Electrical Conductances of Tetrabutylammonium Bromide, Sodium Tetraphenylborate, and Sodium Bromide in Methanol (1) + Water (2) Mixtures at (298.15, 308.15, and 318.15) K

Amritendu Chatterjee and Bijan Das*

Department of Chemistry, North Bengal University, Darjeeling 734 013, India

The electrical conductances of the solutions of tetrabutylammonium bromide (Bu₄NBr), sodium tetraphenylborate (NaBPh₄), and sodium bromide (NaBr) in methanol (1) + water (2) mixed solvent media containing 0.10, 0.20, and 0.30 volume fractions of methanol have been reported at (298.15, 308.15, and 318.15) K. The conductance data have been analyzed by the 1978 Fuoss conductance—concentration equation in terms of the limiting molar conductance have been estimated using tetrabutylammonium tetraphenylborate (Bu₄NBPh₄) as the "reference electrolyte". All of these three electrolytes are found to exist as free ions in the present solvent mixtures within the temperature range (298.15 to 318.15) K. Besides the relative permittivity and the viscosity of the media, specific interactions of the ions with the solvent media have been found to play a profound influence on their mobilities. Although the association constants of the electrolytes as well as the single-ion conductivity values increase appreciably with temperature.

Introduction

Studies on the transport properties of electrolytes in different solvent media are of great importance to obtain information as to the solvation and association behavior of ions in solutions. Earlier, we have investigated¹⁻⁷ these properties for a wide variety of electrolytes in different solvents in great detail. The solvent properties such as the viscosity and the relative permittivity have also been taken into account in determining the extent of ionic association and the solute-solvent interactions that enabled many to interpret the unique structure of the solvent. The present paper reports the molar conductivities of tetrabutylammonium bromide (Bu₄NBr), sodium tetraphenylborate (NaBPh₄), and sodium bromide (NaBr) in methanol (1) + water (2) mixtures at (298.15, 308.15, and 318.15) K in order to obtain precise temperature-dependent single-ion conductivities since such data are practically nonexistent in mixed solvent media.8,9

Experimental Section

Methanol (Sisco, India, 99 % pure) was dried over molecular sieves and distilled fractionally. The middle fraction was collected and redistilled. The physical properties of the purified solvent were found to be in good agreement with the literature values.¹⁰ Table 1 shows the comparison of the experimental values of density and viscosity of methanol with literature data.¹⁰ Triply distilled water with a specific conductance of less than 10^{-6} S·cm⁻¹ at 298.15 K was used for the preparation of the mixed solvents. The densities and viscosities of methanol (1) + water (2) mixed solvents used in this study at (298.15, 308.15, and 318.15) K are reported in Table 1 along with those (at 298.15 K) obtained from the literature.¹¹ The relative permittivities of methanol (1) + water (2) mixtures were obtained by

Table 1. Properties of Methanol (1) + Water (2) Mixtures	
Containing 0.10, 0.20, and 0.30 Volume Fractions of Methanol	at
(298.15, 308.15, and 318.15) K	

$ ho_0/\text{g-cm}^3$ $\eta_0/\text{mPa-s}$									
T/K this work lit. ^{<i>a</i>} this work lit. ^{<i>a</i>}	ϵ^c								
$\phi_1 = 0.01$									
$298.15 0.98297 0.98292^a 1.0844 1.080^a$	75.09								
308.15 0.97973 0.8665	71.57								
318.15 0.97604 0.7020	68.18								
$\phi_1 = 0.20$									
$298.15 0.96963 0.96996^a 1.3106 1.310^a$	71.61								
308.15 0.96632 1.0217	68.14								
318.15 0.96162 0.8075	64.80								
$\phi_1 = 0.30$									
$298.15 0.95620 0.95689^a 1.4712 1.472^a$	67.65								
308.15 0.95160 1.1418	64.25								
318.15 0.94626 0.8957	60.99								
$\phi_1 = 1.00$									
298.15 0.78659 0.78656^{b} 0.5446 0.5422^{b}	32.66								
308.15 0.77728 0.77720 ^b 0.4747 0.4742 ^b	30.74								
$318.15 0.76774 0.76770^b 0.4185 0.4174^b$	28.92								

^{*a*} From ref 11. ^{*b*} From ref 10. ^{*c*} From ref 12.

regressing the relative permittivity data as a function of solvent composition from the literature¹² and are included in Table 1.

All of these salts were of Fluka purum or puriss grade. Tetrabutylammonium bromide (Bu₄NBr) was purified by recrystallization from acetone, and the recrystallized salt was dried in vacuo at 333.15 K for 48 h. Sodium tetraphenylborate (NaBPh₄) was recrystallized three times from acetone and then dried under vacuum at 353.15 K for 72 h. Sodium bromide (NaBr) was dried in vacuo for 72 h immediately prior to use and was used without further purification.

Conductance measurements were carried out on a Pye-Unicam PW 9509 conductivity meter at a frequency of 2000 Hz using a dip-type cell of cell constant 1.15 cm^{-1} and having

* Corresponding author. E-mail: bijan_dasus@yahoo.com.

Table 2. Equivalent Conductances and Corresponding Molarities of Electrolytes in Methanol (1) + Water (2) Mixtures Containing 0.10, 0.20, and 0.30 Volume Fractions of Methanol at (298.15, 308.15, and 318.15) K

T =	298.15 K	T =	308.15 K	T =	318.15 K	T =	298.15 K	T =	308.15 K	T =	318.15 K
с	Λ	с	Λ	С	Λ	С	Λ	С	Λ	С	Λ
mol•dm ³	$\overline{S \cdot cm^2 \cdot mol^{-1}}$	mol•dm ³	$\overline{S \cdot cm^2 \cdot mol^{-1}}$	mol•dm ³	$S \cdot cm^2 \cdot mol^{-1}$	mol•dm ³	$S \cdot cm^2 \cdot mol^{-1}$	mol•dm ³	$\overline{S \cdot cm^2 \cdot mol^{-1}}$	mol•dm ³	S•cm ² •mol ⁻¹
					$\phi_1 =$	0.10					
					Bu ₄	NBr					
0.00896	74.88	0.00893	87.61	0.00508	92.09	0.01793	72.69	0.01767	84.47	0.01271	102.78
0.01024	74.70	0.01021	87.03	0.03819	94.80	0.02560	71.13	0.02552	82.50	0.01144	103.37
0.01152	74.32	0.01149	86.54	0.02542	98.18	0.03842	69.07	0.03830	79.88	0.01017	103.99
0.01280	73.96	0.01276	86.08	0.01780	100.72	0.05121	67.41	0.05105	77.77	0.00890	105.44
0.00709	(0, (4	0.00706	69.02	0.00702	NaF	h_4B	50.00	0.00072	(7.29	0.00070	91.20
0.00/98	60.04	0.00796	08.03	0.00792	82.29	0.00976	59.98	0.00972	07.28	0.00969	81.29
0.00845	60.40	0.00840	67.65	0.00850	82.05	0.01020	59.65	0.01017	66.02	0.01015	81.00
0.00887	60.14	0.00884	67.03	0.00001	81.53	0.01004	59.00	0.01001	66.76	0.01037	80.62
0.00751	00.14	0.00728	07.47	0.00725	01.55 No	D.01110	57.50	0.01105	00.70	0.01101	00.00
0.00909	107.42	0.00906	125.94	0.00903	152.38	0.04049	100.75	0.04027	118.02	0.04012	142.61
0.01010	106.90	0.01007	125.65	0.01003	152.05	0.05051	99.43	0.05034	116.37	0.05015	140.56
0.02019	104.25	0.02014	122.36	0.02006	147.98	0.06061	98.26	0.06041	114.91	0.06017	138.77
0.03031	102.32	0.03020	119.96	0.03009	145.01	0.07577	96.73	0.07551	113.01	0.07521	136.41
					$\phi_1 =$	0.20					
					Bu ₄	NBr					
0.00905	60.42	0.00899	73.62	0.00897	92.29	0.02264	57.73	0.02251	70.51	0.02244	88.26
0.01127	59.93	0.01120	73.05	0.01118	91.46	0.03389	56.15	0.03372	68.71	0.03360	85.99
0.01285	59.56	0.01350	72.44	0.01347	90.69	0.04514	54.87	0.04493	67.26	0.04474	84.18
0.01580	58.94	0.01570	71.91	0.01566	90.02	0.05640	53.78	0.05616	66.05	0.05590	82.65
					NaF	h_4B					
0.00720	48.27	0.00717	61.28	0.00714	77.10	0.00879	47.78	0.00876	60.78	0.00872	76.27
0.00760	48.14	0.00756	61.17	0.07533	76.89	0.00919	47.66	0.00916	60.63	0.00911	76.08
0.00800	48.02	0.00796	61.06	0.00793	76.67	0.00959	47.54	0.00956	60.46	0.00951	75.89
0.00840	47.90	0.00836	60.93	0.00832	76.47	0.00999	47.43	0.00999	60.28	0.00990	75.71
					Na	Br					
0.00930	87.68	0.00924	110.00	0.00923	141.36	0.04133	82.41	0.04108	102.61	0.04102	128.59
0.01033	87.51	0.01027	109.71	0.01025	140.37	0.051/2	81.30	0.05135	101.05	0.0513	125.92
0.02007	83.50	0.02034	100.07	0.0203	133.42	0.00197	80.33 79.49	0.00105	99.33	0.0013	125.57
0.05101	05.70	0.05001	104.45	0.05075	151.00	0.07251	79.49	0.07107	70.50	0.0717	121.47
					$\varphi_1 =$	0.50					
0.01104	52 (2	0.01000	(1.72)	0.01002	Bu ₄	NBr	10.22	0.02(29	56.25	0.02(22	72.50
0.01104	52.05	0.01099	01.72 50.80	0.01092	80.09	0.02050	48.33	0.02038	30.33 54.65	0.02022	75.59
0.01047	40.02	0.01340	58 34	0.01331	76.29	0.05515	40.90	0.05497	50.27	0.05462	65 53
0.02208	49.36	0.02198	57.63	0.02185	75.30	0.05521	43.41	0.05475	50.27	0.05402	05.55
0.02200	19.50	0.02190	57.05	0.02105	NoE	b.B					
0.00726	39.86	0.00723	56.78	0.00719	70.31	0.00841	39.53	0.00912	56.01	0.00833	69.72
0.00745	39.81	0.00742	56.70	0.00738	70.20	0.00916	39.31	0.00913	56.01	0.00908	69.35
0.00764	39.75	0.00799	56.48	0.00757	70.10	0.00917	39.31	0.00952	55.86	0.00946	69.17
0.00802	39.64	0.008373	56.30	0.00794	69.90	0.00956	39.20				
					Na	Br					
0.01008	77.88	0.01003	98.80	0.00998	129.09	0.04036	73.75	0.04013	93.11	0.04001	116.72
0.01513	76.98	0.01505	97.59	0.01498	126.29	0.05045	72.86	0.05016	91.84	0.05003	113.92
0.02017	76.15	0.02006	96.44	0.01997	123.92	0.06057	72.08	0.06020	90.74	0.06009	111.44
0.03026	74.82	0.03010	94.59	0.02999	119.98	0.06940	71.47	0.06897	89.87	0.06889	109.48

an uncertainty of 0.01 %. The cell was calibrated by the method of Lind et al.¹³ using aqueous potassium chloride solutions. The measurements were made in a water bath maintained within \pm 0.005 K of the desired temperature. The details of the experimental procedure have been described earlier.^{14,15} Solutions were prepared by mass for the conductance runs, the molalities being converted to molarities by the use of densities measured with an Ostwald–Sprengel-type pycnometer of about 25 cm³ capacity. Several independent solutions were prepared, and runs were performed to ensure the reproducibility of the results. Due correction was made for the specific conductance of the solvent by subtracting the specific conductance of the relevant solvent medium from those of the salt solutions. The kinematic viscosities were measured using a suspended level Ubbelohde-type viscometer.

To avoid moisture pickup, all solutions were prepared in a dehumidified room with utmost care. In all cases, the experiments were performed at least in five replicates for each solution and at each temperature, and the results were averaged. The experimental uncertainties in density, viscosity, and conductivity were always within 0.01 %, 0.08 %, and 0.12 %, respectively.

Results and Discussion

The measured molar conductances (Λ) of electrolyte solutions as functions of molar concentration (*c*) in methanol (1) + water (2) mixtures with volume fractions of 0.10, 0.20, and 0.30 of methanol at (298.15, 308.15, and 318.15) K are given in Table 2.

The conductance data have been analyzed by the 1978 Fuoss conductance–concentration equation.^{16,17} For a given set of

conductivity values (c_j , Λ_j ; j = 1, ..., n), three adjustable parameters—the limiting molar conductivity (Λ^0), the association constant (K_A), and the association diameter (R)—are derived from the following set of equations:

$$\Lambda = p[\Lambda^0(1 + RX + EL] \tag{1}$$

$$p = 1 - \alpha(1 - \gamma) \tag{2}$$

$$\gamma = 1 - K_A c \gamma^2 f^2 \tag{3}$$

$$-\ln f = \frac{\beta k}{2(1+kR)} \tag{4}$$

$$\beta = \frac{e^2}{\epsilon k_{\rm B} T} \tag{5}$$

$$K_{\rm A} = K_{\rm R}(1+K_{\rm S}) \tag{6}$$

where RX is the relaxation field effect, EL is the electrophoretic countercurrent, γ is the fraction of unpaired ions, and α is the fraction of contact pairs. K_A is the overall pairing constant evaluated from the association constants of contact pairs, K_S , of solvent-separated pairs, K_R . ϵ is the relative permittivity of the solvent, e is the electronic charge, k_B is the Boltzmann constant, k^{-1} is the radius of the ion atmosphere, c is the molarity of the solution, f is the activity coefficient, T is the temperature in absolute scale, and β is twice the Bjerrum distance. The computations were performed on a computer using the program as suggested by Fuoss. The initial Λ^0 values for the iteration procedure were obtained from Shedlovsky extrapolation¹⁸ of the data. Input for the program is the set $(c_j, \Lambda_j; j = 1, ..., n)$, n, ϵ , η , T, initial value of Λ^0 , and an instruction to cover a preselected range of R values.

In practice, calculations are made by finding the values of Λ^0 and α , which minimize the standard deviation, σ :

$$\sigma = \left[\sum \left[\Lambda_j(\text{calcd}) - \Lambda_j(\text{obsd})\right]^2 / (n-2)\right]^{1/2}$$
(7)

for a sequence of *R* values and then plotting σ against *R*; the best-fit *R* corresponds to the minimum in σ versus *R* curve. However, for the salts investigated here, since a preliminary scan using incremental *R* values from 4 to 20 produced no significant minima in the σ versus *R* curves, the *R* value was assumed to be R = a + d, where *a* is the sum of the ionic crystallographic radii and *d* is given by

$$d = 1.183 (M/\rho_0)^{1/3}$$
(8)

where *M* is the molecular weight of the solvent and ρ_0 is its density. The values of Λ^0 , *K*_A, and *R* obtained by this procedure are reported in Table 3.

To investigate the specific behavior of the individual ions comprising these electrolytes, it is necessary to split the limiting molar electrolyte conductances into their ionic components. The limiting ionic conductivities have been evaluated from the division of the Λ^0 values of Bu₄NBPh₄ using the following relationship:

$$\lambda^{0}(\mathrm{Bu}_{4}\mathrm{N}^{+}) = 0.517\Lambda^{0}(\mathrm{Bu}_{4}\mathrm{NPh}_{4}\mathrm{B})$$
(9)

as described in the literature.^{19,20}

The limiting molar conductances of NaBr in some selected methanol (1) + water (2) mixtures at 298.15 K have also been reported by Zhang et al.¹¹ They analyzed their data with the

Table 3. Derived Conductivity Parameters of Electrolytes in Methanol (1) + Water (2) Mixtures Containing 0.10, 0.20, and 0.30 Volume Fractions of Methanol at (298.15, 308.15, and 318.15) K

$\Lambda^0/S \cdot cm^2 \cdot mol^{-1}$	$K_{\rm A}/{\rm dm^3}\cdot{\rm mol^{-1}}$	<i>R</i> /Å	$\sigma / \%^a$				
	$\phi_1 = 0.10$						
	Bu ₄ NBr						
81.16 ± 0.07	2.72 ± 0.06	9.99	0.10				
95.30 ± 0.07	3.20 ± 0.05	10.09	0.08				
114.75 ± 0.28	3.81 ± 0.18	10.18	0.27				
	NaPh ₄ B						
66.87 ± 0.02	4.88 ± 0.04	9.50	0.01				
75.45 ± 0.02	4.83 ± 0.05	9.59	0.01				
91.86 ± 0.02	5.79 ± 0.03	9.68	0.01				
	NaBr						
$114.46 \pm .04$	1.41 ± 0.01	5.95	0.05				
134.88 ± 0.05	1.50 ± 0.02	5.95	0.05				
163.50 ± 0.07	1.61 ± 0.02	5.96	0.05				
	$\phi_1 = 0.20$						
	Bu₄NBr						
65.56 ± 0.05	2.74 ± 0.05	10.09	0.08				
79.87 ± 0.06	2.34 ± 0.05	10.09	0.09				
100.19 ± 0.09	2.40 ± 0.06	10.10	0.10				
	NaPh ₄ B						
53.14 ± 0.02	4.87 ± 0.06	9.59	0.01				
67.33 ± 0.19	4.16 ± 0.06	9.59	0.07				
85.18 ± 0.02	5.30 ± 0.03	9.68	0.01				
	NaBr						
93.85 ± 0.04	1.41 ± 0.02	6.04	0.05				
118.20 ± 0.08	1.82 ± 0.03	6.04	0.08				
153.22 ± 0.12	3.38 ± 0.04	6.05	0.08				
	$\phi_1 = 0.30$						
	Bu₄NBr						
59.94 ± 0.04	8.05 ± 0.06	10.18	0.05				
71.05 ± 0.04	8.95 ± 0.05	10.18	0.04				
93.08 ± 0.04	9.41 ± 0.04	10.19	0.03				
NaPh₄B							
44.46 ± 0.02	6.25 ± 0.09	9.68	0.01				
63.08 ± 0.05	6.44 ± 0.13	9.68	0.01				
78.17 ± 0.03	6.28 ± 0.06	9.69	0.01				
	NaBr						
83.67 ± 0.05	1.22 ± 0.03	6.13	0.07				
106.55 ± 0.08	1.55 ± 0.04	6.13	0.08				
142.04 ± 0.10	4.60 ± 0.04	6.14	0.07				
	$\begin{array}{c} \Lambda^{0/} S \cdot cm^{2} \cdot mol^{-1} \\ \\ & 81.16 \pm 0.07 \\ 95.30 \pm 0.07 \\ 114.75 \pm 0.28 \\ \\ & 66.87 \pm 0.02 \\ 75.45 \pm 0.02 \\ 91.86 \pm 0.02 \\ \\ & 114.46 \pm .04 \\ 134.88 \pm 0.05 \\ 163.50 \pm 0.07 \\ \\ & 65.56 \pm 0.05 \\ 79.87 \pm 0.06 \\ 100.19 \pm 0.09 \\ \\ & 57.87 \pm 0.06 \\ 100.19 \pm 0.09 \\ \\ & 53.14 \pm 0.02 \\ 67.33 \pm 0.19 \\ 85.18 \pm 0.02 \\ \\ & 93.85 \pm 0.04 \\ 118.20 \pm 0.08 \\ 153.22 \pm 0.12 \\ \\ & 59.94 \pm 0.04 \\ 71.05 \pm 0.04 \\ 93.08 \pm 0.04 \\ 71.05 \pm 0.04 \\ 93.08 \pm 0.04 \\ 44.46 \pm 0.02 \\ 63.08 \pm 0.05 \\ 78.17 \pm 0.03 \\ \\ & 83.67 \pm 0.05 \\ 106.55 \pm 0.08 \\ 142.04 \pm 0.10 \\ \end{array}$	$\begin{array}{c c} \Lambda^{0}/\mathrm{S}\cdot\mathrm{cm}^{2}\cdot\mathrm{mol}^{-1} & K_{\mathrm{A}}/\mathrm{dm}^{3}\cdot\mathrm{mol}^{-1} \\ & \phi_{1}=0.10 \\ & \mathrm{Bu_{4}NBr} \\ 81.16\pm0.07 & 2.72\pm0.06 \\ 95.30\pm0.07 & 3.20\pm0.05 \\ 114.75\pm0.28 & 3.81\pm0.18 \\ & \mathrm{NaPh_{4}B} \\ 66.87\pm0.02 & 4.83\pm0.04 \\ 75.45\pm0.02 & 4.83\pm0.05 \\ 91.86\pm0.02 & 5.79\pm0.03 \\ & \mathrm{NaBr} \\ 114.46\pm.04 & 1.41\pm0.01 \\ 134.88\pm0.05 & 1.50\pm0.02 \\ 163.50\pm0.07 & 1.61\pm0.02 \\ \phi_{1}=0.20 \\ & \mathrm{Bu_{4}NBr} \\ 65.56\pm0.05 & 2.74\pm0.05 \\ 100.19\pm0.09 & 2.40\pm0.06 \\ & \mathrm{NaPh_{4}B} \\ 53.14\pm0.02 & 4.87\pm0.06 \\ 67.33\pm0.19 & 4.16\pm0.06 \\ 67.33\pm0.19 & 4.16\pm0.06 \\ 67.33\pm0.19 & 4.16\pm0.06 \\ 85.18\pm0.02 & 5.30\pm0.03 \\ & \mathrm{NaBr} \\ 93.85\pm0.04 & 1.41\pm0.02 \\ 118.20\pm0.08 & 1.82\pm0.03 \\ 153.22\pm0.12 & 3.38\pm0.04 \\ \phi_{1}=0.30 \\ & \mathrm{Bu_{4}NBr} \\ 59.94\pm0.04 & 8.05\pm0.06 \\ 71.05\pm0.04 & 8.95\pm0.05 \\ 93.08\pm0.04 & 9.41\pm0.04 \\ & \mathrm{NaPh_{4}B} \\ 44.46\pm0.02 & 6.25\pm0.09 \\ 63.08\pm0.05 & 6.44\pm0.13 \\ 78.17\pm0.03 & 6.28\pm0.06 \\ & \mathrm{NaBr} \\ 83.67\pm0.05 & 1.22\pm0.03 \\ 106.55\pm0.08 & 1.55\pm0.04 \\ 142.04\pm0.10 & 4.60\pm0.04 \\ \end{array}$	$\begin{array}{c ccccc} \Lambda^{0}/\text{S}\cdot\text{cm}^{2}\cdot\text{mol}^{-1} & K_{\text{A}}/\text{dm}^{3}\cdot\text{mol}^{-1} & R/\text{\AA} \\ \hline \phi_{1} = 0.10 \\ & \text{Bu}_{4}\text{NBr} \\ 81.16 \pm 0.07 & 2.72 \pm 0.06 & 9.99 \\ 95.30 \pm 0.07 & 3.20 \pm 0.05 & 10.09 \\ 114.75 \pm 0.28 & 3.81 \pm 0.18 & 10.18 \\ & \text{NaPh}_{4}\text{B} \\ 66.87 \pm 0.02 & 4.88 \pm 0.04 & 9.50 \\ 75.45 \pm 0.02 & 4.83 \pm 0.05 & 9.59 \\ 91.86 \pm 0.02 & 5.79 \pm 0.03 & 9.68 \\ & \text{NaBr} \\ 114.46 \pm .04 & 1.41 \pm 0.01 & 5.95 \\ 134.88 \pm 0.05 & 1.50 \pm 0.02 & 5.95 \\ 163.50 \pm 0.07 & 1.61 \pm 0.02 & 5.96 \\ \phi_{1} = 0.20 \\ & \text{Bu}_{4}\text{NBr} \\ 65.56 \pm 0.05 & 2.74 \pm 0.05 & 10.09 \\ 79.87 \pm 0.06 & 2.34 \pm 0.05 & 10.09 \\ 100.19 \pm 0.09 & 2.40 \pm 0.06 & 10.10 \\ & \text{NaPh}_{4}\text{B} \\ 53.14 \pm 0.02 & 5.30 \pm 0.03 & 9.68 \\ & \text{NaBr} \\ 93.85 \pm 0.04 & 1.41 \pm 0.02 & 6.04 \\ 118.20 \pm 0.08 & 1.82 \pm 0.03 & 6.04 \\ 153.22 \pm 0.12 & 3.38 \pm 0.04 & 6.05 \\ \phi_{1} = 0.30 \\ & \text{Bu}_{4}\text{NBr} \\ 59.94 \pm 0.04 & 8.95 \pm 0.05 & 10.18 \\ 93.08 \pm 0.04 & 9.41 \pm 0.04 & 10.19 \\ & \text{NaPh}_{4}\text{B} \\ 44.46 \pm 0.02 & 6.25 \pm 0.09 & 9.68 \\ 78.17 \pm 0.03 & 6.28 \pm 0.06 & 9.69 \\ 63.08 \pm 0.05 & 6.44 \pm 0.13 & 9.68 \\ 78.17 \pm 0.03 & 6.28 \pm 0.06 & 9.69 \\ \hline \text{NaBr} \\ 83.67 \pm 0.05 & 1.22 \pm 0.03 & 6.13 \\ 106.55 \pm 0.08 & 1.55 \pm 0.04 & 6.13 \\ 142.04 \pm 0.10 & 4.60 \pm 0.04 & 6.14 \\ \hline \end{array}$				

 $a \sigma / \% = 100 \sigma / \Lambda^0$.

Fuoss-Onsager equation. Consequently, a direct comparison is not possible.

The limiting molar conductivity (Λ^0) of the "reference electrolyte" Bu₄NBPh₄ was obtained by considering the Kohlrausch rule that allows the calculation of the Λ^0 value for a given electrolyte by the appropriate combination of others. The Λ^0 values of Bu₄NBr, NaBPh₄, and NaBr obtained in the present solvent media have been used to obtain the Λ^0 value of Bu₄NBPh₄ through the following equation:

$$\Lambda^{0}(\mathrm{Bu}_{4}\mathrm{NBPh}_{4}) = \Lambda^{0}(\mathrm{Bu}_{4}\mathrm{NBr}) + \Lambda^{0}(\mathrm{NaPh}_{4}\mathrm{B}) - \Lambda^{0}(\mathrm{NaBr})$$
(10)

The limiting ionic conductances calculated from the above equations are recorded in Table 4.

The association constants (K_A) listed in Table 3 for all these systems are practically negligible (i.e., $K_A < 10$). So, the numerical values of K_A should not be taken seriously.²¹ One can only conclude that all of these three electrolytes exist as free ions in the present methanol—water solvent mixtures within the temperature range of (298.15 to 318.15) K. This is expected because the relative permittivities of the solvent mixtures are

Table 4. Limiting Ionic Conductances in Methanol (1) + Water (2)Mixtures Containing 0.10, 0.20, and 0.30 Volume Fractions ofMethanol at (298.15, 308.15, and 318.15) K

	λ_{\pm}^{0} /S·cm ² ·mol ⁻¹						
T/K	Na ⁺	Bu_4N^+	Br ⁻	Ph_4B^-			
$\phi_1 = 0.10$							
298.15	50.66	17.36	63.80	16.21			
308.15	58.12	18.54	76.76	17.33			
318.15	71.04	22.29	92.46	20.82			
		$\phi_1 = 0.20$					
298.15	41.14	12.85	52.71	12.00			
308.15	53.32	14.99	64.88	14.01			
318.15	69.65	16.62	83.57	15.53			
		$\phi_1 = 0.30$					
298.15	34.45	10.72	49.22	10.01			
308.15	49.76	14.26	56.79	13.32			
318.15	64.06	15.10	77.98	14.11			

fairly high (66.75 $\leq \epsilon \leq$ 76.78), thus promoting dissociation of electrolytes.

In all the mixed solvent media, the limiting ionic equivalent conductances decrease in the order: $\lambda_{Br}^{-0} > \lambda_{Na}^{+0} > \lambda_{Bu_4N}^{+0} > \lambda_{Ph_4B}^{-0}$ at each temperature, indicating that the sizes of these ions as they exist in solutions follow the order: $Br^- < Na^+ < Bu_4N^+ < Ph_4B^-$. It is also observed that the limiting ionic equivalent conductances of all the ions decrease in going from 0.10 volume fraction of methanol to 0.30 volume fraction of methanol in the mixture at all temperatures investigated.

The limiting equivalent conductances of the electrolytes as well as the single-ion conductivity values increase appreciably with temperature. The effect of temperature on λ_{Na}^{+0} and λ_{Br}^{-0} ions is more pronounced as compared to that as $\lambda_{Bu_4N}^{+0}$ and $\lambda_{Ph_4B}^{-0}^{-0}$ in the present mixed solvent media.

Literature Cited

- (1) Das, B.; Saha, N.; Hazra, D. K. Ionic association and conductances of some symmetrical tetralkylammonium salts in methanol, acetonitrile, and methanol (1) + acetonitrile (2) mixtures at 298.15 K. J. Chem. Eng. Data 2000, 45, 353–357.
- (2) Das, D.; Das, B.; Hazra, D. K. Conductance of some 1:1 electrolytes in *N*,*N*-dimethylacetamide at 25 °C. *J. Solution Chem.* 2002, *31*, 425– 431.
- (3) Victor, P. J.; Das, B.; Hazra, D. K. A study on the solvation phenomena of some sodium salts in 1,2-dimethoxyethane from conductance, viscosity, ultrasonic velocity, and FT-Raman spectral measurements. *J. Phys. Chem. A* 2001, *105*, 5960–5964.
- (4) Guha, C.; Chakraborty, J. M.; Karanjai, S.; Das, B. The structure and thermodynamics of ion association and solvation of some thiocyanates

and nitrates in 2-methoxyethanol studied by conductometry and FTIR spectroscopy. J. Phys. Chem. B 2003, 107, 12814–12819.

- (5) Chakraborty, J. M.; Das, B. Electrical conductances and viscosities of tetrabutylammonium thiocyanate in acetonitrile in the temperature range 25–45 °C. Z. Phys. Chem. 2004, 218, 219–230.
- (6) Haldar, P.; Das, B. Electrical conductances of tetrabutylammonium bromide, sodium tetraphenylborate and sodium bromide in 2-ethoxyethanol in the temperature range 35–50 °C. Z. Phys. Chem. 2004, 218, 599–609.
- (7) Haldar, P.; Das, B. Electrical conductances of tetraethyleammonium bromide, tetrapropylammonium bromide in 2-ethoxethanol (1) + water (2) mixtures at (308.15, 313.15, 318.15 and 323.15) K. J. Chem. Eng. Data 2005, 50, 1768–1772.
- (8) Covington, A. K.; Dickinson, T. Physical Chemistry of Organic Solvent Systems; Plenum Press: New York, 1973.
- (9) Popovych, O.; Tonkins, R. P. T. Non Aqueous Solution Chemistry; Wiley-Interscience: New York, 1981.
- (10) Doe, H.; Kitagawa, T.; Sasabe, K. Conductometric study of some metal(II) perchlorates in methanol. J. Phys. Chem. 1984, 88, 3341– 3345.
- (11) Zhang, S.; Li, H.; Dai, S.; Wang, T.; Han, S. Molar conductances of sodium bromide and sodium iodide in methanol + water at 298.15 K. J. Chem. Eng. Data 1997, 42, 651–654.
- (12) Albright, P. S.; Gasting, L. J. Dielectric constants of methanol-water system from 5 to 55 °C. J. Am. Chem. Soc. 1946, 68, 1061–1063.
- (13) Lind, J. E., Jr.; Zwolenik, J. J.; Fuoss, R. M. Calibration of conductance cells at 25 °C with aqueous solutions of potassium chloride. *J. Am. Chem. Soc.* **1959**, *81*, 1557–1559.
- (14) Das, B.; Hazra, D. K. Studies on the viscosities, conductances, and adiabatic compressibilities of some tetraalkylammonium perchlorates in 2-methoxyethanol. *Bull. Chem. Soc. Jpn.* **1992**, *65*, 3470–3476.
- (15) Das, B.; Hazra, D. K. Conductometric, viscometric, and spectroscopic investigations on the solvation phenomena of alkali-metal ions and ion pairs in 2-methoxyethanol. J. Phys. Chem. 1995, 99, 269–273.
- (16) Fuoss, R. M. Paired ions: dipolar pairs as subset of diffusion pairs. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 16–20.
- (17) Fuoss, R. M. Conductance-concentration function for the paired ion model. J. Phys. Chem. 1978, 82, 2427–2440.
- (18) Fuoss, R. M.; Shedlovsky, T. Extrapolation of conductance data for weak electrolytes. J. Am. Chem. Soc. 1949, 71, 1496–1498.
- (19) Das, B.; Hazra, D. K. Conductance of selected alkali metal salts in aqueous binary mixtures of 2-methoxyethanol at 25 °C. J. Solution Chem. 1998, 27, 1021–1030.
- (20) Muhuri, P. K.; Hazra, D. K. Effect of solvent composition on ionic mobilities of some tetraalkylammonium and common ions in propylene carbonate + methanol media at 25 °C. Z. Phys. Chem. 1995, 190, 111–122.
- (21) Bahadur, L.; Ramanamurti, M. V. Conductance studies in amidewater mixtures. VI. Nitrates of sodium, potassium, and ammonium in *N*,*N*-dimethylformamide-water mixtures at 25 °C. *Can. J. Chem.* **1984**, *62*, 1051–1055.

Received for review February 22, 2006. Accepted April 6, 2006. The authors thank the University of North Bengal for financial assistance.

JE0600810