# Solubility of Pyrazine and Its Derivatives in Supercritical Carbon Dioxide 

Zhihao Shen, Dan Li, and Mark A. McHugh*<br>Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23220


#### Abstract

Isopleths and solution densities are reported, from $\approx 25$ to $100^{\circ} \mathrm{C}$ and pressures to $\approx 200$ bar, for mixtures of $\mathrm{CO}_{2}$ with pyrazine, 2-methoxypyrazine, 2-acetylpyrazine, 2-methylpyrazine, and 2,3-dimethylpyrazine. These five solute $+\mathrm{CO}_{2}$ systems exhibit type-I phase behavior with similar mixture critical pressures up to $100{ }^{\circ} \mathrm{C}$. The Peng-Robinson equation of state, with $k_{i j}$ equal to zero, provides a semi-quantitative representation of the data for all of the pyrazines with the exception of the 2-acetylpyrazine $+\mathrm{CO}_{2}$ system, which required a $k_{i j}$ of -0.100 to get a reasonable representation of the data. The data presented here further substantiates the observation that supercritical $\mathrm{CO}_{2}$ can be used to extract pyrazines from natural materials.


## Introduction

Pyrazines are important components that contribute to the flavor and aroma of many foods. ${ }^{1-3}$ Pyrazine compounds are also known to be present naturally in tobacco and are generally believed to contribute to roasted and nut-like flavors. ${ }^{4}$ Within the past decade, supercritical fluid (SCF) extraction has been used to analyze the pyrazine content ${ }^{5,6}$ of natural materials. Solubility data are needed to scale any SCF extraction process to industrial size. A few studies have reported on the phase behavior of pyrazine and pyrazine derivatives in SCF solvents. Yamamoto et al. reported the high-pressure phase behavior of binary mixtures of pyrazine with $\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{CHF}_{3}$ at -63 to $67{ }^{\circ} \mathrm{C}$ and pressure to 300 bar. ${ }^{7}$ They found that the pyrazine $+\mathrm{CO}_{2}$ system exhibits type-I phase behavior. ${ }^{8,9}$ Nakatani et al. reported the solid solubility of 2-aminopyrazine and 2-carboxylic acidpyrazine in $\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{CHF}_{3}$ at $35{ }^{\circ} \mathrm{C} .{ }^{10}$ Both of these compounds showed higher solubility in $\mathrm{CO}_{2}$ than in $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$, and they have the highest solubility in $\mathrm{CHF}_{3}$ likely due to the high polarity of $\mathrm{CHF}_{3} .{ }^{10}$

In the present paper, solubility and solution density data are reported for pyrazine, 2-methoxypyrazine, 2-acetylpyrazine, 2-methylpyrazine, and 2,3-dimethylpyrazine in $\mathrm{CO}_{2}$. Table 1 shows the structure, select physical properties, and critical properties of the pyrazines used in this study. The PengRobinson equation of state ${ }^{11}$ (PR EOS) is used to model the experimental data obtained in this study. Steele et al. ${ }^{12}$ report the critical temperature, critical pressure, and acentric factor for pyrazine. The Joback-Lydersen group contribution method ${ }^{13}$ is used to estimate the critical properties and acentric factor of 2-methoxypyrazine, 2-methylpyrazine, and 2,3-dimethylpyrazine and the critical pressure and acentric factor for 2-acetylpyrazine. Fedors method, ${ }^{13}$ which is most useful when the boiling point is not available, is used to estimate the critical temperature of 2-acetylpyrazine.

## Experimental Section

Described elsewhere are the apparatus and techniques used to obtain solute $+\mathrm{CO}_{2}$ phase behavior data. ${ }^{14,15}$ The main component of the experimental apparatus is a high-pressure,

[^0]variable-volume cell (Nitronic $50,7.0 \mathrm{~cm}$ o.d., 1.5 cm i.d., $\approx$ $15 \mathrm{~cm}^{3}$ working volume). The empty cell is purged with $\mathrm{CO}_{2}$ at $\approx 6$ bar three times to remove traces of air. Liquid 2-methylpyrazine, 2,3-dimethylpyrazine, and 2-methoxypyrazine are then loaded into the cell to within $\pm 0.0001 \mathrm{~g}$ using a syringe. However, solid pyrazine or 2-acetylpyrazine is first loaded into the cell to within $\pm 0.0001 \mathrm{~g}$, and the cell is then purged with $\mathrm{CO}_{2}$ at $\approx 6$ bar three times. $\mathrm{CO}_{2}$ is then added to the cell to within $\pm 0.01 \mathrm{~g}$ using a high-pressure bomb. The solution in the cell is stirred using a stirring bar controlled by a magnet located beneath the cell. The contents of the cell are projected onto a video monitor using a camera coupled to a borescope (Olympus Corp., model F100-024-000-55) placed directly against the sapphire window. The solution temperature is measured to within $\pm 0.1^{\circ} \mathrm{C}$ (type K thermocouple calibrated against a NIST certified thermometer) and is held constant to within $\pm 0.3^{\circ} \mathrm{C}$. The system pressure is measured with a Heise pressure gauge (model CM-57303) with an uncertainty of $\pm$ 1.4 bar. The mixture in the cell is compressed to a single phase, and the pressure is then slowly decreased until a second phase appears. A bubble point is obtained if small bubbles appear in the cell, a dew point is obtained if a fine mist appears in the cell, and a mixture critical point is obtained if critical opalescence is observed and if two, equal-volume phases are observed after the second phase appears. Isopleth data are averaged values from phase transition measurements reproduced 2-3 times to within $\pm 1.4$ bar for bubble points and 2.1 bar for dew points. In both cases, the composition of the predominant phase is equal to the overall solution composition as the amount of mass present in the second phase is negligible. The solution concentrations of a given isopleth have an accumulated uncertainty of less than $\approx \pm 1 \%$.

Solution density data are measured in the single-phase region up to within $\pm 1.4$ bar of the phase transition using a linear displacement technique ${ }^{16,17}$ given in detail elsewhere. ${ }^{18}$ At a given pressure and temperature the volume of the cell is determined by detecting the location of the internal piston with a linear variable differential transformer coil (Lucas Schaevitz Co., model $2000-\mathrm{HR}$ ) that fits around a 1.43 cm high-pressure tube and tracks the magnetic tip of a steel rod connected to the piston. Solution densities are calculated knowing the amount

Table 1. Structure and Physical Properties of Pyrazines Used in This Study ${ }^{a}$

| Name | Structure | Molecular <br> Weight | $\mathrm{t}_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$ | $\mathrm{t}_{\mathrm{b}} /{ }^{\circ} \mathrm{C}$ | $\mathrm{t}_{\mathrm{c}} /{ }^{\circ} \mathrm{C}$ | $\mathrm{P}_{\mathrm{c}} / \mathrm{bar}$ | Acentric <br> Factor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pyrazine |  | 80.1 | 52.0 | 115.0 | 353.9 | 67.0 | 0.270 |
| 2-methoxy <br> pyrazine |  | 110.1 | --- | 61.0 | 232.7 | 52.4 | 0.427 |
| 2-acetyl pyrazine |  | 122.1 | 78.0 | --- | 469.5 | 51.2 | 0.412 |
| 2-methyl pyrazine |  | 94.1 | -29.0 | 135.0 | 358.0 | 53.7 | 0.352 |
| 2,3-dimethyl pyrazine |  | 108.1 | 12.0 | 156.0 | 374.2 | 45.9 | 0.396 |

[^1]of material in the cell and the cell volume. The solution densities have an accumulated uncertainty of less than $\pm 2 \% .^{18}$

Materials. $\mathrm{CO}_{2}$ was obtained from Roberts Oxygen Corporation ( $99.5 \%$ minimum purity) and used as received. Pyrazine ( $99.95 \%$ purity), 2-methylpyrazine ( $99.7 \%$ purity), 2,3dimethylpyrazine ( 99.9 \% purity), 2-methoxypyrazine ( $99.9 \%$ purity), and 2-actylpyrazine ( $99.9 \%$ purity) were obtained from Sigma-Aldrich Co. and used as received.

## Results and Discussion

Tables 2 to 6 list the $P, t$ isopleth data obtained in this study along with the density data at each phase transition for all of the systems and density data in the one-phase region for the pyrazine, 2-methylpyrazine, and 2,3-dimethylpyrazine systems. Smooth curves are fit to the $P, t$ isopleth data that are then cross plotted to generate graphs of the pressure-composition $(P, x)$ isotherms. The $P, x$ plots presented here only show smoothed curves from the $P, t$ data.

The isopleths in Figure 1 demonstrate that only modest pressures are needed to dissolve pyrazine in $\mathrm{CO}_{2}$ even at 100 ${ }^{\circ} \mathrm{C}$. Although not presented here, the isopleths for the four pyrazine derivative $+\mathrm{CO}_{2}$ systems exhibit very similar behavior and pressures to those of the pyrazine $+\mathrm{CO}_{2}$ system. Figure 2 shows the $P, x$ isotherms of pyrazine, 2-methoxypyrazine, 2-acetylpyrazine, 2-methylpyrazine, and 2,3-dimethylpyrazine in $\mathrm{CO}_{2}$ at $25,50,75$, and $100^{\circ} \mathrm{C}$. The 25 and $50^{\circ} \mathrm{C}$ pyrazine $+\mathrm{CO}_{2}$ isotherms in Figure 2A are truncated at the solid + liquid + gas-phase boundary reported by Yamamoto et al. ${ }^{7}$ The 2-acetylpyrazine $+\mathrm{CO}_{2} 50{ }^{\circ} \mathrm{C}$ isotherm in Figure 2C is also truncated at the highest solute mole fraction investigated where the solute-rich phase was a liquid. The $25^{\circ} \mathrm{C}$ 2-acetylpyrazine $+\mathrm{CO}_{2}$ isotherm is not shown in Figure 2C since only a few


Figure 1. Isopleth data for the $x$ pyrazine $+\mathrm{CO}_{2}$ system obtained in this study. Only a few isopleths are shown to avoid crowding the graph. $\Delta, x=0.116 ; \bigcirc, x=0.056 ; \square, x=0.028 ; \square, x=0.308 ;, x=0.495$; $\mathbf{\Delta}, x=0.725$.
bubble points were obtained at 2-acetylpyrazine mole fractions less than $\approx 0.03$. Information on the solid + liquid + gas boundary for the 2-acetylpyrazine $+\mathrm{CO}_{2}$ system is needed to define more precisely the (25 and 50) ${ }^{\circ} \mathrm{C}$ isotherms that should be truncated. Found elsewhere ${ }^{7,8,19}$ are more details on the characteristics of the global phase diagrams for solute-solvent mixtures that exhibit three-phase solid + liquid + gas behavior very near a mixture critical curve.
The shape and maximum pressures for the pyrazine isotherms at mole fractions below $\approx 0.50$ (Figure 2A) are similar to those isotherms where a methyl group (Figure 2D), two methyl groups (Figure 2E), or a methoxy group (Figure 2B) is added to pyrazine. However, the (75 and 100) ${ }^{\circ} \mathrm{C}$ isotherms for the 2-acetylpyrazine $+\mathrm{CO}_{2}$ system are at significantly higher pressures, which is not surprising since 2-acetylpyrazine has the highest melting point and the highest molecular weight of

Table 2. Experimental Pressure $\boldsymbol{P}$ and Density $\rho$ at Temperature $\boldsymbol{t}$ for Pyrazine $+\mathrm{CO}_{2}$ at Various Mole Fractions $\boldsymbol{x}$ of Pyrazine ${ }^{a}$

| $\frac{t}{{ }^{\circ} \mathrm{C}}$ | $\frac{P}{\text { bar }}$ | $\frac{\rho}{\mathrm{g} \cdot \mathrm{~cm}^{-3}}$ |  | $\frac{t}{{ }^{\circ} \mathrm{C}}$ | $\frac{P}{\text { bar }}$ | $\frac{\rho}{\mathrm{g} \cdot \mathrm{~cm}^{-3}}$ |  | $\frac{t}{{ }^{\circ} \mathrm{C} \mathrm{C}}$ | $\frac{P}{\text { bar }}$ | $\frac{\rho}{\mathrm{g} \cdot \mathrm{~cm}^{-3}}$ |  | $\frac{t}{{ }^{\circ} \mathrm{C}}$ | $\frac{P}{\text { bar }}$ | $\frac{\rho}{\mathrm{g} \cdot \mathrm{~cm}^{-3}}$ |  | $\frac{t}{{ }^{\circ} \mathrm{C}}$ | $\frac{P}{\mathrm{bar}}$ | $\frac{\rho}{\mathrm{g} \cdot \mathrm{~cm}^{-3}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x=0.015$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25.1 | 64.8 | 0.857 | BP | 25.1 | 65.9 | 0.863 | S | 25.1 | 68.6 | 0.873 | S | 25.1 | 75.2 | 0.892 | S | 25.1 | 87.9 | 0.918 | S |
| 30.6 | 72.8 | 0.802 | BP | 30.6 | 74.8 | 0.828 | S | 30.6 | 81.7 | 0.861 | S | 30.6 | 94.1 | 0.898 | S | 30.6 | 102.4 | 0.917 | S |
| 30.6 | 124.5 | 0.956 | S | 38.9 | 84.7 | 0.656 | BP | 38.9 | 89.3 | 0.713 | S | 38.9 | 97.6 | 0.778 | S | 38.9 | 99.3 | 0.787 | S |
| 38.9 | 104.1 | 0.812 | S | 38.9 | 111.0 | 0.835 | S | 38.9 | 119.0 | 0.856 | S | 45.8 | 89.7 | 0.452 | DP | 45.8 | 92.1 | 0.512 | S |
| 45.8 | 92.8 | 0.527 | S | 45.8 | 94.8 | 0.571 | S | 45.8 | 99.0 | 0.607 | S | 51.5 | 92.4 | 0.382 | DP | 51.5 | 93.4 | 0.394 | S |
| 51.5 | 96.2 | 0.408 | S | 51.5 | 98.3 | 0.423 | S | 51.5 | 104.5 | 0.527 | S | 51.5 | 109.7 | 0.576 | S | 51.5 | 113.8 | 0.611 | S |
| 51.5 | 116.2 | 0.627 | S | 51.5 | 117.6 | 0.640 | S | 51.5 | 124.5 | 0.674 | S |  |  |  |  |  |  |  |  |
| $x=0.019$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22.4 | 61.0 | 0.842 | BP | 22.4 | 64.5 | 0.854 | S | 22.4 | 70.0 | 0.877 | S | 22.4 | 90.7 | 0.915 | S | 31.0 | 72.9 | 0.776 | BP |
| 31.0 | 76.9 | 0.791 | S | 31.0 | 83.8 | 0.826 | S | 31.0 | 92.1 | 0.849 | S | 31.0 | 105.2 | 0.876 | S | 31.0 | 119.0 | 0.898 | S |
| 40.5 | 89.0 | 0.679 | BP | 40.5 | 90.3 | 0.687 | S | 40.5 | 91.4 | 0.712 | S | 40.5 | 98.3 | 0.761 | S | 40.5 | 104.5 | 0.792 | S |
| 40.5 | 108.6 | 0.809 | S | 40.5 | 125.2 | 0.850 | S | 53.0 | 97.4 | 0.442 | DP | 53.0 | 99.0 | 0.460 | S | 53.0 | 105.2 | 0.580 | S |
| 53.0 | 111.4 | 0.656 | S | 53.0 | 115.2 | 0.688 | S | 53.0 | 123.1 | 0.729 | S | 65.3 | 110.7 | 0.431 | DP | 65.3 | 115.2 | 0.475 | S |
| 65.3 | 119.7 | 0.512 | S | 65.3 | 121.7 | 0.526 | S | 65.3 | 125.9 | 0.565 | S | 79.2 | 107.6 | 0.324 | DP | 79.2 | 111.4 | 0.335 | S |
| 79.2 | 112.1 | 0.352 | S | 79.2 | 123.1 | 0.415 | S | 79.2 | 124.8 | 0.428 | S | 79.2 | 127.9 | 0.443 | S |  |  |  |  |
| $x=0.074$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22.5 | 58.3 | 0.922 | BP | 22.5 | 59.7 | 0.926 | S | 22.5 | 61.0 | 0.929 | S | 22.5 | 63.1 | 0.941 | S | 30.5 | 67.7 | 0.900 | BP |
| 30.5 | 70.7 | 0.903 | S | 30.5 | 87.2 | 0.924 | S | 35.1 | 73.8 | 0.878 | BP | 35.1 | 75.5 | 0.882 | S | 35.1 | 94.8 | 0.906 | S |
| 50.2 | 96.4 | 0.810 | BP | 50.2 | 100.3 | 0.825 | S | 50.2 | 102.4 | 0.835 | S | 50.2 | 119.0 | 0.876 | S | 66.3 | 119.7 | 0.695 | BP |
| 66.3 | 125.9 | 0.708 | S | 66.3 | 132.8 | 0.750 | S | 78.8 | 132.6 | 0.589 | BP | 78.8 | 134.5 | 0.604 | S | 78.8 | 162.8 | 0.719 | S |
| 93.1 | 147.2 | 0.532 | BP | 93.1 | 149.3 | 0.542 | S | 93.1 | 157.6 | 0.547 | S | 93.1 | 168.6 | 0.511 | S |  |  |  |  |
| $x=0.090$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 23.1 | 59.0 | 0.864 | BP | 23.1 | 61.4 | 0.873 | S | 23.1 | 98.3 | 0.923 | S | 32.7 | 70.5 | 0.854 | BP | 32.7 | 73.4 | 0.858 | S |
| 32.7 | 101.7 | 0.884 | S | 42.7 | 83.8 | 0.810 | BP | 42.7 | 86.6 | 0.813 | S | 42.7 | 86.6 | 0.813 | S | 47.0 | 90.3 | 0.799 | BP |
| 47.0 | 91.4 | 0.806 | S | 47.0 | 107.9 | 0.830 | S | 64.7 | 117.1 | 0.727 | BP | 64.7 | 121.7 | 0.738 | S | 64.7 | 125.9 | 0.752 | S |
| 64.7 | 159.0 | 0.815 | S | 75.8 | 132.8 | 0.672 | BP | 75.8 | 133.8 | 0.684 | S | 75.8 | 136.9 | 0.683 | S | 75.8 | 164.5 | 0.771 | S |
| 92.5 | 149.0 | 0.582 | BP | 92.5 | 152.1 | 0.591 | S |  |  |  |  |  |  |  |  |  |  |  |  |
| $x=0.116$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22.5 | 59.7 | 0.809 | BP | 22.5 | 63.8 | 0.815 | S | 22.5 | 82.1 | 0.833 | S | 31.1 | 68.5 | 0.795 | BP | 31.1 | 73.4 | 0.798 | S |
| 31.1 | 75.5 | 0.801 | S | 31.1 | 95.5 | 0.816 | S | 40.4 | 79.8 | 0.771 | BP | 40.4 | 84.5 | 0.773 | S | 40.4 | 87.9 | 0.778 | S |
| 40.4 | 108.6 | 0.791 | S | 52.7 | 97.9 | 0.734 | BP | 52.7 | 101.7 | 0.739 | S | 52.7 | 131.4 | 0.767 | S | 67.8 | 120.0 | 0.684 | BP |
| 67.8 | 123.8 | 0.693 | S | 67.8 | 152.1 | 0.739 | S | 77.4 | 133.2 | 0.651 | BP | 77.4 | 137.6 | 0.665 | S | 77.4 | 155.2 | 0.707 | S |
| 87.7 | 145.4 | 0.620 | BP | 87.7 | 148.6 | 0.630 | S | 87.7 | 177.2 | 0.695 | S |  |  |  |  |  |  |  |  |
| $x=0.146$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22.5 | 54.9 | 0.887 | BP | 22.5 | 55.2 | 0.887 | S | 22.5 | 65.2 | 0.898 | S | 22.5 | 127.9 | 0.926 | S | 32.6 | 66.7 | 0.860 | BP |
| 32.6 | 69.3 | 0.862 | S | 32.6 | 72.8 | 0.863 | S | 32.6 | 116.9 | 0.886 | S | 41.7 | 78.3 | 0.830 | BP | 41.7 | 82.4 | 0.833 | S |
| 41.7 | 88.6 | 0.839 | S | 41.7 | 142.4 | 0.869 | S | 54.1 | 96.6 | 0.970 | BP | 54.1 | 101.7 | 0.980 | S | 54.1 | 159.0 | 0.990 | S |
| 63.9 | 110.7 | 0.753 | BP | 63.9 | 116.6 | 0.760 | S | 63.9 | 151.4 | 0.792 | S | 77.7 | 131.2 | 0.703 | BP | 77.7 | 134.1 | 0.708 | S |
| $x=0.177$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27.6 | 60.5 | 0.889 | BP | 27.6 | 65.2 | 0.894 | S | 27.6 | 70.7 | 0.898 | S | 27.6 | 107.9 | 0.917 | S | 36.3 | 69.8 | 0.870 | BP |
| 36.3 | 70.7 | 0.872 | S | 36.3 | 76.2 | 0.874 | S | 36.3 | 97.6 | 0.884 | S | 48.4 | 85.9 | 0.834 | BP | 48.4 | 92.8 | 0.839 | S |
| 48.4 | 105.2 | 0.847 | S | 48.4 | 125.2 | 0.857 | S | 48.4 | 145.9 | 0.866 | S | 60.9 | 103.8 | 0.795 | BP | 60.9 | 115.5 | 0.803 | S |
| 60.9 | 119.0 | 0.809 | S | 60.9 | 155.9 | 0.831 | S | 74.6 | 123.8 | 0.751 | BP | 74.6 | 130.3 | 0.758 | S | 74.6 | 141.0 | 0.770 | S |
| 74.6 | 167.9 | 0.792 | S | 89.1 | 144.5 | 0.704 | BP | 89.1 | 147.2 | 0.709 | S | 89.1 | 148.3 | 0.712 | S | 89.1 | 194.8 | 0.761 | S |
| $x=0.224$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 26.3 | 58.6 | 0.910 | BP | 26.3 | 77.6 | 0.921 | S | 38.9 | 71.9 | 0.887 | BP | 38.9 | 94.8 | 0.899 | S | 38.9 | 167.9 | 0.919 | S |
| 47.8 | 82.8 | 0.870 | BP | 47.8 | 96.6 | 0.877 | S | 47.8 | 130.0 | 0.889 | S | 59.8 | 100.0 | 0.842 | BP | 59.8 | 180.3 | 0.879 | S |
| 71.9 | 116.6 | 0.816 | BP | 71.9 | 124.5 | 0.823 | S | 71.9 | 193.4 | 0.858 | S | 89.2 | 141.5 | 0.770 | BP | 89.2 | 146.6 | 0.779 | S |
| 89.2 | 186.6 | 0.802 | S |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $x=0.308$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21.1 | 47.2 | 1.048 | BP | 21.1 | 53.4 | 1.054 | S | 21.1 | 94.8 | 1.070 | S | 21.1 | 121.7 | 1.078 | S | 31.8 | 57.4 | 1.028 | BP |
| 31.8 | 72.8 | 1.036 | S | 31.8 | 96.9 | 1.041 | S | 31.8 | 136.2 | 1.052 | S | 39.6 | 65.4 | 1.019 | BP | 39.6 | 77.6 | 1.023 | S |
| 39.6 | 116.9 | 1.033 | S | 39.6 | 148.3 | 1.043 | S | 55.0 | 96.9 | 0.970 | BP | 55.0 | 118.3 | 0.980 | S | 55.0 | 137.6 | 0.990 | S |
| 55.0 | 153.4 | 0.997 | S | 74.9 | 109.7 | 0.957 | BP | 74.9 | 123.1 | 0.965 | S | 74.9 | 176.2 | 0.986 | S | 74.9 | 197.2 | 0.996 | S |
| 91.1 | 129.1 | * | BP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $x=0.397$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 33.2 | 56.0 | 1.042 | BP | 33.2 | 65.2 | 1.049 | S | 33.2 | 96.9 | 1.061 | S | 33.2 | 136.9 | 1.070 | S | 41.8 | 63.6 | 1.037 | BP |
| 41.8 | 78.3 | 1.040 | S | 41.8 | 112.8 | 1.048 | S | 41.8 | 151.4 | 1.060 | S | 53.5 | 75.2 | 1.017 | BP | 53.5 | 88.6 | 1.023 | S |
| 53.5 | 110.7 | 1.027 | S | 53.5 | 141.0 | 1.036 | S | 72.4 | 95.9 | 0.991 | BP | 72.4 | 103.8 | 0.995 | S | 72.4 | 124.8 | 0.999 | S |
| 72.4 | 128.6 | 1.002 | S | 96.5 | 124.8 | 0.952 | BP | 96.5 | 145.5 | 0.964 | S | 96.5 | 164.1 | 0.968 | S | 96.5 | 207.2 | 0.982 | S |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 35.5 | 56.0 | 0.992 | BP | 35.5 | 60.3 | 0.999 | S | 35.5 | 70.0 | 1.001 | S | 35.5 | 92.4 | 1.008 | S | 49.2 | 66.0 | 0.975 | BP |
| 49.2 | 74.1 | 0.980 | S | 49.2 | 103.1 | 0.990 | S | 49.2 | 130.0 | 0.963 | S | 61.6 | 76.0 | 0.972 | BP | 61.6 | 103.4 | 0.980 | S |
| 61.6 | 135.5 | 0.987 | S | 61.6 | 194.1 | 1.002 | S | 75.4 | 87.9 | * | BP | 75.4 | 107.9 | * | S | 75.4 | 135.5 | * | S |
| 75.4 | 176.9 | * | S | 99.4 | 110.9 | 0.955 | BP | 99.4 | 114.8 | 0.959 | S | 99.4 | 127.2 | 0.962 | S | 99.4 | 150.0 | 0.970 | S |

[^2]Table 3. Experimental Pressure $P$ and Density $\rho$ at Temperature $t$ for 2-Methoxypyrazine $+\mathrm{CO}_{2}$ at Various Mole Fractions $x$ of 2-Methoxypyrazine ${ }^{a}$

| $t$ | $P$ | $\rho$ |  |  |  | $\rho$ |  |  | $P$ | $\rho$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  |
| 31.2 | 72.9 | 0.679 | BP |  | $x=0.007$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | $x=0$ | 0.015 |  |  |  |  |  |
| 22.1 | 57.6 | 0.726 | BP | 26.4 | 63.8 | 0.749 | BP | 30.6 | 70.0 | 0.718 | BP |
| 41.2 | 87.2 | 0.616 | DP | 55.1 | 101.0 | 0.451 | DP | 81.2 | 117.9 | 0.340 | DP |
|  |  |  |  |  | $x=0.025$ |  |  |  |  |  |  |
| 23.2 | 59.6 | 0.797 | BP | 30.2 | 69.3 | 0.778 | BP | 40.4 | 84.8 | 0.696 | BP |
| 55.5 | 105.3 | 0.557 | DP | 74.6 | 127.2 | 0.474 | DP | 96.4 | 139.3 | 0.393 | DP |
|  |  |  |  |  | $x=0.039$ |  |  |  |  |  |  |
| 22.1 | 56.5 | 0.780 | BP | 34.8 | 73.1 | 0.778 | BP | 54.7 | 105.8 | 0.654 | DP |
| 77.6 | 134.7 | 0.536 | DP | 99.1 | 155.1 | 0.469 | DP |  |  |  |  |
|  |  |  |  |  | $x=0.069$ |  |  |  |  |  |  |
| 22.0 | 54.5 | 0.809 | BP | 34.0 | 70.7 | 0.843 | BP | 53.9 | 103.8 | 0.756 | DP |
| 77.6 | 137.7 | 0.641 | DP | 97.4 | 162.2 | 0.579 | DP |  |  |  |  |
|  |  |  |  |  | $x=0.107$ |  |  |  |  |  |  |
| 21.2 | 51.7 | 0.802 | BP | 37.5 | 73.4 | 0.860 | BP | 59.7 | 109.3 | 0.794 | BP |
| 80.2 | 140.7 | 0.723 | DP | 98.6 | 166.2 | 0.672 | DP |  |  |  |  |
|  |  |  |  |  | $x=0.129$ |  |  |  |  |  |  |
| 21.4 | 52.1 | 0.922 | BP | 34.4 | 67.2 | 0.920 | BP | 53.7 | 97.9 | 0.864 | BP |
| 74.7 | 133.5 | 0.798 | DP | 95.7 | 161.1 | 0.724 | DP |  |  |  |  |
|  |  |  |  |  | $x=0.207$ |  |  |  |  |  |  |
| 22.6 | 49.3 | 0.911 | BP | 33.8 | 63.1 | 0.945 | BP | 55.3 | 92.7 | 0.906 | BP |
| 75.4 | 126.5 | 0.866 | BP | 94.5 | 155.1 | 0.824 | BP |  |  |  |  |
|  |  |  |  |  | $x=0.232$ |  |  |  |  |  |  |
| 23.7 | 50.0 | 0.981 | BP | 41.0 | 70.7 | 0.987 | BP | 59.3 | 96.9 | 0.948 | BP |
| 81.0 | 132.4 | 0.902 | BP | 95.8 | 152.0 | 0.864 | BP |  |  |  |  |
|  |  |  |  |  | $x=0.379$ |  |  |  |  |  |  |
| 22.6 | 41.4 | 0.929 | BP | 25.0 | 43.8 | 0.934 | BP | 39.4 | 58.3 | 1.012 | BP |
| 57.5 | 76.9 | 0.982 | BP | 75.5 | 96.9 | 0.958 | BP | 93.3 | 118.6 | 0.933 | BP |
|  |  |  |  |  | $x=0.637$ |  |  |  |  |  |  |
| 24.0 | 28.1 | 1.053 | BP | 38.8 | 36.9 | 1.122 | BP | 59.5 | 49.0 | 1.097 | BP |
| 81.2 | 63.1 | 1.070 | BP | 94.2 | 72.0 | 1.055 | BP |  |  |  |  |
|  |  |  |  |  | $x=0.919$ |  |  |  |  |  |  |
| 22.0 | 7.2 | 1.033 | BP | 24.0 | 9.2 | 1.109 | BP | 26.8 | 10.8 | 1.063 | BP |
| 32.8 | 10.0 | 1.097 | BP | 44.7 | 11.4 | 1.085 | BP | 59.5 | 12.4 | 1.063 | BP |
| 75.8 | 14.7 | 1.050 | BP |  |  |  |  |  |  |  |  |

${ }^{a} \mathrm{BP}$ is bubble point. DP is dew point.
the pyrazines considered in this study. From the phase behavior shown in Figure 1 and Figure 2, panels A, B, D, and E, it is apparent that these pyrazine $+\mathrm{CO}_{2}$ mixtures exhibit type-I phase behavior. ${ }^{8,9}$ Yamamoto et al. ${ }^{7}$ have also confirmed that the pyrazine $+\mathrm{CO}_{2}$ system exhibits type-I phase behavior. Although it is likely that the 2-acetylpyrazine $+\mathrm{CO}_{2}$ mixture also exhibits type-I behavior, the solidification of 2-acetylpyrazine at temperatures near the critical point of $\mathrm{CO}_{2}$ makes it difficult to determine unequivocally that type-I behavior is exhibited.

Table 7 lists mixture critical data for the pyrazine $+\mathrm{CO}_{2}$ system obtained in this study, and Figure 3 compares the mixture critical data obtained in this study to the data of Yamamoto et al. ${ }^{7}$ The mixture critical data obtained in the present study are consistently slightly greater than the data of Yamamoto et al., ${ }^{7}$ although the maximum pressure difference is less than 3 bar between the data of Yamamoto et al. ${ }^{7}$ and those calculated from a curve fit to the data obtained in this study. It should be noted that error bars on the measured pressure for both studies are hidden by the symbols used in Figure 3. The agreement with the data of Yamamoto et al. is considered to be very good given the uncertainty in the data reported here and that reported by Yamamoto et al. ${ }^{7}$

Table 4. Experimental Pressure $P$ and Density $\rho$ at Temperature $t$ for 2-Acetylpyrazine $+\mathrm{CO}_{2}$ at Various Mole Fractions $x$ of 2-Acetylpyrazine ${ }^{a}$


Modeling. The pyrazine $+\mathrm{CO}_{2}$ data are modeled using the PR EOS with the following mixing rules:

$$
\begin{gather*}
a_{\text {mix }}=\sum_{i} \sum_{j} x_{i} x_{j} a_{i j}  \tag{1}\\
a_{i j}=\left(a_{i i} a_{i j}\right)^{0.5}\left(1-k_{i j}\right)  \tag{2}\\
b_{\text {mix }}=\sum_{i} x_{i} b_{i} \tag{3}
\end{gather*}
$$

where $k_{i j}$ is a mixture parameter that is determined by fitting $P$, $x$ data, and $a_{i i}$ and $b_{i i}$ are pure component parameters. ${ }^{11}$ Table 1 lists the pure-component critical temperatures, critical pressures, and acentric factors reported by Steele et al. ${ }^{12}$ for pyrazine and estimated for the other pyrazines using the JobackLydersen method. As a check on the Joback-Lydersen method, the calculated critical conditions and acentric factor for pyrazine $\left(t_{\mathrm{c}}=343.4^{\circ} \mathrm{C}, P_{\mathrm{c}}=63.6\right.$ bar, and $\omega=0.309$ ) are in reasonable agreement with those reported by Steele et al. ${ }^{12}$ shown in Table 1. Phase equilibrium calculations are performed for pyrazine with the critical properties reported by Steele et al. ${ }^{12}$ The critical temperature, critical pressure, and acentric factor for $\mathrm{CO}_{2}$ (31.04 ${ }^{\circ} \mathrm{C}, 73.8$ bar, and 0.225 , respectively) are obtained from the literature. ${ }^{13}$

Figure 4 shows how modest changes in $k_{i j}$ can affect the 75 ${ }^{\circ} \mathrm{C}$ isotherm for the pyrazine $+\mathrm{CO}_{2}$ system. A positive value of $k_{i j}$ increased the mole fraction of pyrazine along the bubble

Table 5. Experimental Pressure $P$ and Density $\rho$ at Temperature $t$ for 2-Methylpyrazine $+\mathrm{CO}_{2}$ at Various Mole Fractions $\boldsymbol{x}$ of 2-Methylpyrazine ${ }^{a}$


Table 5 (Continued)

| $t$ | $P$ | $\rho$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  |
| $x=0.339$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 23.0 | 40.3 | 0.928 | BP | 23.0 | 75.9 | 0.964 | S | 23.0 | 105.5 | 0.969 | S | 23.0 | 161.0 | 0.976 | S | 34.3 | 50.1 | 0.937 | BP |
| 34.3 | 83.4 | 0.950 | S | 34.3 | 112.8 | 0.957 | S | 34.3 | 161.7 | 0.965 | S | 52.0 | 68.3 | 0.929 | BP | 52.0 | 70.0 | 0.932 | S |
| 52.0 | 105.9 | 0.941 | S | 52.0 | 152.8 | 0.952 | S | 71.8 | 91.7 | 0.913 | BP | 71.8 | 113.4 | 0.920 | S | 71.8 | 187.2 | 0.941 | S |
| 81.9 | 104.5 | 0.914 | BP | 81.9 | 110.3 | 0.918 | S | 81.9 | 146.6 | 0.927 | S | 81.9 | 172.8 | 0.939 | S | 114.2 | 144.3 | 0.891 | BP |
| 114.2 | 154.8 | 0.899 | S | 114.2 | 180.7 | 0.912 | S | 114.2 | 227.9 | 0.933 | S |  |  |  |  |  |  |  |  |
| $x=0.624$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21.9 | 29.3 | 0.944 | BP | 21.9 | 39.0 | 0.948 | S | 21.9 | 70.0 | 0.952 | S | 21.9 | 96.6 | 0.956 | S | 21.9 | 147.6 | 0.965 | S |
| 31.9 | 33.8 | 0.919 | BP | 31.9 | 36.2 | 0.922 | S | 31.9 | 50.0 | 0.926 | S | 31.9 | 74.8 | 0.931 | S | 31.9 | 108.6 | 0.937 | S |
| 31.9 | 154.8 | 0.942 | S | 43.3 | 39.8 | 0.907 | BP | 43.3 | 60.3 | 0.912 | S | 43.3 | 100.3 | 0.917 | S | 43.3 | 132.1 | 0.920 | S |
| 43.3 | 172.8 | 0.926 | S | 58.5 | 47.8 | 0.892 | BP | 58.5 | 63.8 | 0.896 | S | 58.5 | 99.0 | 0.901 | S | 58.5 | 134.8 | 0.904 | S |
| 58.5 | 182.4 | 0.910 | S | 75.5 | 57.8 | 0.875 | BP | 75.5 | 75.9 | 0.879 | S | 75.5 | 118.3 | 0.884 | S | 75.5 | 162.4 | 0.890 | S |
| 103.5 | 76.3 | 0.845 | BP | 103.5 | 79.7 | 0.846 | S | 103.5 | 109.7 | 0.852 | S | 103.5 | 149.3 | 0.859 | S | 103.5 | 193.4 | 0.864 | S |
| $x=0.857$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21.8 | 19.8 | 0.930 | BP | 21.8 | 24.5 | 0.935 | S | 21.8 | 37.9 | 0.942 | S | 21.8 | 68.6 | 0.947 | S | 21.8 | 115.2 | 0.950 | S |
| 34.4 | 20.7 | 0.916 | BP | 34.4 | 27.2 | 0.922 | S | 34.4 | 49.0 | 0.926 | S | 34.4 | 68.6 | 0.928 | S | 34.4 | 115.5 | 0.934 | S |
| 49.8 | 23.3 | 0.900 | BP | 49.8 | 47.6 | 0.905 | S | 49.8 | 85.2 | 0.909 | S | 49.8 | 126.2 | 0.914 | S | 49.8 | 170.3 | 0.918 | S |
| 63.9 | 25.5 | 0.888 | BP | 63.9 | 36.2 | 0.892 | S | 63.9 | 55.5 | 0.893 | S | 63.9 | 90.0 | 0.897 | S | 63.9 | 135.9 | 0.901 | S |
| 78.2 | 28.6 | 0.878 | BP | 78.2 | 37.6 | 0.878 | S | 78.2 | 70.0 | 0.882 | S | 78.2 | 112.1 | 0.888 | S | 78.2 | 173.4 | 0.893 | S |
| 98.6 | 33.3 | 0.858 | BP | 98.6 | 43.8 | 0.861 | S | 98.6 | 84.5 | 0.865 | S | 98.6 | 158.3 | 0.875 | S | 98.6 | 284.5 | 0.889 | S |

${ }^{a} \mathrm{BP}$ is bubble point. DP is dew point. S is a single phase. An asterisk (*) indicates that density data were not obtained at these conditions.


Figure 2. Isotherms for the $x$ pyrazine $+\mathrm{CO}_{2}$ systems obtained in this study. A, pyrazine; B, 2-methoxypyrazine; C, 2-acetylpyrazine; D, 2-methylpyrazine; E, 2,3-dimethylpyrazine. The 25 and $50^{\circ} \mathrm{C}$ isotherms in panel A are truncated at the highest solute concentration investigated where the solute-rich phase was a liquid. The $50^{\circ} \mathrm{C}$ isotherm in panel C is also truncated at the highest solute concentration investigated where the solute-rich phase was a liquid. The $25^{\circ} \mathrm{C}$ isotherm is not shown in panel C since 2-acetylpyrazine is a solid over virtually the entire concentration range.
point curve, shifted the maximum of the isotherm to a higher pyrazine mole fraction, and caused the mixture critical pressure
to increase. In contrast, a negative value of $k_{i j}$ decreased the mole fraction of pyrazine along the bubble point curve, shifted

Table 6. Experimental Pressure $P$ and Density $\rho$ at Temperature $\boldsymbol{t}$ for 2,3-Dimethylpyrazine $+\mathrm{CO}_{2}$ at Various Mole Fractions $x$ of 2,3-Dimethylpyrazine ${ }^{a}$

| $t$ | $P$ | $\rho$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\overline{\mathrm{g} \cdot \mathrm{cm}^{-3}}$ |  |
| $x=0.010$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22.1 | 57.9 | 0.735 | BP | 22.1 | 76.9 | 0.785 | S | 22.1 | 111.0 | 0.833 | S | 22.1 | 157.9 | 0.873 | S | 41.1 | 86.1 | 0.584 | BP |
| 41.1 | 98.3 | 0.500 | S | 41.1 | 118.3 | 0.769 | S | 41.1 | 185.9 | 0.799 | S | 55.4 | 100.1 | 0.387 | DP | 55.4 | 106.6 | 0.438 | S |
| 55.4 | 109.7 | 0.552 | S | 55.4 | 119.7 | 0.635 | S | 55.4 | 130.0 | 0.688 | S | 55.4 | 156.2 | 0.757 | S | 68.1 | 107.2 | 0.313 | DP |
| 68.1 | 107.9 | 0.327 | S |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $x=0.027$ |  |  |  |  |  |  |  |  |  |  |
| 21.0 | 56.3 | 0.868 | BP | 21.0 | 71.4 | 0.905 | S | 21.0 | 95.9 | 0.934 | S | 21.0 | 141.0 | 0.983 | S | 33.1 | 72.8 | 0.738 | BP |
| 33.1 | 74.1 | 0.750 | S | 33.1 | 99.0 | 0.812 | S | 33.1 | 133.8 | 0.864 | S | 49.2 | 100.6 | 0.612 | BP | 49.2 | 117.9 | 0.717 | S |
| 49.2 | 134.1 | 0.761 | S | 49.2 | 163.1 | 0.812 | S | 49.2 | 130.0 | 0.688 | S | 49.2 | 156.2 | 0.757 | S | 62.0 | 114.1 | 0.485 | DP |
| 62.0 | 129.7 | 0.605 | S | 62.0 | 135.5 | 0.633 | S | 62.0 | 145.9 | 0.668 | S | 98.7 | 152.5 | 0.388 | DP | 98.7 | 159.0 | 0.402 | S |
| 98.7 | 171.4 | 0.432 | S |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $x=0.033$ |  |  |  |  |  |  |  |  |  |  |
| 21.6 | 56.2 | 0.802 | BP | 21.6 | 67.2 | 0.836 | S | 21.6 | 84.5 | 0.858 | S | 21.6 | 138.3 | 0.911 | S | 39.5 | 81.6 | 0.694 | BP |
| 39.5 | 101.7 | 0.763 | S | 39.5 | 126.6 | 0.804 | S | 39.5 | 159.7 | 0.851 | S | 56.6 | 108.7 | 0.560 | BP | 56.6 | 121.7 | 0.656 | S |
| 56.6 | 129.7 | 0.684 | S | 56.6 | 143.1 | 0.713 | S | 56.6 | 169.3 | 0.765 | S | 70.1 | 126.0 | 0.489 | DP | 70.1 | 142.1 | 0.585 | S |
| 70.1 | 149.3 | 0.615 | S | 70.1 | 163.4 | 0.657 | S | 101.9 | 161.8 | 0.412 | DP | 101.9 | 181.0 | 0.466 | S | 101.9 | 194.1 | 0.499 | S |
| 101.9 | 206.9 | 0.526 | S |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $x=0.049$ |  |  |  |  |  |  |  |  |  |  |
| 21.4 | 55.0 | 1.077 | BP | 21.4 | 71.4 | 1.099 | S | 21.4 | 105.9 | 1.123 | S | 21.4 | 138.3 | 1.142 | S | 29.5 | 64.9 | 0.876 | BP |
| 29.5 | 75.2 | 0.902 | S | 29.5 | 100.3 | 0.934 | S | 29.5 | 130.3 | 0.962 | S | 29.5 | 166.6 | 1.000 | S | 46.2 | 92.4 | 0.790 | BP |
| 46.2 | 105.2 | 0.834 | S | 46.2 | 153.4 | 0.906 | S | 46.2 | 186.6 | 0.946 | S | 59.7 | 115.2 | 0.708 | BP | 59.7 | 127.9 | 0.767 | S |
| 59.7 | 146.2 | 0.811 | S | 59.7 | 156.9 | 0.834 | S | 71.9 | 130.3 | 0.638 | BP | 71.9 | 141.0 | 0.698 | S | 71.9 | 154.1 | 0.745 | S |
| 71.9 | 172.4 | 0.791 | S | 82.1 | 143.8 | 0.591 | DP | 82.1 | 145.5 | 0.608 | S | 82.1 | 154.1 | 0.652 | S | 82.1 | 172.8 | 0.702 | S |
| 100.1 | 163.7 | 0.545 | DP | 100.1 | 167.2 | 0.558 | S | 100.1 | 179.0 | 0.605 | S | 100.1 | 201.0 | 0.667 | S |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $x=0.057$ |  |  |  |  |  |  |  |  |  |  |
| 22.1 | 55.5 | 0.832 | BP | 22.1 | 63.8 | 0.871 | S | 22.1 | 74.1 | 0.885 | S | 22.1 | 101.7 | 0.911 | S | 39.6 | 80.2 | 0.860 | BP |
| 39.6 | 85.2 | 0.874 | S | 39.6 | 99.7 | 0.905 | S | 39.6 | 104.5 | 0.914 | S | 50.2 | 97.6 | 0.784 | BP | 50.2 | 106.6 | 0.815 | S |
| 50.2 | 119.7 | 0.849 | S | 50.2 | 160.3 | 0.904 | S | 58.5 | 111.4 | 0.719 | BP | 58.5 | 122.1 | 0.762 | S | 58.5 | 128.3 | 0.785 | S |
| 58.5 | 193.8 | 0.886 | S | 70.0 | 127.4 | 0.639 | BP | 70.0 | 134.1 | 0.679 | S | 70.0 | 146.6 | 0.719 | S | 70.0 | 161.7 | 0.750 | S |
| 79.1 | 138.8 | 0.579 | DP | 79.1 | 145.5 | 0.618 | S | 79.1 | 163.4 | 0.678 | S | 79.1 | 187.6 | 0.731 | S | 91.9 | 154.6 | 0.531 | DP |
| 91.9 | 164.8 | 0.573 | S | 91.9 | 183.1 | 0.636 | S | 91.9 | 201.7 | 0.679 | S | 91.9 | 232.1 | 0.725 | S |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $x=0.086$ |  |  |  |  |  |  |  |  |  |  |
| 22.1 | 54.1 | 0.730 | BP | 22.1 | 61.4 | 0.767 | S | 22.1 | 83.8 | 0.778 | S | 22.1 | 121.0 | 0.799 | S | 22.1 | 160.7 | 0.817 | S |
| 42.7 | 82.8 | 0.687 | BP | 42.7 | 93.8 | 0.702 | S | 42.7 | 123.1 | 0.728 | S | 42.7 | 165.2 | 0.752 | S | 42.7 | 242.1 | 0.786 | S |
| 58.5 | 109.3 | 0.627 | BP | 58.5 | 115.5 | 0.645 | S | 58.5 | 140.3 | 0.676 | S | 58.5 | 156.2 | 0.689 | S | 72.7 | 132.6 | 0.579 | BP |
| 72.7 | 151.4 | 0.626 | S | 72.7 | 159.0 | 0.638 | S | 89.8 | 158.3 | 0.530 | BP | 89.8 | 169.3 | 0.561 | S | 89.8 | 174.1 | 0.574 | S |
| 89.8 | 194.1 | 0.604 | S | 101.1 | 169.2 | 0.490 | BP | 101.1 | 174.1 | 0.507 | S | 101.1 | 181.0 | 0.521 | S | 101.1 | 189.0 | 0.540 | S |
|  |  |  |  |  |  |  |  |  | $x=0.108$ |  |  |  |  |  |  |  |  |  |  |
| 21.7 | 53.1 | 0.896 | BP | 21.7 | 66.6 | 0.899 | S | 21.7 | 100.7 | 0.901 | S | 21.7 | 136.2 | 0.904 | S | 21.7 | 186.6 | 0.908 | S |
| 40.8 | 77.2 | 0.864 | BP | 40.8 | 105.2 | 0.879 | S | 40.8 | 136.6 | 0.888 | S | 40.8 | 172.1 | 0.896 | S | 56.7 | 103.4 | 0.822 | BP |
| 56.7 | 128.6 | 0.845 | S | 56.7 | 145.9 | 0.855 | S | 56.7 | 190.0 | 0.879 | S | 67.6 | 122.0 | 0.771 | BP | 67.6 | 127.9 | 0.786 | S |
| 67.6 | 140.3 | 0.810 | S | 67.6 | 173.4 | 0.837 | S | 67.6 | 201.7 | 0.858 | S | 77.6 | 138.3 | 0.725 | BP | 77.6 | 146.6 | 0.747 | S |
| 77.6 | 156.9 | 0.766 | S | 77.6 | 174.1 | 0.790 | S | 95.3 | 164.3 | 0.663 | BP | 95.3 | 171.4 | 0.690 | S | 95.3 | 194.8 | 0.731 | S |
| 95.3 | 251.0 | 0.791 | S | 95.3 | 349.0 | 0.848 | S |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $x=0.157$ |  |  |  |  |  |  |  |  |  |  |
| 21.9 | 51.0 | 0.982 | BP | 21.9 | 70.7 | 0.995 | S | 21.9 | 103.1 | 1.004 | S | 21.9 | 134.8 | 1.014 | S | 35.8 | 67.5 | 0.948 | BP |
| 35.8 | 70.7 | 0.952 | S | 35.8 | 94.5 | 0.964 | S | 35.8 | 134.8 | 0.981 | S | 35.8 | 176.9 | 0.996 | S | 47.9 | 84.8 | 0.912 | BP |
| 47.9 | 102.1 | 0.927 | S | 47.9 | 120.0 | 0.937 | S | 47.9 | 162.8 | 0.958 | S | 47.9 | 186.6 | 0.970 | S | 57.2 | 99.7 | 0.884 | BP |
| 57.2 | 117.9 | 0.902 | S | 57.2 | 142.4 | 0.919 | S | 57.2 | 175.5 | 0.937 | S | 81.0 | 141.4 | 0.814 | BP | 81.0 | 169.0 | 0.847 | S |
| 81.0 | 192.8 | 0.865 | S | 81.0 | 252.1 | 0.904 | S | 102.7 | 181.0 | 0.764 | BP | 102.7 | 205.9 | 0.805 | S | 102.7 | 233.4 | 0.829 | S |
| 102.7 | 265.2 | 0.856 | S |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $x=0.184$ |  |  |  |  |  |  |  |  |  |  |
| 21.4 | 50.0 | 0.945 | BP | 21.4 | 71.4 | 0.947 | S | 21.4 | 85.2 | 0.949 | S | 21.4 | 124.5 | 0.951 | S | 38.3 | 69.0 | 0.912 | BP |
| 38.3 | 73.8 | 0.912 | S | 38.3 | 92.1 | 0.918 | S | 38.3 | 123.8 | 0.925 | S | 38.3 | 167.2 | 0.932 | S | 52.5 | 89.8 | 0.885 | BP |
| 52.5 | 105.2 | 0.894 | S | 52.5 | 126.6 | 0.903 | S | 52.5 | 180.3 | 0.916 | S | 65.6 | 109.7 | 0.852 | BP | 65.6 | 117.9 | 0.860 | S |
| 65.6 | 141.7 | 0.874 | S | 65.6 | 167.2 | 0.886 | S | 74.7 | 124.1 | 0.826 | BP | 74.7 | 126.9 | 0.828 | S | 74.7 | 134.5 | 0.837 | S |
| 74.7 | 156.9 | 0.853 | S | 92.4 | 152.1 | 0.774 | BP | 92.4 | 193.4 | 0.818 | S | 92.4 | 245.2 | 0.848 | S | 92.4 | 450.0 | 0.900 | S |
|  |  |  |  |  |  |  |  |  | $x=0.291$ |  |  |  |  |  |  |  |  |  |  |
| 30.1 | 52.4 | 0.858 | BP | 30.1 | 74.1 | 0.859 | S | 30.1 | 98.6 | 0.860 | S | 30.1 | 154.5 | 0.860 | S | 42.9 | 66.1 | 0.858 | BP |
| 42.9 | 74.8 | 0.857 | S | 42.9 | 86.6 | 0.858 | S | 42.9 | 113.4 | 0.858 | S | 55.4 | 81.3 | 0.855 | BP | 55.4 | 101.7 | 0.857 | S |
| 55.4 | 121.4 | 0.858 | S | 55.4 | 141.0 | 0.857 | S | 55.4 | 169.3 | 0.859 | S | 73.9 | 105.9 | 0.852 | BP | 73.9 | 117.6 | 0.853 | S |
| 73.9 | 140.7 | 0.855 | S | 73.9 | 188.6 | 0.857 | S | 85.5 | 122.1 | 0.848 | BP | 85.5 | 129.3 | 0.848 | S | 85.5 | 154.1 | 0.852 | S |
| 85.5 | 205.9 | 0.855 | S | 108.3 | 150.9 | 0.829 | BP | 108.3 | 152.1 | 0.831 | S | 108.3 | 156.9 | 0.830 | S | 108.3 | 213.4 | 0.841 | S |
|  |  |  |  |  |  |  |  |  | $x=0.433$ |  |  |  |  |  |  |  |  |  |  |
| 23.1 | 38.7 | 0.985 | BP | 23.1 | 44.1 | 0.989 | S | 23.1 | 76.6 | 0.997 | S | 23.1 | 107.2 | 1.002 | S | 37.7 | 50.0 | 0.962 | BP |
| 37.7 | 69.7 | 0.967 | S | 37.7 | 124.8 | 0.975 | S | 37.7 | 213.4 | 0.994 | S | 45.6 | 56.9 | 0.951 | BP | 45.6 | 76.9 | 0.955 | S |
| 45.6 | 160.7 | 0.969 | S | 45.6 | 229.3 | 0.977 | S | 51.8 | 62.5 | 0.940 | BP | 51.8 | 78.3 | 0.944 | S | 51.8 | 139.0 | 0.955 | S |
| 51.8 | 206.6 | 0.968 | S | 68.8 | 78.8 | 0.915 | BP | 68.8 | 89.0 | 0.918 | S | 68.8 | 123.4 | 0.926 | S | 68.8 | 174.8 | 0.934 | S |
| 68.8 | 238.3 | 0.945 | S | 75.2 | 85.3 | 0.902 | BP | 75.2 | 99.0 | 0.906 | S | 75.2 | 151.4 | 0.917 | S | 75.2 | 230.7 | 0.931 | S |
| 84.0 | 94.6 | 0.886 | BP | 84.0 | 137.6 | 0.897 | S | 84.0 | 173.1 | 0.905 | S | 84.0 | 219.7 | 0.914 | S | 107.5 | 120.1 | 0.848 | BP |
| 107.5 | 127.6 | 0.852 | S | 107.5 | 161.0 | 0.861 | S | 107.5 | 216.6 | 0.876 | S |  |  |  |  |  |  |  |  |

Table 6 (Continued)

| $t$ | $P$ | $\rho$ |  | $t$ | P | $\rho$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  | ${ }^{\circ} \mathrm{C}$ | bar | $\mathrm{g} \cdot \mathrm{cm}^{-3}$ |  |
| $x=0.565$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21.7 | 32.6 | 0.947 | BP | 21.7 | 70.7 | 0.958 | S | 21.7 | 106.2 | 0.961 | S | 21.7 | 152.4 | 0.964 | S | 28.6 | 36.6 | 0.920 | BP |
| 28.6 | 66.2 | 0.938 | S | 28.6 | 98.3 | 0.941 | S | 28.6 | 157.9 | 0.946 | S | 43.1 | 44.9 | 0.920 | BP | 43.1 | 61.7 | 0.923 | S |
| 43.1 | 100.0 | 0.926 | S | 43.1 | 163.8 | 0.935 | S | 56.5 | 53.8 | 0.909 | BP | 56.5 | 66.6 | 0.912 | S | 56.5 | 82.4 | 0.914 | S |
| 56.5 | 145.9 | 0.919 | S | 74.5 | 66.3 | 0.893 | BP | 74.5 | 82.1 | 0.895 | S | 74.5 | 118.3 | 0.901 | S | 74.5 | 185.2 | 0.907 | S |
| 100.4 | 85.2 | 0.865 | BP | 100.4 | 92.1 | 0.867 | S | 100.4 | 123.8 | 0.873 | S | 100.4 | 185.2 | 0.883 | S |  |  |  |  |
| $x=0.736$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21.6 | 21.4 | 0.861 | BP | 21.6 | 22.4 | 0.861 | S | 21.6 | 38.3 | 0.864 | S | 21.6 | 56.9 | 0.864 | S | 44.2 | 30.0 | 0.859 | BP |
| 44.2 | 55.9 | 0.859 | S | 44.2 | 115.9 | 0.860 | S | 44.2 | 164.5 | 0.862 | S | 52.1 | 32.9 | 0.857 | BP | 52.1 | 61.4 | 0.859 | S |
| 52.1 | 107.2 | 0.860 | S | 52.1 | 181.7 | 0.861 | S | 60.8 | 36.2 | 0.854 | BP | 60.8 | 55.2 | 0.855 | S | 60.8 | 128.3 | 0.858 | S |
| 60.8 | 195.2 | 0.858 | S | 87.4 | 46.8 | 0.845 | BP | 87.4 | 69.7 | 0.846 | S | 87.4 | 111.0 | 0.850 | S | 87.4 | 179.7 | 0.853 | S |

${ }^{a} \mathrm{BP}$ is bubble point. DP is dew point. S is a single phase.

Table 7. Experimental Mixture Critical Pressure $\boldsymbol{P}$ at Temperature $\boldsymbol{t}$ for Pyrazine $+\mathrm{CO}_{2}$ at Various Mole Fractions $\boldsymbol{x}$ of Pyrazine

| $x$ | $t /{ }^{\circ} \mathrm{C}$ | $P /$ bar |
| :---: | :---: | ---: |
| 0.013 | 39.2 | 83.4 |
| 0.037 | 51.5 | 95.8 |
| 0.056 | 60.2 | 107.6 |
| 0.070 | 66.5 | 114.5 |

the maximum of the isotherm to a lower pyrazine mole fraction, but did not significantly change the mixture critical pressure. Rather than allow $k_{i j}$ to vary, a value of zero is used to calculate the (100, 50, and 25) ${ }^{\circ} \mathrm{C}$ isotherms as shown in Figure 5. Note that the calculated isotherms are in closer agreement to experimental data at ( 25 and 50 ) ${ }^{\circ} \mathrm{C}$ but are in poorer agreement at $100^{\circ} \mathrm{C}$. Nevertheless, it is apparent that the PR EOS provides a reasonable estimate of the phase behavior of the pyrazine + $\mathrm{CO}_{2}$ system with $k_{i j}$ set equal to zero. Although not shown here, the characteristics of the calculated $P, x$ isotherms for the


Figure 3. Comparison of a portion of the pyrazine $+\mathrm{CO}_{2}$ mixture critical curve. $\square$, data obtained in this study; $\bigcirc$, data of Yamamoto et al.; ${ }^{7}$, critical point of pure $\mathrm{CO}_{2} \cdot{ }^{13}$ The dashed line is a smooth curve fit to the critical point of $\mathrm{CO}_{2}$ and the mixture critical data obtained in this study.


Figure 4. Effect of $k_{i j}$ on the shape of the calculated $75^{\circ} \mathrm{C}$ isotherm of the $x$ pyrazine $+\mathrm{CO}_{2}$ system. , data points obtained from a cross plot of isopleth data.


Figure 5. Comparison of calculated (lines) to experimental isotherms for the $x$ pyrazine $+\mathrm{CO}_{2}$ system. In this case, $k_{i j}$ is set equal to zero. The symbols are data points obtained from a cross plot of isopleth data: $\square, 25$ ${ }^{\circ} \mathrm{C} ; \square, 50^{\circ} \mathrm{C} ;, 75^{\circ} \mathrm{C} ; \bigcirc, 100^{\circ} \mathrm{C}$.

2-methoxypyrazine, 2-methylpyrazine, and the 2,3-dimethylpyrazine systems are very similar to those observed with the pyrazine $+\mathrm{CO}_{2}$ system. Once again, a zero value of $k_{i j}$ provides a reasonable fit of the experimental data even though the critical properties of these substituted pyrazines are estimated. For 2-acetylpyrazine, the calculated $75{ }^{\circ} \mathrm{C}$ isotherm with $k_{i j}=0$ exhibits a shape that mimics the experimental data; however, the maximum in the calculated isotherm is $\approx 75$ bar higher than the observed value. A $k_{i j}=-0.100$ gave the best representation of the (75 and 100) ${ }^{\circ} \mathrm{C}$ isotherms, although in both cases the maximum in the calculated isotherms were $\approx$ ( 30 to 35 ) bar too high. The poor performance of the PR EOS in this instance may be related to the high estimate of $t_{\mathrm{c}}$ for 2-acetylpyrazine.

## Conclusions

Pyrazine and the substituted pyrazines considered in this study are very soluble in $\mathrm{CO}_{2}$ at modest temperatures and pressures. The pyrazine family of compounds exhibit type-I phase behavior with $\mathrm{CO}_{2}$, although the 2-acetylpyrazine $+\mathrm{CO}_{2}$ system exhibits an interrupted mixture critical curve due to the appearance of solid 2-acetylpyrazine at temperatures less than $50^{\circ} \mathrm{C}$. For four of the five pyrazines considered in this study, it was possible to obtain a semi-quantitative representation of the pyrazine + $\mathrm{CO}_{2}$ data with the PR EOS even though it is necessary to estimate the critical properties of the substituted pyrazines using the Joback-Lydersen method. The poor fit of the isotherms for the 2-acetylpyrazine $+\mathrm{CO}_{2}$ system may be due to the very high value of the estimated critical temperature of 2-acetylpyrazine. The data presented here further substantiates the application of $\mathrm{CO}_{2}$ as a suitable supercritical fluid solvent for extracting pyrazine compounds from natural materials.

## Acknowledgment

We thank Yongchul Kim, who performed some of the experimental measurements, and we also thank Georgio Karles and Diane Gee for many helpful technical discussions concerning pyrazines. The authors are indebted to the manuscript reviewers whose technical input improved the quality of this manuscript.

## Literature Cited

(1) de Brito, E. S.; Garcia, N. H. P.; Amancio, A. C.; Valente, A. L. P.; Pini, G. F.; Augusto, F. Effect of autoclaving cocoa nibs before roasting on the precursors of the maillard reaction and pyrazines. Int. J. Food Sci. Technol. 2001, 36, 625-630.
(2) Fadel, H. H. M.; Abdel Mageed, M. A.; Grad, A. Keeping qualities of potato chips flavoured with kebab and salt. Nahrung-Food 1996, 40, 271-273.
(3) Hashim, P.; Selamat, J.; Muhammad, S. K. S.; Ali, A. Effect of mass and turning time on free amino acid, peptide-N, sugar and pyrazine concentration during cocoa fermentation. J. Sci. Food Agric. 1998, 78, 543-550.
(4) Czerny, M.; Mayer, F.; Grosch, W. Sensory study on the character impact odorants of roasted arabica coffee. J. Agric. Food Chem. 1999, 47, 695-699.
(5) King, M.-F.; Mathews, M. A.; Rule, D. C.; Field, R. A. Effect of beef packaging method on volatile compounds developed by oven roasting or microwave cooking. J. Agric. Food Chem. 1995, 43, 773778.
(6) Sanagi, M. M.; Hung, W. P.; Yasir, S. M. Supercritical fluid extraction of pyrazines in roasted cocoa beans effect of pod storage period. $J$. Chromatogr. A 1997, 785, 361-367.
(7) Yamamoto, S.; Ohgaki, K.; Katayama, T. High-pressure phase behavior of eight binary mixtures of pyrimidine or pyrazine with $\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{C}_{2} \mathrm{H}_{6}$, or $\mathrm{CHF}_{3}$. J. Chem. Eng. Data 1990, 35, 310-314.
(8) McHugh, M. A.; Krukonis, V. J. Supercritical Fluid Extraction, Principles and Practice, 2nd ed.; Butterworth-Heinenman: Boston, 1994.
(9) Scott, R. L.; van Konynenburg, P. B. Static properties of solutions: van der Waals and related models for hydrocarbon systems. Discuss. Faraday Soc. 1970, 49, 87-97.
(10) Nakatani, T.; Tohdo, T.; Ohgaki, K.; Katayama, T. Solubilities of pyrimidine and pyrazine derivatives in supercritical fluids. J. Chem. Eng. Data 1991, 36, 314-316.
(11) Peng, D.-Y.; Robinson, D. B. A new two-constant equation of state. Ind. Eng. Chem. Res. Fundam. 1976, 15, 59-64.
(12) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A. Measurements of vapor pressure, heat capacity, and density along the saturation line for caprolactam, pyrazine, 1,2-propanediol, triethylene glycol, phenyl acetylene, and diphenyl acetylene. J. Chem. Eng. Data 2002, 47, 689-699.
(13) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids; McGraw-Hill: New York, 1987.
(14) Meilchen, M. A.; Hasch, B. M.; McHugh, M. A. Effect of copolymer composition on the phase behavior of mixtures of poly(ethylene-comethyl acrylate) with propane and chlorodifluoromethane. Macromolecules 1991, 24, 4874-4882.
(15) Mertdogan, C. A.; Byun, H. S.; McHugh, M. A.; Tuminello, W. H. Solubility of poly(tetrafluoroethylene-co-19 $\mathrm{mol} \%$ hexafluoropropylene) in supercritical $\mathrm{CO}_{2}$ and halogenated supercritical solvents. Macromolecules 1996, 29, 6548-6555.
(16) Diguet, R.; Deul, R.; Franck, E. U. Static dielectic permittivity and density of liquid dichloromethane to 200 MPa . Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 800-804.
(17) Sen, Y. L.; Kiran, E. A new experimental system to study the temperature and pressure dependence of viscosity and density behavior of pure fluids and solutions. J. Supercrit. Fluids 1990, 3, 91.
(18) Byun, H.-S.; DiNoia, T. P.; McHugh, M. A. High pressure densities of ethane, pentane, pentane- $d_{12}, 25.5 \mathrm{wt} \%$ ethane in pentane- $d_{12}, 2.4$ wt \% deuterated poly(ethylene-co-butene) (PEB) in ethane, 5.3 wt $\%$ hydrogenated PEB in pentane, $5.1 \mathrm{wt} \%$ hydrogenated PEB in pentane- $d_{12}$, and $4.9 \mathrm{wt} \%$ hydrogenated PEB in pentane- $d_{12}+23.1$ wt \% ethane. J. Chem. Eng. Data 2000, 45, 810-814.
(19) Hong, L.; Thies, M. C.; Enick, R. M. Global phase behavior for $\mathrm{CO}_{2^{-}}$ philic solids: the $\mathrm{CO}_{2}+\beta$-D-maltose octaacetate system. J. Supercrit. Fluids 2005, 34, 11-16.

Received for review March 29, 2006. Accepted August 8, 2006. The authors gratefully acknowledge funding from Philip Morris USA for this project.


[^0]:    * Corresponding author. Fax: 804-828-3846. E-mail: mmchugh@ vcu.edu.

[^1]:    ${ }^{a}$ The melting points $\left(t_{\mathrm{m}}\right)$ and boiling points $\left(t_{\mathrm{b}}\right)$ were reported by the supplier (Sigma-Aldrich Co.) with the exception of $t_{\mathrm{m}}$ of 2-methoxypyrazine, which is a liquid at room temperature. The critical temperature $\left(t_{\mathrm{c}}\right)$, the critical pressure $\left(P_{\mathrm{c}}\right)$, and the acentric factor for pyrazine were reported by Steele et al. ${ }^{12}$ The critical temperatures for 2-methoxypyrazine, 2-methylpyrazine, and 2,3-dimethylpyrazine were calculated using the Joback-Lydersen method. ${ }^{13}$ The $t_{\mathrm{c}}$ for 2-acetylpyrazine was calculated with Fedors method ${ }^{13}$ since this method does not use the boiling point. The critical pressures and acentric factors for the substituted pyrazines were calculated using the Joback-Lydersen method. ${ }^{13}$

[^2]:    ${ }^{a} \mathrm{BP}$ is bubble point. DP is dew point. S is a single phase. An asterisk $\left({ }^{*}\right)$ indicates that density data were not obtained at these conditions.

