Vapor-Liquid Equilibria of the Difluoromethane + Dimethyl Ether and 1,1,2-Tetrafluoroethane + Dimethyl Ether Systems

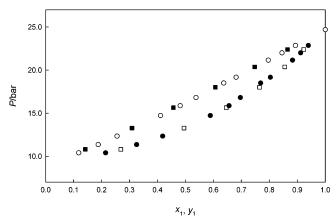
Jihoon Im, Gangwon Lee, and Hwayong Kim*

School of Chemical & Biological Engineering & Institute of Chemical Processes, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-744, Korea

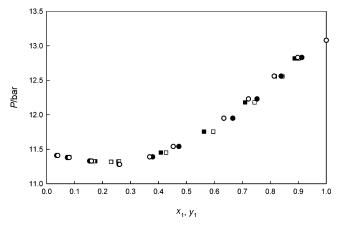
Binary vapor-liquid equilibrium data were measured for the difluoromethane (HFC-32) + dimethyl ether (DME) and 1,1,1,2-tetrafluoroethane (HFC-134a) + dimethyl ether (DME) systems at temperature from (313.15 to 343.15) K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by Peng-Robinson equation of state using the Wong-Sandler mixing rules.

Introduction

The production and use of refrigerants with high ozonedepletion potentials (ODPs) such as the chlorofluorocarbons (CFCs) have been regulated as a consequence of the Montreal Protocol in 1987. Hydrofluorocarbons (HFCs) are proposed as promising alternative refrigerants to substitute for CFCs because of their zero ODPs and low global warming potentials (GWPs). With HFCs, dimethyl ether (DME) has been used as an alternative refrigerant of CFCs because of its environmentally friendly properties. DME has zero ODPs and is non-toxic.^{1–4}


Thermodynamic properties of the mixtures, such as vapor– liquid equilibria (VLE), are important to decide the optimal compositions of the mixtures and to evaluate the performance of the refrigeration cycles. In this work, we measured the isothermal VLE data for the two binary systems, difluoromethane (HFC-32) + DME and 1,1,1,2-tetrafluoroethane (HFC134a) + DME, at temperatures from (313.15 to 343.15) K at 10 K intervals. The experimental data were correlated by the Peng–Robinson equation⁶ of state with the Wong–Sandler mixing rules.⁷

Experimental Section


Chemicals. DME of 99.9 % purity was supplied by LG Chem. Ltd., and HFC-32 and HFC-134a with purity 99.8 mass % were obtained from Ulsan Chemical Co. All components were used without further purification in these experiments.

Apparatus. The measurement of the VLE data was conducted in a circulation-type apparatus. The details of this apparatus were given in our previous studies.⁵ The equilibrium cell was made of 316 stainless steel with an inner volume of about 320 mL. It was equipped with two windows and two magnetic pumps. Because two magnetic pumps were forced to circulate vapor and liquid phase separately, equilibrium was quickly reached. The temperature in the cell was measured with a 100 Ω platinum resistance thermometer (Hart Scientific Co., model 5627) and a digital indicator (Hart Scientific Co., model 1502A) with an accuracy of 0.05 K. The pressure of the cell was measured with pressure transducer (Sensotec Co., model Super TJE (0 to 1500) psia) connected to a digital indicator (Laurel, model

* Corresponding author. Fax: +82-2-888-6695. E-mail: hwayongk@ snu.ac.kr.

Figure 1. Comparative data of the HFC-32 (1) + DME (2) system at 313.15 K: \blacksquare and \Box , experimental data of Richon and co-workers;^{3,4} \bigcirc and \spadesuit , this study.

Figure 2. Comparative data of the HFC-134a (1) + DME (2) system at 313.15 K: \blacksquare and \Box , experimental data of Richon and co-workers;^{3,4} \bigcirc and \bullet , this study.

L20010WM1). An accuracy of the digital pressure gauge is 0.05 %. To trap the liquid and vapor sample, we used two sampling valves (Rheodyne Instruments, model 7413 with a 0.5 μ L sampling loop for liquid and model 7010 with a 10 μ L sampling loop for vapor). A gas chromatograph, which used helium gas as a carrier, was connected on-line to the equilibrium apparatus

Table 3. Vapor-Liquid Equilibrium Data for the HFC-134a (1) +

Table 1. Critical Properties and Acentric Factors of Pure Components^{*a*}

T_c/K 351.26 374.18 401 P_c/bar 57.84 40.56 53	yl ether
D/hon 57.94 40.56 53	.10
$P_{\rm c}/{\rm Dar}$ 37.84 40.30 33	.7
ω 0.2771 0.3268 0	.2002

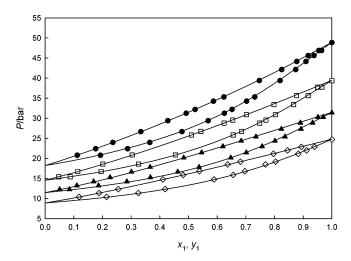
^a Aspen Property Databank.

Table 2. Vapor–Liquid Equilibrium Data for the HFC-32 (1) + DME (2) System

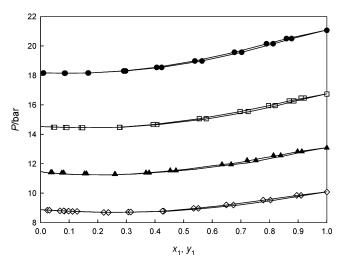
Pexptl/bar	y1,exptl	$x_{1,exptl}$	$P_{\text{caled}}/\text{bar}$	y1,caled	$\Delta P/\text{bar}^a$	$\Delta y_1{}^b$	
T = 313.15 K							
10.40	0.2145	0.1186	10.40	0.2227	0.00	0.0082	
11.36	0.3256	0.1881	11.36	0.3307	0.00	0.0051	
12.34	0.4187	0.2555	12.35	0.4216	0.00	0.0029	
14.73	0.5893	0.4108	14.74	0.5909	0.01	0.0017	
15.87	0.6561	0.4815	15.87	0.6543	0.01	-0.0019	
16.82	0.6966	0.5381	16.79	0.7005	-0.03	0.0039	
18.50	0.7687	0.6370	18.43	0.7742	-0.07	0.0055	
19.17	0.8036	0.6811	19.18	0.8048	0.01	0.0012	
21.15	0.8828	0.7964	21.18	0.8801	0.03	-0.0027	
22.00	0.9119	0.8454	22.04	0.9105	0.04	-0.0015	
22.86	0.9395	0.8936	22.90	0.9394	0.04	-0.0001	
24.69	1.0000	1.0000	24.77	1.0000	0.08	0.0000	
			T = 323.15	к			
12.28	0.0849	0.0510	12.25	0.0992	-0.03	0.0144	
13.23	0.1864	0.1106	13.22	0.2032	-0.03	0.0144	
14.24	0.2850	0.1693	14.22	0.2941	-0.02	0.0091	
15.26	0.3671	0.2265	15.24	0.3733	-0.02	0.0063	
16.65	0.4624	0.3012	16.61	0.4647	-0.04	0.0022	
17.83	0.5371	0.3662	17.84	0.5349	0.01	-0.0022	
20.16	0.6476	0.4832	20.15	0.6444	-0.01	-0.0032	
21.46	0.7017	0.5459	21.42	0.6962	-0.04	-0.0055	
23.00	0.7569	0.6200	22.97	0.7528	-0.03	-0.0041	
24.35	0.8018	0.6838	24.33	0.7984	-0.02	-0.0034	
25.40	0.8367	0.7353	25.45	0.8337	0.02	-0.0030	
27.32	0.8923	0.8239	27.43	0.8918	0.05	-0.0005	
28.87	0.9326	0.8903	28.94	0.9336	0.07	0.0010	
30.28	0.9701	0.9516	30.34	0.9711	0.06	0.0010	
31.38	1.0000	1.0000	31.45	1.0000	0.07	0.0000	
			T = 333.15	K			
15.41	0.0879	0.0475	15.44	0.0888	0.03	0.0009	
16.75	0.1954	0.1139	16.75	0.2003	0.00	0.0050	
18.57	0.3264	0.2013	18.58	0.3279	0.01	0.0015	
20.85	0.4549	0.3037	20.85	0.4543	0.00	-0.0006	
25.81	0.6559	0.5100	25.80	0.6547	-0.01	-0.0012	
26.72	0.6851	0.5434	26.65	0.6822	-0.01	-0.0012	
28.78	0.7480	0.6243	28.75	0.7450	-0.03	-0.0030	
29.54	0.7703	0.6546	29.55	0.7673	0.01	-0.0030	
30.88	0.8028	0.7018	30.83	0.8011	-0.05	-0.0017	
33.41	0.8668	0.7984	33.52	0.8674	0.11	0.0006	
35.63	0.9175	0.8767	35.78	0.9194	0.15	0.0019	
37.74	0.9659	0.9501	37.95	0.9675	0.21	0.0016	
39.34	1.0000	1.0000	39.44	1.0000	0.10	0.0000	
			T = 343.15	K			
20.78	0.1930	0.1120	20.83	0.1891	0.05	-0.0039	
22.39	0.2877	0.1765	22.43	0.2820	0.04	-0.0057	
23.97	0.3654	0.2362	23.98	0.3594	0.04	-0.0057	
26.65	0.3034			0.3394	-0.01	-0.0060 -0.0063	
		0.3339	26.63				
29.38	0.5686	0.4281	29.32	0.5645	-0.06	-0.0041	
31.24	0.6251	0.4919	31.22	0.6215	-0.02	-0.0036	
32.19	0.6519	0.5230	32.16	0.6478	-0.03	-0.0041	
34.23	0.7028	0.5870	34.16	0.6994	-0.07	-0.0034	
35.29	0.7310	0.6235	35.32	0.7275	0.03	-0.0035	
39.36	0.8193	0.7470	39.45	0.8181	0.09	-0.0011	
42.11	0.8738	0.8250	42.22	0.8736	0.11	-0.0003	
44.12	0.9096	0.8777	44.16	0.9110	0.04	0.0014	
45.60	0.9377	0.9175	45.68	0.9396	0.04	0.0014	
46.86	0.9641	0.9173	47.13	0.9667	0.08	0.0019	
40.80							
40.84	1.0000	1.0000	48.92	1.0000	0.08	0.0000	

 $^{a}\Delta P = P_{\text{cal}} - P_{\text{exp.}} {}^{b}\Delta y_{1} = y_{\text{cal}} - y_{\text{exp.}}$

with a thermal conductivity detector (TCD) and equipped Porapak-Q column(1.83 m long; 3.18 mm diameter; mesh range, 80/100).


Pexptl/bar	y1,exptl	$x_{1,exptl}$	$P_{\text{caled}}/\text{bar}$	y1,caled	$\Delta P/\text{bar}^a$	$\Delta y_1{}^b$
			T = 313.15	К		
8.84	0.0245	0.0309	8.84	0.0264	0.00	-0.0045
8.80	0.0682	0.0806	8.77	0.0727	-0.03	-0.0078
8.78	0.0835	0.0980	8.75	0.0899	-0.03	-0.0082
8.76	0.1115	0.1282	8.72	0.1206	-0.04	-0.0076
8.69	0.2210	0.2368	8.69	0.2377	0.00	0.0008
8.72	0.3072	0.3154	8.71	0.3255	-0.01	0.010
8.78	0.4300	0.4258	8.81	0.4488	0.03	0.0229
8.97	0.5511	0.5344	8.97	0.5668	0.00	0.0324
9.20	0.6746	0.6492	9.19	0.6861	-0.01	0.0369
9.53	0.8026	0.7779	9.49	0.8115	-0.04	0.033
9.85	0.9101	0.8952	9.82	0.9163	-0.03	0.021
10.08	1.0000	1.0000	10.15	1.0000	0.07	0.000
			T = 323.15	К		
11.41	0.0361	0.0400	11.41	0.0364	0.00	-0.0036
11.38	0.0744	0.0808	11.36	0.0756	-0.02	-0.005
11.33	0.1539	0.1605	11.30	0.1571	-0.03	-0.003
11.28	0.2592	0.2609	11.30	0.2662	0.02	0.005
11.39	0.3792	0.3685	11.40	0.3866	0.01	0.018
11.54	0.4730	0.4530	11.53	0.4808	-0.01	0.027
11.95	0.6658	0.6338	11.97	0.6726	0.02	0.038
12.23	0.7524	0.7217	12.24	0.7585	0.01	0.036
12.56	0.8389	0.8139	12.54	0.8431	-0.02	0.0292
12.83	0.9129	0.8979	12.83	0.9157	0.00	0.017
13.08	1.0000	1.0000	13.18	1.0000	0.10	0.000
			T = 333.15	K		
14.48	0.0453	0.0489	14.48	0.0461	0.00	-0.0028
14.46	0.0870	0.0919	14.44	0.0889	-0.02	-0.003
14.45	0.1420	0.1473	14.41	0.1463	-0.04	-0.001
14.47	0.2774	0.2760	14.47	0.2857	0.00	0.009
14.66	0.4063	0.3934	14.66	0.4147	0.00	0.021
15.06	0.5788	0.5547	15.07	0.5868	0.01	0.032
15.55	0.7251	0.6971	15.57	0.7296	0.01	0.032
15.95	0.8194	0.7964	15.96	0.8231	0.01	0.026
16.27	0.8853	0.8689	16.26	0.8883	-0.01	0.019
16.46	0.9217	0.9101	16.44	0.9242	-0.02	0.014
16.73	1.0000	1.0000	16.84	1.0000	0.11	0.000
			T = 343.15			
18.16	0.0101	0.0102	18.20	0.0097	0.04	-0.000
18.15	0.0841	0.0858	18.14	0.0848	-0.01	-0.001
18.16	0.1662	0.1667	18.15	0.1696	-0.01	0.002
18.30	0.2970	0.2903	18.30	0.3028	0.00	0.012
18.54	0.4228	0.4054	18.57	0.4266	0.03	0.021
18.98	0.5639	0.5386	19.01	0.5661	0.03	0.027
19.57	0.7023	0.6770	19.57	0.7048	0.00	0.027
20.15	0.8125	0.7892	20.10	0.8122	-0.05	0.023
20.50	0.8769	0.8588	20.45	0.8763	-0.05	0.017
21.06	1.0000	1.0000	21.23	1.0000	0.17	0.000

 $^{a}\Delta P = P_{cal} - P_{exp}$. $^{b}\Delta y_{1} = y_{cal} - y_{exp}$.


Experimental Procedure. The whole system was evacuated with a vacuum pump to remove all the impurities. Next, a certain amount of DME was injected into the cell. Then, a proper amount of HFCs was charged. After the target temperature was reached, two magnetic pumps were started to circulate vapor and liquid phases. When the equilibrium was reached, the vapor and liquid samples were taken into the gas chromatograph, and the compositions were measured. The equilibrium compositions of each phase were measured at least five times in a row to obtain reliable average values. Deviations of the equilibrium composition.

Results and Discussion

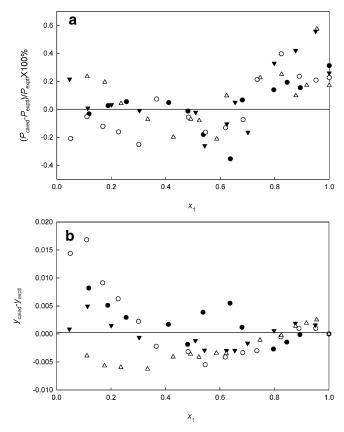
VLE data for the binary systems, HFC-32 (1) + DME (2) and HFC-134a (1) + DME (2), were measured in a temperature range from (313.15 to 343.15) K. We found that Richon and co-workers reported the data for the same system at different temperature ranges.^{3,4} Thus, we compared our data to those in

Figure 3. Vapor-liquid equilibria of the HFC-32 (1) + DME (2) system: -, PR EOS using Wong-Sandler mixing rules. \bullet , experimental data at 343 K; \Box , 333.15 K; \blacklozenge , 323.15 K; \diamondsuit , 313.15 K.

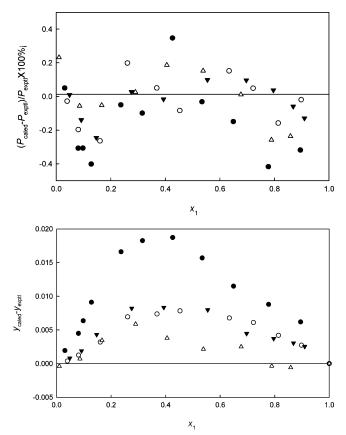
Figure 4. Vapor-liquid equilibria of the HFC-134a (1) + DME (2) system: –, PR EOS using Wong-Sandler mixing rules. •, experimental data at 343 K; \Box , 333.15 K; •, 323.15 K; \diamondsuit , 313.15 K.

the literature. Figures 1 and 2 show the comparison at 313.15 K; good results were obtained. Experimental data for each system are given in Tables 2 and 3. Experimental data were correlated with the Peng–Robinson⁶ equation of state (PR EOS) using the Wong–Sandler mixing rules.⁷ The PR EOS and the Wong–Sandler mixing rules are expressed as follows:

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + b(V - b)}$$
(1)


$$a(T) = 0.45724 \frac{R^2 T_c^2}{P_c} \alpha(T)$$
⁽²⁾

$$b(T_{\rm c}) = 0.07780 \frac{RT_{\rm c}}{P_{\rm c}}$$
(3)


$$\alpha(T) = [1 + \kappa (1 - T_{\rm r}^{0.5})]^2 \tag{4}$$

$$\kappa = 0.37464 + 1.54226\omega - 0.26992\omega^2 \tag{5}$$

where T_c is the critical temperature, P_c is the critical pressure, T_r is the reduced temperature, and ω is the acentric factor. The critical properties and acentric factors are listed in Table 1.

Figure 5. Deviation of the HFC-32 (1) + DME (2) system: (a) deviation of pressure and (b) deviation of vapor mole fraction. \bullet , experimental data at 313.15 K; \bigcirc , 323.15 K; \checkmark , 333.15 K; \triangle , 343.15 K.

Figure 6. Deviation of the HFC-134a (1) + DME (2) system: (a) deviation of pressure and (b) deviation of vapor mole fraction. \bullet , experimental data at 313.15 K; \bigcirc , 323.15 K; \checkmark , 333.15 K; \triangle , 343.15 K.

T/K	bina	ry parameters ^a	AADP ^b /%	AADy ^c	
		HFC-32 + DN	1F		
	k _{ii}	-0.31848	0.130	0.0029	
313.15	A_{ii}	-475.36	0.150	0.002)	
515.15	A_{ii}	187.2982			
	k_{ij}	-0.20037	0.172	0.0048	
323.15	A_{ii}	-558.458	0.172	0.00+0	
525.15	A_{ii}	128.0031			
	k_{ii}	-0.12306	0.187	0.0018	
333.15	A_{ii}	-596.239	0.107	0.0010	
555.15	A_{ii}	73.82621			
	k_{ii}	-0.08792	0.179	0.0032	
343.15	A_{ij}	-642.458	0.179	0.0032	
545.15		57.95562			
	A_{ji} k_{ii}	-0.15107	0.188	0.0033	
overall	A_{ii}	-581.08	0.188	0.0055	
Overall	5	93.63736			
	A_{ji}				
		HFC-134a + D			
	k_{ij}	-0.30141	0.266	0.0098	
313.15	A_{ij}	165.4623			
	A_{ji}	-5.17205			
	k_{ij}	-0.11128	0.176	0.0043	
323.15	A_{ij}	510.1168			
	A_{ji}	-343.899			
	k_{ij}	-0.1585	0.137	0.0041	
333.15	A_{ij}	343.9054			
	A_{ji}	-214.227			
	k _{ij}	-0.18558	0.199	0.0020	
343.15	A_{ij}	228.3719			
	A_{ji}	-98.3347			
	k_{ij}	-0.01507	0.178	0.0052	
overall	A_{ij}	724.7465			
	A_{ii}	-487.877			

 Table 4. Binary Parameters and AAD (%)

^{*a*} The unit of A_{ij} and A_{ji} is K. ^{*b*} AADP = $(100/N)\sum_{i}^{N}(|P_{i,cal} - P_{i,exp}|/P_{i,exp})$. ^{*c*} AADy = $(1/N)\sum_{i}^{N}|y_{i,cal} - y_{i,exp}|$.

Table 5. Calculated Azeotropic Compositions and Pressures for the HFC-134a \pm DME System

T/K	x_1	P/bar	T/K	x_1	P/bar
313.15	0.2277	8.69	333.15	0.1645	14.41
323.15	0.2022	11.29	343.15	0.1139	18.13

The Wong-Sandler mixing rule is represented as follows:

$$b_{\rm m} = \frac{\sum_{i} \sum_{j} x_i x_j \left(b - \frac{a}{RT} \right)_{ij}}{1 - \sum_{i} x_i \frac{a_i}{L_RT} - \frac{A_{\infty}^{\rm E}}{CRT}}$$
(6)

$$a_{\rm m} = b_{\rm m} \left(\sum_{i} x_{i} \frac{a_i}{b_i} + \frac{A_{\infty}^{\rm E}}{C} \right) \tag{7}$$

$$\left(b - \frac{a}{RT}\right)_{ij} = \frac{\left(b_i - \frac{a_i}{RT}\right) + \left(b_j - \frac{a_j}{RT}\right)}{2}(1 - k_{ij}) \tag{8}$$

where $C = \ln(\sqrt{2} - 1)/\sqrt{2}$ for the PR EOS. Because the excess Helmholtz free energy of mixing at infinite pressure is assumed equal to the excess Gibbs free energy ($G^{\rm E}$) at low pressure, the $G^{\rm E}$ model is used in place of $A_{\infty}^{\rm E}$. We used the NRTL model⁸ as a $G^{\rm E}$ model in this study:

$$\frac{G^{\rm E}}{RT} = \sum_{i} x_i \frac{\sum_{i} x_i \tau_{ji} G_{ji}}{\sum_{k} x_k G_{ki}}$$
(9)

$$G_{ij} = \exp(-\alpha_{ij}\tau_{ij}) \ \alpha_{ij} = \alpha_{ji} \tag{10}$$

$$\tau_{ij} = A_{ij}/T \tag{11}$$

where τ_{ij} and τ_{ji} are the interaction parameters and α_{ij} is the non-randomness parameter. We fixed the non-randomness parameter α_{ij} to 0.3 in this study. The Marquardt algorithm was used to minimize the following objective function:

$$OF = \sum_{i}^{N} \left| \frac{P_{exp} - P_{cal}}{P_{exp}} \right|$$
(12)

where N is the number of experimental data points and P_{exp} and P_{cal} are the experimental and the calculated pressures, respectively.

As shown in Figures 3 and 4, the calculated results give a good agreement with the experimental data at each temperature. The overall deviation values of pressure and vapor composition were 0.188 % and 0.0033 for the HFC-32 + DME system and 0.178 % and 0.0052 for the HFC-134a + DME system, respectively. Figures 5 and 6 show the deviations of P and y of each system between the measured data and the calculated values. Binary parameters and the average absolute deviations of P and y are given in Table 4. In the HFC-134a + DME system, azeotropic behaviors were found, and the calculated azeotropic compositions and pressures are listed in Table 5.

Literature Cited

- McMullan, J. Refrigeration and the environment—issues and strategies for the future. *Int. J. Refrig.* 2002, 25, 89–99.
- (2) Bobbo, S.; Camporese R.; Stryjek, R. (Vapour + liquid) equilibrium measurements and correlations of the refrigerant mixture {dimethyl ether (RE170) + 1,1,1,3,3,3-hexafluoropropane (R236fa)} at the temperatures (303.68 and 323.75) K. J. Chem Thermodyn. **1998**, 30, 1041-1046.
- (3) Coquelet, C.; Valtz, A.; Richon, D. Vapor-liquid equilibrium data for the difluoromethane (R32) + dimethyl ether (RE170) system at temperatures from 283.03 to 363.21 K and pressures up to 5.5 MPa. *Fluid Phase Equilib.* 2005, 232, 44–49.
- (4) Valtz, A.; Gicquel, L.; Coquelet, C.; Richon, D. Vapor-liquid equilibrium data for the 1,1,1,2-tetrafluoroethane (R134a) + dimethyl ether (DME) system at temperatures from 293.18 to 358.15 K and pressures up to about 3 MPa. *Fluid Phase Equilib.* 2005, 230, 184– 191.
- (5) Im, J.; Bae, W.; Lee, J.; Kim, H. Vapor-liquid equilibria of binary carbon dioxide + tetrahydrofuran mixture system. *J. Chem. Eng. Data*. 2004, 49, 35–37.
- (6) Peng, D.; Robinson, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15 (1), 59–64.
- (7) Wong, D. S.; Sandler, S. I. A theoretically correct mixing rule for cubic equations of state. AIChE J. 1992, 38, 671–680.
- (8) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144.

Received for review January 20, 2006. Accepted March 4, 2006. This work was supported by the BK21 project of Ministry of Education and the National Research Laboratory (NRL) Program of Korea Institute of Science & Technology Evaluation and Planning.

JE060028B