.86	175.33	0.98930	-0.939	559.71	-376.56
0.2097	1364.41	182.71	1.00423	-0.980	534.90	-379.50
0.2543	1385.12	186.56	1.01930	-1.012	511.36	-375.03
0.3132	1405.75	184.95	1.03429	-1.011	489.26	-360.16
0.3677	1420.15	178.77	1.04481	-0.979	474.56	-340.66
0.4914	1442.83	154.71	1.06170	-0.869	452.45	-285.14
0.6830	1463.13	102.79	1.07731	-0.593	433.61	-183.74
0.7271	1466.20	89.04	1.07989	-0.523	430.76	-158.91
0.7282	1466.26	88.86	1.07992	-0.513	430.71	-158.26
0.7403	1467.33	85.29	1.08062	-0.504	429.80	-151.55
0.8297	1472.40	56.62	1.08501	-0.367	425.12	-100.12
0.8648	1474.21	45.19	1.08634	-0.267	423.56	-79.67
0.9073	1476.75	31.69	1.08803	-0.199	421.45	-55.08
0.9419	1480.01	21.66	1.08930	-0.141	419.11	-35.70
1.0000	1480.11	0	1.09111	0	418.36	0

experimental (ΔQ_{exp}) values have been estimated by using

$$\sigma = \left(\frac{\sum_{i=1}^{n_{\text{DAT}}} (\Delta Q_{\text{exp}} - \Delta Q_{\text{calc}})^2}{n_{\text{DAT}}}\right)^{1/2}$$
(6)

where n_{DAT} is the number of experimental points. For eqs 4 and 5, the obtained adjustable parameters A_p , α , B_i , and C_i are summarized in Tables 5 and 6 together with the standard deviations σ . On the basis of the obtained standard deviations, we conclude that both eqs 4 and 5 are suitable equations in representing the changes and excess molar volume data for the investigated alcohol + PEGMA systems. Figures 1 and 2 show respectively the values of $V^{\rm E}$ and Δu obtained experimentally and those calculated using eq 4 plotted against the mole fraction of polymer for the four studied systems. The quality of fittig the $V^{\rm E}$ and Δu data to eq 4 or eq 5 is very similar; however, in the case of $\Delta \kappa_s$ a smotter curve is obtained with eq 5 as can be seen from the comparison of Figure 3, panels a and b. In fitting the physical properties to eq 4, we found that the three-degree polynomial is suitable in representing the experimental data for all the studied systems. Also, it was found that by increasing the degree of the polynomial in eq 4 the quality of fitting $V^{\rm E}$ and Δu is not changed very much; however, in the case of $\Delta \kappa_s$ when the four-degree polynomial equation is used, rather small standard deviations are obtained for all the investigated systems, as can be seen in Table 5.

Figure 1 shows that the excess molar volume is negative. Mainly, the behavior of V^{E} is related to the intermolecular interactions between the hydrogen atom of the alcohol and the

Table 2. Speed of Sound *u*, Density ρ , Isentropic Compressibility κ_s , Change in Speed of Sound Δu , Excess Molar Volume V^E , and Change in Isentropic Compressibility $\Delta \kappa_s$ for the System Ethanol (1) + PEGMA 360 (2) at 298.15 K

< /		()				
	и	Δu	ρ	$V^{\rm E}$	$\kappa_{\rm s}$	$\Delta \kappa_{\rm s}$
<i>x</i> ₂	$m \cdot s^{-1}$	$\mathrm{m} \cdot \mathrm{s}^{-1}$	g•cm ⁻³	$cm^3 \cdot mol^{-1}$	TPa ⁻¹	TPa^{-1}
0	1143.22	0	0.78507	0	974.62	0
0.0053	1152.39	7.39	0.79462	-0.048	947.64	-24.04
0.0116	1162.37	15.26	0.80518	-0.091	919.22	-48.97
0.0170	1170.74	21.78	0.81398	-0.131	896.33	-68.82
0.0236	1180.49	29.32	0.82412	-0.184	870.74	-90.75
0.0306	1190.30	36.78	0.83412	-0.227	846.18	-111.43
0.0387	1201.16	44.90	0.84489	-0.262	820.34	-132.74
0.0472	1211.96	52.84	0.85554	-0.308	795.76	-152.62
0.0559	1222.16	60.09	0.86569	-0.341	773.36	-170.15
0.0648	1232.21	67.15	0.87536	-0.374	752.39	-186.16
0.0821	1250.36	79.47	0.89255	-0.441	716.63	-212.30
0.0880	1256.03	83.17	0.89781	-0.452	706.02	-219.65
0.1049	1271.12	92.55	0.91208	-0.501	678.57	-237.69
0.1203	1284.44	100.67	0.92374	-0.535	656.18	-251.50
0.1393	1298.97	108.83	0.93663	-0.572	632.75	-264.39
0.1605	1313.50	116.21	0.94946	-0.609	610.47	-274.89
0.1839	1327.81	122.62	0.96197	-0.636	589.62	-282.69
0.2466	1359.24	132.94	0.98891	-0.681	547.33	-290.11
0.2768	1371.64	135.19	0.99937	-0.695	531.86	-288.81
0.3116	1383.82	135.66	1.00972	-0.680	517.18	-284.13
0.3389	1392.50	135.10	1.01705	-0.685	507.07	-279.04
0.4030	1409.63	130.65	1.03151	-0.666	487.88	-262.55
0.4807	1426.10	120.89	1.04533	-0.622	470.38	-236.83
0.5741	1441.39	104.78	1.05823	-0.551	454.84	-200.44
0.7423	1461.03	67.70	1.07470	-0.327	435.91	-125.80
0.7982	1466.09	54.04	1.07911	-0.292	431.13	-99.49
0.8390	1469.27	43.39	1.08195	-0.244	428.14	-79.79
0.9222	1475.36	21.34	1.08698	-0.108	422.65	-38.96
1.0000	1480.11	0	1.09111	0	418.36	0

Table 3. Speed of Sound *u*, Density ρ , Isentropic Compressibility κ_s , Change in Speed of Sound Δu , Excess Molar Volume V^E , and Change in Isentropic Compressibility $\Delta \kappa_s$ for the System 2-Propanol (1) + PEGMA 360 (2) at 298.15 K

	и	Δu	ρ	$V^{\rm E}$	Ks	$\Delta \kappa_{\rm s}$
<i>x</i> ₂	$m \cdot s^{-1}$	$m \cdot s^{-1}$	g•cm ⁻³	cm ³ ·mol ⁻¹	TPa ⁻¹	TPa^{-1}
0	1138.98	0	0.78086	0	987.18	0
0.0070	1148.23	6.85	0.79028	-0.026	959.76	-23.42
0.0144	1157.26	13.36	0.79973	-0.051	933.67	-45.31
0.0221	1166.24	19.73	0.80902	-0.074	908.79	-65.84
0.0310	1176.31	26.75	0.81938	-0.103	882.00	-87.54
0.0396	1185.56	33.05	0.82884	-0.126	858.39	-106.24
0.0501	1196.25	40.19	0.83966	-0.155	832.24	-126.44
0.0601	1206.03	46.53	0.84949	-0.181	809.33	-143.64
0.0715	1216.46	53.10	0.85984	-0.200	785.94	-160.59
0.0839	1227.35	59.76	0.87049	-0.223	762.61	-176.86
0.0986	1239.62	67.01	0.88228	-0.252	737.60	-193.52
0.1162	1253.40	74.79	0.89523	-0.276	711.03	-210.07
0.1322	1265.07	80.99	0.90614	-0.298	689.57	-222.40
0.1498	1277.02	86.94	0.91715	-0.316	668.60	-233.36
0.1744	1292.52	94.04	0.93113	-0.336	642.86	-245.12
0.1972	1305.68	99.42	0.94291	-0.355	622.10	-252.89
0.2281	1321.83	105.06	0.95713	-0.372	597.97	-259.47
0.2597	1336.69	109.11	0.97007	-0.384	576.95	-262.49
0.2999	1353.29	112.02	0.98442	-0.385	554.68	-261.94
0.3450	1369.89	113.19	0.99851	-0.396	533.67	-257.24
0.4003	1386.94	111.39	1.01317	-0.389	513.10	-246.36
0.4672	1404.49	106.14	1.02801	-0.366	493.14	-228.30
0.5440	1421.14	96.58	1.04208	-0.325	475.14	-202.60
0.6076	1432.89	86.61	1.05193	-0.292	463.01	-178.57
0.7432	1453.18	60.71	1.06886	-0.206	443.04	-121.39
0.8415	1464.84	38.82	1.07862	-0.141	432.07	-76.43
0.9427	1475.10	14.51	1.08695	-0.049	422.81	-28.16
1 0000	1480 11	0	1 09111	0	418 36	0

oxygen atoms of the poly(ethylene glycol) methacrylate and the difference between the size of alcohol and polymer. Strong hydrogen bond interactions between PEGMA and alcohol are consistent with the obtained negative excess molar volumes. Recently from isopiestic studies on these systems,⁸ the solvent

Table 4. Speed of Sound *u*, Density ρ , Isentropic Compressibility κ_s , Change in Speed of Sound Δu , Excess Molar Volume $V^{\rm E}$, and Change in Isentropic Compressibility $\Delta \kappa_s$ for the System 1-Butanol (1) + PEGMA 360 (2) at 298.15 K

	и	Δu	ρ	$V^{\rm E}$	$\kappa_{\rm s}$	$\Delta \kappa_{\rm s}$
<i>x</i> ₂	$m \cdot s^{-1}$	$\overline{m \cdot s^{-1}}$	g•cm ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	TPa^{-1}	TPa^{-1}
0	1240.44	0	0.80589	0	806.44	0
0.0086	1246.22	3.73	0.81457	-0.009	790.46	-12.61
0.0167	1251.51	7.08	0.82243	-0.019	776.30	-23.64
0.0259	1257.32	10.67	0.83105	-0.030	761.16	-35.18
0.0378	1264.74	15.23	0.84160	-0.044	742.84	-48.89
0.0491	1271.35	19.15	0.85101	-0.056	727.00	-60.36
0.0603	1277.71	22.83	0.85990	-0.067	712.34	-70.67
0.0748	1285.72	27.35	0.87081	-0.079	694.68	-82.68
0.0855	1291.31	30.37	0.87837	-0.087	682.75	-90.46
0.1040	1300.62	35.26	0.89066	-0.101	663.72	-102.33
0.1199	1308.27	39.10	0.90051	-0.110	648.81	-111.07
0.1302	1312.92	41.28	0.90657	-0.118	639.91	-115.98
0.1593	1325.84	47.22	0.92244	-0.134	616.71	-127.89
0.1704	1330.49	49.21	0.92807	-0.139	608.69	-131.58
0.1987	1341.69	53.63	0.94138	-0.151	590.10	-139.20
0.2356	1354.94	58.03	0.95691	-0.161	569.23	-145.74
0.2564	1361.89	59.99	0.96487	-0.168	558.79	-148.12
0.3026	1376.14	63.17	0.98081	-0.179	538.38	-150.59
0.3415	1386.78	64.48	0.99262	-0.181	523.85	-150.04
0.3850	1397.48	64.74	1.00437	-0.176	509.82	-147.19
0.4493	1411.55	63.44	1.01950	-0.170	492.29	-139.77
0.5152	1423.92	59.99	1.03277	-0.166	477.56	-128.93
0.5844	1435.28	54.77	1.04471	-0.150	464.66	-114.99
0.6810	1448.73	45.05	1.05865	-0.099	450.06	-92.12
0.7242	1453.86	39.83	1.06433	-0.131	444.51	-80.89
0.8008	1462.46	30.10	1.07299	-0.089	435.75	-59.95
0.8325	1465.44	25.50	1.07631	-0.085	432.64	-50.75
0.9029	1472.05	15.21	1.08287	-0.014	426.16	-29.92
1.0000	1480.11	0	1.09111	0	418.36	0

activity data and the Flory-Huggins parameters were obtained, and it was concluded that, by increasing the methylene group, the interaction between the oxygen atom of the PEGMA and the OH of the alcohol is increased. However, considering the molar volumes or sizes of these alcohols, which are in the order 1-butanol > 2-propanol > ethanol > methanol, we expect the effect due to packing of the unlike molecules to be in the order methanol > ethanol > 2-propanol > 1-butanol. Our results are consistent with this viewpoint, and the obtained order methanol > ethanol > 2-propanol > 1-butanol for the V^E values indicate that in comparison with the contributions due to the unlike interactions, the packing effect has the dominant effect in V^E values of these systems. The difference between the size of

Figure 1. Excess molar volumes $V^{E}/(\text{cm}^3 \cdot \text{mol}^{-1})$, plotted against mole fraction of polymer x_2 , for alcohol + PEGMA systems: \diamond , 1-butanol; \triangle , 2-propanol; \Box , ethanol; \bigcirc , methanol. Lines were generated from fitting of the experimental data to the Redlich–Kister equation (eq 4).

Figure 2. Changes in speed of sound $\Delta u/(\text{m}\cdot\text{s}^{-1})$, plotted against mole fraction of polymer x_2 , for alcohol + PEGMA systems: \diamond , 1-butanol; \triangle , 2-propanol; \Box , ethanol; \bigcirc , methanol. Lines were generated from fitting of the experimental data to the Redlich–Kister equation (eq 4).

alcohol and polymer is the main reason for the packing effect. Since PEGMA is bulkier than the different alcohols considered

Tabla 5	Correlation	Doromotors (of Fauntion	A and Standard	Deviations a	for Alcoh	(1) +	DECMA 3	k60 (2) at	+ 208 15 K
Lable 5.	Correlation	I al ameters o	JI Equation	anu Stanuaru	Deviations, 0,	IUI AICOIN	л (1) т	I LOMA .	00 (2) ai	1 470.13 K

	Α	A	4	4	4	~			
	A0	A1	A2	A3	A4	0			
		PEC	SMA + Methanol						
$\Delta u/(\text{m}\cdot\text{s}^{-1})$	587.680	430.442	561.728	497.434		2.92			
$V^{\rm E}/(\rm cm^3 \cdot mol^{-1})$	-3.268	-2.036	-3.121	-2.890		0.02			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-1010.438	-638.195	-1741.573	-2229.025		19.12			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-1202.307	-711.358	137.685	-1935.690	-2812.369	9.32			
		PE	GMA + Ethanol						
$\Delta u/(\text{m}\cdot\text{s}^{-1})$	468.354	294.200	275.413	244.897		1.03			
$V^{\rm E}/(\rm cm^3 \cdot mol^{-1})$	-2.382	-1.241	-1.646	-2.057		0.02			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-899.537	-539.316	-965.524	-1309.625		8.00			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-938.807	-665.086	-275.922	-942.124	-1226.721	4.16			
		PEG	MA + 2-Propanol						
$\Delta u/(\text{m}\cdot\text{s}^{-1})$	408.341	229.290	160.714	115.020		0.55			
$V^{\rm E}/(\rm cm^3 \cdot mol^{-1})$	-1.385	-0.799	-0.750	-0.577		0.01			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-857.965	-540.737	-718.382	-822.195		4.64			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-879.659	-618.979	-315.755	-619.097	-711.310	2.15			
	PEGMA + 1-Butanol								
$\Delta u/(\text{m}\cdot\text{s}^{-1})$	243.725	115.595	51.622	22.459		0.11			
$V^{\text{E}/(\text{cm}^3 \cdot \text{mol}^{-1})}$	-0.667	-0.308	-0.156	-0.171		0.01			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-522.026	-323.743	-298.737	-266.630		1.26			
$\Delta \kappa_{\rm S}/({\rm TPa}^{-1})$	-528.878	-339.977	-188.196	-214.015	-202.125	0.49			

Table 6. Correlation Parameters of Equation 5 and Standard Deviations, σ , for Alcohol (1) + PEGMA 360 (2) at 298.15 K

	-			. ,			
	α	B_0	B_1	C_0	C_1	C_2	σ
			PEGMA + Me	thanol			
$\Delta u/(\text{m}\cdot\text{s}^{-1})$	-7.347	284.196	-4.799	68.952	-5.926	-74.878	0.52
$V^{\rm E}/(\rm cm^3 \cdot mol^{-1})$	-4.393	-2.404	-0.010	-0.572	-0.004	0.569	0.03
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	-6.134	-0.082	54.258	14.060	47.764	33.720	3.34
			PEGMA + Eth	nanol			
$\Delta u/(m \cdot s^{-1})$	-4.076	224.736	-0.015	47.130	-9.046	-56.203	0.71
$V^{\rm E}/(\rm cm^3 \cdot mol^{-1})$	-3.990	-1.677	-0.006	-0.393	-0.001	0.392	0.02
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	-5.410	0.080	48.578	16.660	48.174	31.530	1.54
			PEGMA + 2-Pr	opanol			
$\Delta u/(m \cdot s^{-1})$	-2.535	0.076	-0.038	-40.351	-44.678	-4.576	1.40
$V^{\rm E}/(\rm cm^3 \cdot mol^{-1})$	-3.036	-1.078	-0.009	-0.236	-0.001	0.236	0.01
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	-3.356	-0.028	0.002	49.705	54.537	5.486	8.51
			PEGMA + 1-B	utanol			
$\Delta u/(\text{m}\cdot\text{s}^{-1})$	-2.320	73.205	-0.002	-1.170	-19.463	-18.316	0.09
$V^{\rm E}/(\rm cm^3 \cdot mol^{-1})$	-3.788	-0.164	0.014	-0.019	0.038	0.057	0.01
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	-4.209	-0.005	29.139	18.309	40.150	21.848	0.22

in this study, it may accommodate alcohol molecules in the voids. Considering the smaller size of the methanol as compared with the other alcohols, we expect this packing effect has a greater effect on the obtained excess volume of the PEGMA + methanol system. This is indeed what we observe in Figure 1.

Figure 3. Changes in isentropic compressibility $\Delta \kappa_s/(\text{TPa}^{-1})$, plotted against mole fraction of polymer x_2 , for alcohol + PEGMA systems: \diamond , 1-butanol; \triangle , 2-propanol; \Box , ethanol; \bigcirc , methanol. Panels a and b show respectively the lines generated from fitting of experimental $\Delta \kappa_s$ data to the Redlich–Kister equation (eq 4) and Ott et al. equation (eq 5).

Conclusions

Accurate experimental density and sound velocity data were obtained for the systems PEGMA + methanol, + ethanol, +2propanol, and + 1-butanol at T = 298.15 K. From the experimental density data, values of the excess molar volumes were calculated. The excess molar volumes for all these systems were found to be negative and whose magnitude has the order of $V^{\rm E}$ (PEGMA + methanol) > $V^{\rm E}$ (PEGMA + ethanol) > $V^{\rm E}$ (PEGMA + ethanol). The Redlich–Kister and Ott et al. equations have been used for the correlation of the experimental excess molar volumes as well as changes in speed of sound and isentropic compressibility. Good agreement was obtained with the experimental data with both equations, especially using the Ott et al. equation.

Literature Cited

- (1) Karia, F. D.; Parsania, P. H. Ultrasonic velocity studies and allied parameters of poly (4,4'-cyclohexylidene–*R*,*R*'-diphenylene diphenyl methane–4,4'-disulfonate) solutions at 30 °C. *Eur. Polym. J.* **2000**, *36*, 519–524.
- (2) Well, W.; Pethrick, R. A. Ultrasonic investigations of linear and star shaped polybutadiene polymers in solutions of cyclohexane, hexane and ethylbenzene. *Polymer* **1982**, *23*, 369–373.
- (3) Paladhi, R.; Singh, P. The effect of molecular weight on adiabatic compressibility and solvation number of polymer solutions. *Eur. Polym. J.* **1990**, *26*, 441–444.
- (4) Pal, A.; Singh, W. Speeds of sound and viscosities in aqueous poly (ethylene glycol) solutions at 303.15 and 308.15 K. J. Chem. Eng. Data 1997, 42, 234–237.
- (5) Zafarani-Moattar, M. T.; Sadeghi, R.; Sarmad, S. Measurement and modeling of densities and sound velocities of the systems {poly (propylene glycol) + methanol, + ethanol, + 1-propanol, + 2-propanol and 1-butanol} at T=298.15 K. J. Chem. Thermodyn. 2006, 38, 257– 263.
- (6) Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (7) Ott, J. B.; Stouffer, C. E.; Cornett, G. V.; Woodfield, B. F.; Wirthlin, R. C.; Christensen, J. J.; Dieters, J. A. Excess enthalpies for (ethanol + water) at 298.15 K and pressures of 0.4, 5, 10 and 15 MPa. J. Chem. Thermodyn. 1986, 18, 1–12.
- (8) Zafarani-Moattar, M. T.; Sarmad, S. Measurement and correlation of phase equilibria for poly(ethylene glycol) methacrylate + alcohol systems at 298.15 K. J. Chem. Eng. Data 2005, 50, 283–287.
- (9) Pitzer, K. S.; Peiper, J. C.; Busey, R. H. Thermodynamic properties of sodium chloride solutions. J. Phys. Chem. Ref. Data 1984, 13, 1–102.

Received for review November 7, 2005. Accepted February 21, 2006.

JE0504717