Density, Refractive Index, Speed of Sound at 298.15 K, and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Ethyl Acetate + Ethyl Lactate and Methyl Acetate + Ethyl Lactate

José M. Resa,* José M. Goenaga, and Ana I. Sánchez-Ruiz

Departamento de Ingeniería Química, Universidad del País Vasco, Apartado 450, 01006, Vitoria, Spain

Miguel Iglesias

Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, Campus Sescelades, 43007 Tarragona, España

Densities, refractive indices, speeds of sound, and isentropic compressibility at 298.15 K and isobaric vaporliquid equilibria data at 101.3 kPa were reported for the binary mixtures ethyl acetate + ethyl lactate and methyl acetate + ethyl lactate. Excess molar volumes, refractive index deviations, changes of speed of sound, and changes of isentropic compressibility on mixing were calculated from the measurement results that were fitted with Redlich-Kister polynomials. VLE experimental data were tested for thermodynamic consistency by means of Dechema test and were demonstrated to be consistent. The activity coefficients were correlated with the Margules, van Laar, UNIQUAC, NRTL, and Wilson equations. The ASOG model also was used for prediction.

Introduction

This work is part of a research project^{1–5} whose objective is to measure thermodynamic properties for binary systems involved in the wine distillation processes for further simulation. In this process, multicomponent mixtures are encountered. The main components are water and ethanol, and several minor compounds such as higher alcohols, aldehydes, and acetates are also present. These minor compounds are called congeners. For modeling and process simulation in which mixtures appear, binary data are needed. By this, it is very important to have available vapor—liquid equilibrium (VLE) data of mixtures formed by water + congeners, ethanol + congeners, and congeners + congeners. From the measurements, parameters of some classic correlations such as Wilson, NRTL, and UNIQUAC would be calculated, and results can be applied to study the distillation of wine.

Experimental Section

Materials. Ethyl Lactate (x > 99.0) was supplied by Fluka. Ethyl acetate (x > 99.9) from Fluka and methyl acetate (x = 99) from Riedel-de Haën were purified by distillation in a laboratory column of 100 plates. The purity of the material was checked by gas—liquid chromatography, and mole fraction xwas higher than 99.6. All products were degassed using ultrasound and dried on molecular sieves (pore diameter 3 Å from Fluka) before use. Densities, refractive indexes, and normal boiling points of the pure substances are given in Table 1 and compared with literature values of Riddick et al.⁶

Apparatus and Procedure. The still used to measure VLE data was our own design of a dynamic recirculating apparatus that combines the features of Rock and Sieg⁷ and those of Othmer.⁸ Figure 1 shows the different parts of this VLE apparatus. The equilibrium temperature was measured with a

digital platinum 100 resistance thermometer with an uncertainty of \pm 0.01 K. For the pressure measurement, a digital manometer regulator (Divatronic DT1 model) manufactured by Leybold with an uncertainty of \pm 0.1 kPa was used. Both vapor- and liquid-phase compositions for the two systems were determined by densimetry and refractometry. Densities were measured at 298.15 K using an Anton Paar DMA 58 vibrating-tube densimeter with an uncertainty of ± 0.00001 g·cm⁻³ that had been calibrated at atmospheric pressure with twice distilled water and dry air. The temperature of the densimeter was maintained at 298.15 K with a uncertainty of \pm 0.01 K by means a semiconductor Peltier element and measured by a calibrated platinum resistance thermometer. Refractive indices were measured with a Mettler RE50 refractometer with an uncertainty of \pm 0.00001, and temperature was controlled, like the densimeter, with a temperature uncertainty of \pm 0.01 K. Speeds of sound were measured with an Anton Paar DSA 48 sound analyzer with an uncertainty of $\pm 0.1 \text{ m} \cdot \text{s}^{-1}$, and temperature was controlled by a Peltier cooler to a uncertainty of ± 0.1 K. Prior to measurements, density calibration, refractive index, and speed of sound curves for these systems were obtained to calculate the compositions of the vapor and liquid phases. The binary mixtures were prepared by directly weighing the constituent components with an electronic balance (Salter model ER-182A) that has an uncertainty of \pm 0.0001 g. Precautions were taken in order to minimize evaporation losses during storage and preparation of the solutions. The estimated uncertainty in the determination of both liquid- and vapor-phase mole fractions is ± 0.001 .

Results and Discussion

Density, Refractive Index, and Speed of Sound. Table 2 lists the measured density ρ , refractive index n_D , speed of sound u, and isentropic compressibility data at 298.15 K with the corresponding excess molar volume V^E , refractive index deviation δn_D , speed sound deviation δu , and isentropic compress-

^{*} Corresponding author. E-mail: iqpredij@vc.ehu.es.

Table 1. Physical Properties of Pure Compounds: Densities ρ , Refractive Indices n_D , Speed of Sound u at 298.15 K, and Normal Boiling Points T_b

	$ ho/(kg\cdot m^{-3})$		n _D		$u/(\mathbf{m} \cdot \mathbf{s}^{-1})$		$T_{\rm b}/{ m K}$	
	obs	lit.a	obs	lit.a	obs	lit.a	obs	lit.a
ethyl acetate methyl acetate	894.29 926.96	894.55 927.9	1.36978 1.35865	1.36978 1.3589	1138 1148	1138 ^b 1150 ^c	350.25 330.03	350.261 330.018
ethyl lactate	1028.02	1027.2	1.41050	not avaliable	1277	not avaliable	424.98	427.70

^a Riddick et al.⁶ ^b Resa et al.⁵ ^c Nandhibatla et al.¹⁹

Figure 1. Equilibrium recirculation still used to measurement (vapor + liquid) equilibrium (VLE). A, heater; B, liquid-phase tank; C, oil jacket; D, condenser; E, vapor phase tank.

ibility δk_s deviation for the binary mixtures of ethyl acetate + ethyl lactate and methyl acetate + ethyl lactate.

The excess molar volumes of binary mixtures were calculated from density measurements by applying the equation

$$V^{\rm E} = x_1 M_1 (1/\rho - 1/\rho_1) + x_2 M_2 (1/\rho - 1/\rho_2)$$
(1)

where ρ is the density of the mixture, ρ_1 and ρ_2 are the densities of the pure substances, M_1 and M_2 are the molar masses, and x_1 and x_2 are the mole fractions. The uncertainty in the calculation of $V^{\rm E}$ from density measurements was estimated to be ± 0.001 cm³·mol⁻¹. Figure 2 illustrates the excess molar volumes of the two binary systems at 298.15 K.

The changes of refractive index δn_D at 298.15 K from the linear additive value of the mole fraction is obtained by

$$\delta n_{\rm D} = n_{\rm D} - (x_1 n_{\rm D1} + x_2 n_{\rm D2}) \tag{2}$$

where n_D is the refractive index of the mixture and n_{D1} and n_{D2} are the refractive indices of the pure compounds. The plot of δn_D versus the mole fraction x_1 of the most volatile compound of each binary system is given in Figure 3.

In the same way, the changes of speed of sound on mixing were calculated by the equation

$$\delta u = u - (x_1 u_1 + x_2 u_2) \tag{3}$$

where *u* is the speed of sound of the mixture and u_1 and u_2 are the speeds of sound of the pure compounds. The plot of δu

Table 2. Densities, Refractive Indices, Speed Sounds, and Isentropic
Compressibility for Ethyl Acetate (1) + Ethyl Lactate (2) and
Methyl Acetate (1) + Ethyl Lactate (2) at 298.15 K with Excess
Molar Volume V^{E} , Refractive Index Deviation δn_{D} , Speed of Sound
Deviation δu , and Isentropic Compressibility Deviation δk_s

	ρ	$V^{\rm E}$			и	δи	ks	$\delta k_{\rm s}$	
x_1	g•cm ⁻³	$cm^3 \cdot mol^{-1}$	$n_{\rm D}$	$\delta n_{\rm D}$	$\overline{m \cdot s^{-1}}$	$\overline{\mathbf{m}}\cdot\mathbf{s}^{-1}$	TPa ⁻¹	TPa ⁻¹	
Ethyl Acetate (1) + Ethyl Lactate (2)									
0.049	1.02250	-0.019	1.40880	0.000	1267	-1	607	-3	
0.100	1.01677	-0.038	1.40722	0.001	1263	-0	617	-6	
0.150	1.01085	-0.044	1.40535	0.001	1256	-0	627	-9	
0.200	1.00494	-0.057	1.40357	0.001	1249	0	638	-12	
0.251	0.99880	-0.066	1.40168	0.001	1243	0	648	-15	
0.300	0.99268	-0.065	1.40005	0.002	1236	0	659	-17	
0.350	0.98640	-0.068	1.39819	0.002	1229	0	672	-18	
0.400	0.97987	-0.057	1.39623	0.002	1222	0	684	-20	
0.450	0.97359	-0.072	1.39451	0.002	1215	0	696	-20	
0.500	0.96698	-0.080	1.39263	0.003	1208	0	709	-21	
0.550	0.96041	-0.088	1.39060	0.002	1201	1	722	-22	
0.600	0.95346	-0.078	1.38855	0.002	1194	1	735	-22	
0.650	0.94664	-0.082	1.38645	0.002	1188	1	749	-21	
0.700	0.93960	-0.074	1.38420	0.002	1180	1	764	-19	
0.756	0.93141	-0.064	1.38126	0.002	1173	1	781	-18	
0.800	0.92484	-0.037	1.37923	0.001	1167	1	794	-16	
0.849	0.91772	-0.055	1.37694	0.001	1160	1	810	-13	
0.900	0.91003	-0.039	1.37470	0.001	1153	1	827	-10	
0.950	0.90237	-0.031	1.37220	0.000	1145	0	845	-5	
		Methvl A	cetate (1)	+ Ethvl	Lactate	(2)			
0.058	1.02462	-0.023	1.40872	0.001	1272	2	603	-6	
0.100	1.02103	-0.029	1.40699	0.002	1266	2	611	-7	
0.150	1.01730	-0.038	1.40595	0.003	1261	3	618	-12	
0.200	1.01363	-0.061	1.40379	0.004	1255	4	626	-15	
0.250	1.00978	-0.071	1.40230	0.005	1250	5	634	-18	
0.300	1.00546	-0.068	1.39968	0.005	1244	6	643	-20	
0.350	1.00113	-0.069	1.39787	0.006	1238	6	652	-22	
0.400	0.99659	-0.069	1.39628	0.007	1232	7	661	-25	
0.450	0.99220	-0.080	1.39379	0.007	1226	7	670	-26	
0.500	0.98741	-0.082	1.39125	0.007	1220	7	680	-27	
0.550	0.98234	-0.074	1.38790	0.006	1213	7	692	-26	
0.600	0.97725	-0.081	1.38498	0.006	1207	7	703	-26	
0.650	0.97203	-0.087	1.38197	0.005	1200	7	714	-26	
0.700	0.96630	-0.078	1.37916	0.005	1193	6	727	-25	
0.750	0.96047	-0.072	1.37601	0.004	1186	6	740	-23	
0.800	0.95434	-0.060	1.37278	0.004	1180	6	753	-21	
0.850	0.94787	-0.040	1.36960	0.003	1172	4	768	-17	
0.900	0.94128	-0.035	1.36642	0.003	1164	3	784	-12	
0.950	0.93427	-0.018	1.36248	0.001	1157	2	800	-7	
					/	-			

versus the mole fraction x_1 of the more volatile compound of each binary system is given in Figure 4.

Isentropic compressibility deviation were calculated by equation

$$\delta k_{\rm s} = k_{\rm s} - (x_1 k_{\rm s1} + x_2 k_{\rm s2}) \tag{4}$$

where k_s is the isentropic compressibility of the mixture and k_{s1} and k_{s2} are the isentropic compressibilities of the pure compounds. The plot of δk_s versus the mole fraction x_1 of the more volatile compound of each binary system is given in Figure 5.

Excess molar volumes, changes of refractive index, speeds of sound, and isentropic compressibility deviation on mixing

Figure 2. Excess molar volumes of mixtures of ethyl acetate (1) + ethyl lactate (2) \blacktriangle and methyl acetate (1) + ethyl lactate (2) \blacklozenge at 298.15 K.

Figure 3. Change of refractive indices on ethyl acetate (1) + ethyl lactate (2) \blacktriangle and methyl acetate (1) + ethyl lactate (2) \blacklozenge at 298.15 K.

of the binary systems were fitted to Redlich-Kister polynomials of the form

$$(V^{\rm E} \text{ or } \delta_{\rm D} \text{ or } \delta u \text{ or } \delta k_{\rm s}) = x_1 x_2 \sum_{k \ge 0} a_k (x_1 - x_2)^k$$
 (5)

where a_k is the adjustable parameters obtained by a least-squares fit method and k is the degree of the polynomial expansion. Table 3 lists the parameters with their standard deviations σ . The coefficients a_k were used to calculate the solid curves (see Figures 2 to 5). The standard deviations σ are defined as follows:

$$\sigma = \sqrt{\frac{\sum (Z_{\rm cal} - Z_{\rm exp})_i^2}{N - m}}$$
(6)

where *N* is the number of experimental data, *m* is the number of equation parameters, and *Z* is the considered property ($V^{\rm E}$ or $\delta n_{\rm D}$ or δu or $\delta k_{\rm s}$) as shown in Table 3.

VLE Data. Vapor-liquid equilibrium data (T, x_1, y_1) for ethyl lactate (1) + ethyl acetate (2) and ethyl lactate (1) + methyl acetate (2) binary systems at 101.3 kPa are presented in Table 4. The $T-x_1-y_1$ phase diagrams are shown in Figures 6 and 7.

Figure 4. Change of speed sounds on mixing Ethyl acetate (1) + ethyl lactate (2) \blacktriangle and methyl acetate (1) + ethyl lactate (2) \blacklozenge at 298.15 K.

Figure 5. Isentropic compressibility deviation of ethyl acetate (1) + ethyl lactate (2) \blacktriangle and methyl acetate (1) + ethyl lactate (2) \blacklozenge at 298.15 K.

Table 3. Adjustable Parameters a_k with Standard Deviations σ for Excess Molar Volumes $V^{\rm E}$, Refractive Index Deviations $\delta n_{\rm D}$, Speeds of Sound Deviations δu , and Isentropic Compressibility Deviation $\delta k_{\rm s}$

	$V^{\rm E}$		δи	$\delta k_{ m s}$
	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$\delta n_{ m D}$	$\overline{\mathbf{m} \cdot \mathbf{s}^{-1}}$	TPa ⁻¹
	Ethyl Ace	tate (1) + Ethyl	Lactate (2)	
a_0	-0.315	0.009	2	-85
a_1	-0.064	0.001	2	-15
a_2	0.041	-0.004	9	-15
a_3	0.109	-0.002	9	-12
a_4	-0.335	0.002	-14	17
σ	0.007	0.000	0.1	0.2
	Methyl Ac	etate $(1) + Ethyl$	Lactate (2)	
a_0	-0.324	0.027	28	-103
a_1	-0.149	-0.007	5	-27
a_2	-0.038	-0.016	4	-13
a_3	0.439	0.019	2	-6
a_4	-0.300	0.020	2	-2
σ	0.013	0.000	0.3	0.4

The activity coefficients γ_i of the components were calculated from

$$\gamma_i = \frac{y_i \Phi_i P}{x_i P_i^0} \tag{7}$$

where x_i and y_i are the liquid and vapor mole fractions in equilibrium, Φ_i is a vapor phase correction factor, *P* is the total

Table 4. Vapor–Liquid Equilibrium Data for Ethyl Acetate (1) + Ethyl Lactate (2) and Methyl Acetate (1) + Ethyl Lactate (2) Systems: Liquid-Phase Mole Fraction x_1 , Vapor-Phase Mole Fraction y_1 , Boiling Temperature *T*, Activity Coefficients γ_1 and γ_2 at 101.3 kPa

x_1	<i>y</i> 1	T/K	γ_1	γ_2
	Ethyl Ace	tate(1) + Ethvl	Lactate (2)	
0.000	0.000	424.98	(_)	
0.015	0.116	421.19	1.371	1.061
0.035	0.238	417.39	1.258	1.055
0.050	0.315	414.54	1.241	1.058
0.098	0.514	405.28	1.244	1.081
0.152	0.624	398.08	1.142	1.145
0.185	0.686	393.89	1.135	1.158
0.202	0.717	391.81	1.141	1.150
0.246	0.765	387.77	1.101	1.175
0.307	0.826	381.69	1.107	1.195
0.350	0.855	378.46	1.091	1.204
0.417	0.890	373.82	1.077	1.226
0.514	0.927	367.89	1.069	1.245
0.556	0.938	365.70	1.064	1.269
0.604	0.948	363.83	1.044	1.292
0.688	0.964	360.36	1.030	1.318
0.727	0.969	359.03	1.019	1.374
0.766	0.975	357.43	1.021	1.387
0.810	0.981	355.93	1.016	1.388
0.855	0.986	354.57	1.009	1.424
0.943	0.995	351.87	1.003	1.461
0.977	0.998	350.84	1.003	1.518
1.000	1.000	350.25		
	Methyl Ace	etate (1) + Ethyl	Lactate (2)	
0.000	0.000	424.98		
0.011	0.154	419.85	1.511	1.056
0.043	0.401	409.96	1.207	1.071
0.077	0.562	401.45	1.117	1.089
0.112	0.681	393.12	1.106	1.112
0.153	0.775	384.62	1.112	1.132
0.185	0.807	381.00	1.041	1.161
0.261	0.880	370.56	1.035	1.210
0.289	0.898	367.01	1.044	1.239
0.323	0.917	363.53	1.044	1.227
0.350	0.929	360.78	1.050	1.231
0.409	0.947	355.74	1.052	1.261
0.464	0.961	351.45	1.062	1.242
0.540	0.971	347.50	1.035	1.291
0.596	0.978	344.49	1.033	1.285
0.695	0.986	340.14	1.021	1.335
0.745	0.989	338.20	1.019	1.369
0.785	0.991	336.72	1.013	1.440
0.822	0.993	333.33	1.013	1.450
0.914	0.997	332.03	1.020	1.519
0.933	0.999	220.49	1.012	1.019
1.000	1.000	330.48	1.005	2.243
1.000	1.000	330.03		

pressure, and P_i^0 is the vapor pressure of pure component *i*. These vapor pressures were calculated from the Antoine equation:

$$\log(P_i^{0}/kPa) = A_i - \frac{B_i}{(T/K) + C_i}$$
(8)

The constants A_i , B_i , and C_i are reported in Table 5, and their values were obtained from Riddick et al.⁶

The vapor-phase correction factor is given by

$$\Phi_i = \frac{\phi_i}{\phi_i^{\text{sat}}} \exp\left[-\frac{V_i (P - P_i^0)}{RT}\right]$$
(9)

where ϕ_i is the fugacity coefficient of component *i* in the mixture, ϕ_i^{sat} is the fugacity coefficient at saturation, and V_i is the molar volume of component *i* in the liquid phase.

Figure 6. $T-x_1-y_1$ diagram for ethyl acetate (1) + ethyl lactate (2) at 101.3 kPa: •, experimental data; ---, Wilson correlation; -, ASOG prediction.

Figure 7. $T-x_1-y_1$ diagram for methyl acetate (1) + ethyl lactate (2) at 101.3 kPa: •, experimental data; ---, Wilson correlation; -, ASOG prediction.

Table 5. Antoine Coefficients, Equation 7

compound	A_i	B_i	C_i
ethyl acetate methyl acetate	6.18799 6.24410	1224.673 1183.700	215.712 222.414
ethyl lactate	7.82690	2489.700	0

The activity coefficients were correlated with the Margules,⁹ van Laar,¹⁰ Wilson,¹¹ NRTL,¹² and UNIQUAC¹³ equations. To determine the constants of each model, we have used the method "VLE calc" suggested by Gess et al.¹⁴ Estimation of the parameters for the equation was based on the iterative solution, using the maximum likelihood regression of the objective function Q_{i} ,¹⁵ with the activity coefficients obtained from the consistency test as experimental values:

$$Q_i = \sum \left(\frac{\gamma_{\text{exptl}} - \gamma_{\text{calcd}}}{\gamma_{\text{exptl}}} \right)^2 \tag{10}$$

where γ_{exptl} is the activity coefficients calculated from experimental data and γ_{calcd} is the coefficients calculated with the correlations. The parameters, the average deviation in $T(\Delta T)$, and the average deviation in $y(\Delta y)$ are listed in Table 6. Also, the ASOG¹⁶ method was used to obtain predictions in Figures 6 and 7.

 Table 6. Correlation Parameters for Activity Coefficients and Average Deviation for the Studied Systems

equation	A_{12}	A_{21}	$\Delta T/\mathrm{K}$	Δy_1			
Ethyl Acetate (1) + Ethyl Lactate (2)							
Margules ^a	0.275	0.310	0.55	0.006			
van Laar ^a	0.269	0.316	0.54	0.006			
Wilson ^b	4415.1	-3426.1	0.61	0.006			
NRTL ^{<i>c</i>} ($\alpha_{12} = 0.30$)	814.5	149.1	0.56	0.006			
UNIQUAC ^d	1195.9	-772.0	0.73	0.006			
Methyl Acetate (1) + Ethyl Lactate (2)							
Margules ^a	0.118	0.280	0.94	0.006			
van Laar ^a	0.120	0.408	0.85	0.006			
Wilson ^b	3603.7	-2620.7	1.05	0.008			
NRTL ^{<i>c</i>} ($\alpha_{12} = 0.10$)	9047.4	-6455.6	0.82	0.006			
UNIQUAC ^d	1857.9	-1186.9	0.87	0.007			

^{*a*} Margules and van Laar constants (dimensionless). ^{*b*} Wilson's interaction parameters (J·mol⁻¹). ^{*c*} NRTL's interaction parameters (J·mol⁻¹). ^{*d*} UNI-QUAC's interaction parameters (J·mol⁻¹).

 Table 7. Results of the Thermodynamic Consistency Test and of the Margules Constant Test

system	avg deviation Δy_1	Margules constant
ethyl acetate (1) + ethyl lactate (2)	0.008	0.3877
methyl acetate (1) + ethyl lactate (2)	0.004	0.2629

The thermodynamic consistency of the experimental data was checked by means of a modified Dechema test¹⁷ where the fugacity coefficients are calculated by the method of Hayden and O'Connel,¹⁸ and activity coefficients are calculated by using the four-suffix Margules equation:

$$G^{\rm E}/RT = x_1 x_2 [Ax_2 + Bx_1 - Dx_1 x_2] \tag{11}$$

with the corresponding activity coefficients

$$\ln \gamma_1 = x_2^2 [A + 2(B - A - D)x_1 + 3Dx_1^2]$$
(12)

$$\ln \gamma_2 = x_1^2 [B + 2(A - B - D)x_2 + 3Dx_2^2]$$
(13)

Parameters A, B, and D were estimated using the error-invariables regression maximum likelihood technique. The constraint equation for the regression was

$$F = P - \left(\frac{x_1 \gamma_1^* f_1^0}{\phi_1} + \frac{x_2 \gamma_2^* f_2^0}{\phi_2}\right)$$
(14)

Here the asterisk (*) denotes a calculated or predicted value. An experimental value has no asterisk; f_1^0 and f_2^0 are the standard state fugacities. The errors in the prediction of y_1 were calculated. Predicted y_1^* values were obtained using the equation

$$y_1^* = \frac{x_1 \gamma_1^* f_1^0}{\phi_1 P^*} \tag{15}$$

An average deviation was calculated from

average deviation
$$=$$
 $\frac{\sum_{i=1}^{n} |\Delta y|}{n}$ (16)

Here $\Delta y = y_1 - y_1^*$ and n = the number of experimental data points. To pass the consistency test, a system must have an average deviation less than 0.01. The two systems included in this work have passed this consistency test (see Table 7).

We also carried out the Margules constant test using the program of Gess et al.¹⁴ The Margules constant can be used to indicate the ideality of a system. Systems that yield a Margules constant whose absolute value is less than 0.60 can be considered ideal, while those which yield an absolute value greater than 0.60 can be considered nonideal. This criterion for classification, however, is not rigorous. Table 7, shows the values of this constant.

Conclusions

New VLE data not previously reported in the literature have been measured for the systems ethyl acetate + ethyl lactate and methyl acetate + ethyl lactate as well as binary parameters, values of different correlations, and necessary physical properties for modeling and simulation of wine distillation.

Both systems present ideal behavior. The ASOG method prediction has good agreement with experimental data in both cases.

Correlations for the ethyl acetate + ethyl lactate system are very similar except UNIQUAC correlation, with Van Laar correlation lightly better than the others. Better correlation for the methyl acetate + ethyl lactate system is NRTL, being Wilson correlation the one that has higher deviation from the experimental correlation.

Excess molar volume trend is very similar between the two systems. In fact, we have two compounds (ethyl acetate and methyl acetate) that are from the same family and have a very similar aliphatic chain. One of them has an ethyl group, and the other one has a methyl group. We would anticipate that the behavior was similar between them. Both systems (ethyl acetate + ethyl lactate and methyl acetate + ethyl lactate and methyl acetate + ethyl lactate) have interactions of London dispersion weak forces. Then the $V^{\rm E}$ values are very small, that is very close to zero. They have a near ideality trend. Our newly designed apparatus of VLE is presented in this paper.

Literature Cited

- Resa, J. M.; González, C.; Juez, M.; Ortiz de Landaluce S. Density, refractive index and speed of sound for mixtures of ethyl acetate with 2-butanol and 3-methyl-1-butanol vapor-liquid equilibrium of the ethyl acetate + 3-methyl-1-butanol system *Fluid Phase Equilib.* 2004, 217, 175-180.
- (2) Resa, J. M.; González, C.; Goenaga, J. M. Density, refractive index, speed of sound at 298.15 K, and vapor-liquid equilibria at 101.3 kPa for binary mixtures of methanol + 2-methyl-1-butanol and ethanol + 2-methyl-1-butanol. J. Chem. Eng. Data 2005, 50, 1570-1575.
- (3) Resa, J. M.; González, C.; Goenaga, J. M. Density, refractive index, speed of sound at 298.15 K, and vapor-liquid equilibria at 101.3 kPa for binary mixtures of propanol + 2-methyl-1-butanol and propanol + 3-methyl-1-butanol. J. Chem. Eng. Data 2006, 51, 73–78.
- (4) Resa, J. M.; Goenaga, J. M.; Lanz, J.; Iglesias. M. Vapor-liquid equilibrium of binary mixtures containing ethyl acetate + 2-methyl-1-propanol and ethyl acetate + 2-methyl-1-butanol at 101.3 kPa J. *Chem. Eng. Data* 2006, *51*, 595–598.
- (5) Resa, J. M.; González, C.; Goenaga, J. M.; Iglesias. M. Density, refractive index, and speed of sound at 298.15 K and vapor-liquid equilibria at 101.3 kPa for binary mixtures of ethyl acetate + 1-pentanol and ethanol + 2-methyl-1-propanol. J. Chem. Eng. Data 2004, 49, 804-808.
- (6) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents; Wiley-Interscience: New York, 1986.
- (7) Rock, H.; Sieg, L. Measurement of evaporation equilibria in a modernized by-pass apparatus. Z. Phys. Chem. (Muenchen) 1955, 3, 355-64.
- (8) Othmer, D. F. Compositions of vapors from boiling binary solutions. *Ind. Eng. Chem.* **1928**, 20, 743–746.
- (9) Margules, M. S. Akad. B Wien. Math-Naturwiss. KI. II 1895, 104, 1234-1239.
- (10) van Laar, J. J. The vapor pressure of binary mixtures. Z. Phys. Chem. 1910, 72, 723–751.

- (11) Wilson, G. M. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 1964, 86, 6, 127– 130.
- (12) Renon, H.; Prausnitz, J. M. Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly non-ideal liquid mixtures. *Ind. Eng. Chem. Process. Des. Dev.* **1969**, *8*, 413–419.
- (13) Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partially or completely miscible systems. *AIChE J.* **1975**, *21*, 116–128.
- (14) Gess. M. A.; Danner, R. P.; Nagvekar, M. Thermodynamic Analysis of Vapor-Liquid Equilibria: Recommended Models and a Standard Data Base; DIPPR/AIChE: 1991.
- (15) Patino-Leal, H; Reilly, P. Statistical estimation of parameters in vapor– liquid equilibrium. *AIChE J.* **1982**, *28*, 580–584.
- (16) Kojima, K.; Tochigi, K. Prediction of Vapor-Liquid Equilibria by the ASOG Method; Kodansha Ltd.: Tokyo, 1979.

- (17) Gmehling, J.; Onken, U. Vapor-Liquid Equilibrium Data Collection; DECHEMA Chemistry Data Series; DECHEMA: Frankfurt, 1977; Vols. 1–8.
- (18) Hayden, J. G.; O'Connell, J. P. A generalized method for predicting second virial coefficients. *Ind. Eng. Chem. Process. Des. Dev.* 1975, 14, 209–216.
- (19) Sastry, N. V.; Patel, M. C. Densities, excess molar volumes, viscosities, speeds of sound, excess isentropic compressibilities, and relative permittivities for alkyl (methyl, ethyl, butyl, and isoamyl) acetates + glycols at different temperatures *J. Chem. Eng. Data* 2003, 48, 1019– 1027.

Received for review February 8, 2006. Accepted May 3, 2006. JE060052P