Saturated Pressure Measurements of Dimethyl Ether at Temperatures from (219 to 361) K

Francesco Corvaro, Giovanni Di Nicola,* Fabio Polonara, and Giulio Santori

Dipartimento di Energetica, Università Politecnica delle Marche, Via Brecce Bianche, 60100 Ancona, Italy

Abstract

The vapor pressure data of dimethyl ether (RE170), an ozone-friendly refrigerant, was measured using a constantvolume apparatus. Measurements were carried out at temperatures from (219 to 361) K and at pressures from (22 to 2622$) \mathrm{kPa}$. A total of 71 experimental points were obtained. The measurements were fitted to a Wagner-type equation and an absolute deviation of 0.26%. After a literature survey of the saturated pressure experimental findings, our experimental results were compared with the REFPROP 7.0 prediction together with the published data.

Introduction

Dimethyl ether is an important chemical material and has many engineering applications. It is now developed as a substitute of engine fuel for gasoline, as an assistant solvent, and as an aerosol propellant. It can be made from coal, natural gas, residual oil, oil coke, and other biological materials. Its production cost is very low. In addition, dimethyl ether is nontoxic and noncarcinogenic. Considering that dimethyl ether has zero ozone depletion potential (ODP), zero global warming potential (GWP), and good thermodynamic properties, it was also suggested as an alternative refrigerant (RE170). In particular for air conditioning systems applications, the mixture of 60% in mass of ammonia and 40% in mass of dimethyl ether forms an interesting azeotrope (R723). For all these reasons, the study of its thermophysical properties is very important.

In the saturation region, excluding very old and less precise data, ${ }^{1,2}$ accurate experimental data for RE170 are not very numerous. In fact, in the last few years, a limited number of points have been collected by different laboratories while studying the VLE of its binary systems. ${ }^{3-12}$ Confirming the rising interest on this fluid, an intensive research was recently carried out in terms of critical parameters, ${ }^{13}$ surface tension, ${ }^{14}$ viscosity, ${ }^{15}$ and thermal conductivity ${ }^{16}$ by Wu and co-workers. Inside this research project, quite a large amount of vapor pressure data at temperatures from (233 to 399) K were collected by the same authors. ${ }^{17}$ Furthermore, large differences among the published experimental vapor pressure data are evident.

For these reasons, 71 experimental points were collected in the two-phase region in a temperature range from (219 to 361) K. Experimental observations were regressed with a Wagnertype equation. A comparison of all the available data through the REFPROP 7.0^{18} prediction in a special version for this specific fluid ${ }^{19}$ was also carried out.

Experimental Section

Materials. The sample was provided by Aldrich Inc. (Milwaukee, WI). It was de-aereated by immersion in liquid nitrogen and evacuation. Its purity was checked by gas chromatography

[^0]

Figure 1. Schematic illustration of the apparatus: 1, constant volume spherical cell; 2, auxiliary cell; 3, magnetic pump; 4, differential pressure transducer; 5, electronic null indicator; 6 , charging system; 7, thermostatic baths; 8, platinum thermoresistances; 9, thermometric bridge; 10, stirrer; 11 , heater; 12 , power system; 13 , cooling coil; 14 , connections to auxiliary thermostatic bath; 15 , acquisition system; 16, Bourdon gage; 17, dead weight gage; 18 , vibrating cylinder pressure gage; 19 , precision pressure controller; 20, nitrogen reservoir; 21, vacuum pump system.
using a thermal conductivity detector and was found to be better than 99.8% in molar basis by analysis of peak area.

Apparatus. The new experimental setup is illustrated in Figure 1. The basic experimental setup has already been described elsewhere, ${ }^{20}$ so it is only briefly outlined here. Two twin thermostatic baths were filled with different silicone oils (Baysilone M10 and Baysilone M100, Bayer). After charging with the sample, the setup could be operated over two temperature ranges, approximately from (210 to 290) K and from (290 to 360) K, depending on which bath was used. The two silicone oils have different kinematic viscosity values (10 and 100 cSt at room temperature, respectively). The one with lower kinematic viscosity, due to its higher volatility, was applied only for the low temperature range, while that with a

Table 1. Experimental Saturation Pressures P at Temperature T for RE170

T_{90} / K	P / kPa						
219.15	22.3	259.14	159.0	295.07	540.0	329.02	1319.9
221.13	25.2	261.13	171.8	297.07	573.0	331.11	1385.3
223.11	28.3	263.13	185.6	299.08	606.9	333.11	1450.6
224.88	31.5	265.13	199.8	301.11	643.1	335.11	1518.8
226.88	35.4	267.13	215.5	303.08	680.2	337.10	1588.4
228.85	39.5	269.13	231.8	305.07	718.4	339.10	1660.3
230.86	43.9	271.13	248.9	307.07	758.8	341.08	1733.3
232.86	48.7	273.13	266.8	309.06	800.7	343.09	1811.3
234.85	54.1	275.04	285.1	311.07	844.2	345.09	1891.2
236.85	59.8	277.02	305.0	313.06	889.5	347.08	1972.8
239.14	66.3	279.02	326.4	315.06	936.6	349.08	2057.4
241.14	73.2	281.02	348.8	317.04	985.3	351.07	2144.3
244.14	84.0	283.02	372.3	319.03	1036.0	353.05	2232.7
247.13	96.1	285.01	397.0	321.03	1088.7	355.05	2326.0
249.13	104.9	287.00	422.8	323.02	1143.3	357.05	2421.9
251.14	114.3	288.99	449.8	325.02	1200.6	359.05	2520.3
255.13	135.1	290.99	478.4	327.13	1262.3	361.04	2621.5
257.12	146.6	293.08	508.9				

greater viscosity was applied only at high temperatures. The thermostatic baths were easy to move thanks to the new system configuration. The spherical cells and pressure transducer are immersed in one of the two thermostatic baths. An auxiliary thermostat was used to reach below-ambient temperatures. The cell volume was estimated to be $(273.5 \pm 0.3) \mathrm{cm}^{3}$ at room temperature, ${ }^{20}$ and the cell volume change with temperature was taken into account. ${ }^{21}$ The pressure and temperature data acquisition systems were identical to those of the previous apparatus. ${ }^{21,22}$ A PID device was used to control the temperature, which was measured using a calibrated resistance thermometer; the total uncertainty of the temperature measurements was \pm 0.02 K . The uncertainty in the pressure measurements stems from the uncertainty of the transducer and null indicator system and the pressure gauges. The uncertainty of the digital pressure indicator (Ruska, model 7000) is $\pm 0.003 \%$ of its full scale. Temperature fluctuations due to bath instability can also affect the total uncertainty in the pressure measurement, which was nonetheless found to be less than $\pm 1 \mathrm{kPa}$. The charging procedure by gravimetrical method has been described elsewhere. ${ }^{23}$

Results and Discussion

Vapor Pressure. The experimental vapor pressures at temperatures in the range (219 K to 361) K are given in Table 1. Experimental data were fit to the four-parameter Wagner equation:

$$
\begin{equation*}
\ln \frac{P}{P_{\mathrm{c}}}=\frac{T_{\mathrm{c}}}{T}\left[A_{1} \tau+A_{2} \tau^{1.5}+A_{3} \tau^{2}+A_{4} \tau^{5}\right] \tag{1}
\end{equation*}
$$

where $\tau=\left(T_{\mathrm{c}}-T\right) / T_{\mathrm{c}}$; the critical temperature $T_{\mathrm{c}}=400.1 \mathrm{~K} .{ }^{18}$ The following values were found for the parameters: $A_{1}=$ $-7.40714, A_{2}=3.42409, A_{3}=-2.97850$, and $A_{4}=-3.43070$. From the fitting procedure, the critical pressure was fixed to be $P_{\mathrm{c}}=5370.2 \mathrm{kPa} .^{18}$

Defining the deviations in pressure as

$$
\begin{align*}
\mathrm{d} P & =\frac{1}{n} \sum_{i=1}^{n}\left[\left(P_{\exp }-P_{\text {calc }}\right) / P_{\exp }\right] \times 100 \tag{2}\\
|\mathrm{~d} P| & =\frac{1}{n} \sum_{i=1}^{n}\left[\left|\left(P_{\exp }-\mathrm{P}_{\text {calc }}\right) / \mathrm{P}_{\exp }\right|\right] \times 100 \tag{3}
\end{align*}
$$

where n is the number of experimental points, the following

Figure 2. Scatter diagram of the saturated pressure absolute deviations from the fit with the Wagner equation (eq 1).

Figure 3. Scatter diagram of the saturated pressure relative deviations from the fit with the Wagner equation (eq 1).
values were found: $\mathrm{d} P=0.16 \%$ and $\operatorname{abs}(\mathrm{d} P)=0.26 \%$. The error distribution is shown in Figures 2 and 3. The absolute deviations were found to be well distributed within $\pm 1 \mathrm{kPa}$, while the relative deviations were found to be within $\pm 1 \%$, excluding a few points at the lower temperatures that, due to the very low experimental pressures, produced higher deviations in percent.

The experimental results were also compared with the published data in the literature. In Figures 4 and 5 are reported absolute and relative deviations for the literature data ${ }^{3-12,17}$ from eq 1 .

Most of the deviations are well within $\pm 10 \mathrm{kPa}$, showing a general consistency between the sources; a systematic shift of 5 kPa was found only for one source, ${ }^{17}$ while higher deviations were found at temperatures greater than 320 K for two sources. ${ }^{11,12}$ The common trend but the systematic shift found with one source ${ }^{17}$ could be due to the different sample purity.

Our experimental results were also compared with REFPROP 7.0 together with the published data in the literature. In Figure 6 , the distribution of deviations between the literature sources and REFPROP 7.0 is shown. From Figure 6, it is evident that the same trend (but with slightly shifted results) was obtained by comparing the present work data with the more recent and numerous ones. ${ }^{11,12,17}$ Excluding again one source, ${ }^{17}$ a very good agreement for temperatures between (250 and 300) K was obtained. ${ }^{11,12}$ An excellent agreement was also obtained with

Figure 4. Vapor pressure absolute deviations of RE170 from eq 1 and measurements published in the literature: ∇, ref $3 ; \bigcirc$, ref $4 ; \diamond$, ref $5 ; \Delta$, refs $6-10 ; \odot$, ref $11 ; \bigcirc$, ref $12 ; \square$, ref 17 .

Figure 5. Vapor pressure relative deviations of RE170 from eq 1 and measurements published in the literature: ∇ ? ref $3 ; \bigcirc$, ref $4 ; \diamond$, ref $5 ; \Delta$, refs $6-10 ; \odot$, ref $11 ; O$, ref $12 ; \square$, ref 17 .

Figure 6. Vapor pressure absolute deviations of RE170 from REFPROP 7.0 and measurements published in the literature: © , present work; ∇, ref $3 ; \bigcirc$, ref $4 ; \diamond$, ref $5 ; \Delta$, refs $6-10 ; \odot$, ref $11 ; \bigcirc$, ref $12 ; \square$, ref 17 .
sources obtained by direct VLE measurements. ${ }^{6-10}$ In general, agreement with REFPROP 7.0 was good, even if measurements had lower temperatures (less than 250 K) as shown in Figure 7, again due to the very low experimental pressures, systematic negative relative deviations.

Figure 7. Vapor pressure relative deviations of RE170 from REFPROP 7.0 and measurements published in the literature: \bullet, present work; ∇, ref $3 ; \bigcirc$, ref $4 ; \diamond$, ref $5 ; \Delta$, refs $6-10 ; \odot$, ref $11 ; \bigcirc$, ref $12 ; \square$, ref 17 .

Conclusions

The measurements of 71 experimental points for saturated pressure were obtained using a constant-volume apparatus for RE170. The experimental points taken within the VLE boundary were fitted with a Wagner-type equation. The experimental VLE data were compared with the REFPROP 7.0 prediction and with recently published data. A generally good consistency between the different sources was found.

Literature Cited

(1) Cardoso, E.; Bruno, A. Recherches experimentales sur quelques proprietés termique des gaz-elements critiques et tensions de vapeur de l'oxyde de methyle. J. Chim. Phys. 1923, 20, 347-351 (in French).
(2) Kennedy, R. M.; Sagenkahn, M.; Aston, J. G. The heat capacity and entropy, heats of fusion and vaporization, and the vapor pressure of dimethyl ether, the density of gaseous dimethyl ether. J. Am. Chem. Soc. 1941, 63, 2267-2272.
(3) Horstmann, S.; Birke, G.; Fischer, K. Vapor-liquid equilibrium and excess enthalpy for the binary system propane + dimethyl ether and propene + dimethyl ether at temperatures from (298 to 323) K. J. Chem. Eng. Data 2004, 49, 38-42.
(4) Noles, J. R.; Zollweg, J. A. Vapor-liquid equilibrium for chlorodifluoromethane + dimethyl ether from 283 to 395 K at pressures to 5.0 MPa. J. Chem. Eng. Data 1992, 37, 306-310.
(5) Jonasson, A.; Persson, O.; Fredenslund, A. High-pressure solubility of carbon dioxide and carbon monoxide in dimethyl ether. J. Chem. Eng. Data 1995, 40, 296-300.
(6) Bobbo, S.; Fedele, L.; Camporese, R.; Stryjek, R. Isothermal vapor liquid equilibrium for the three binary systems $1,1,1,2,3,3$-hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether. Fluid Phase Equilib. 2000, 174, 3-12.
(7) Bobbo, S.; Stryjek, R.; Camporese, R. (Vapor + liquid) equilibrium measurements and correlations of the refrigerant mixture \{dimethyl ether (RE170) + 1,1,1,3,3,3-hexafluoropropane (R236fa) \} at the temperatures (303.68 and 323.75) K. J. Chem. Thermodyn. 1998, 30, 1041-1046.
(8) Bobbo, S.; Fedele, L.; Stryjek, R.; Camporese, R. Hydrogen bonding of HFCs with dimethyl ether: evaluation by isothermal VLE measurements. Fluid Phase Equilib. 2002, 199, 153-160.
(9) Bobbo, S.; Fedele, L.; Scattolini, M.; Camporese, R.; Stryjek, R. Isothermal vapor + liquid equilibrium measurements and correlation for the dimethyl ether $+1,1,1,2,3,3,3$-heptafluoropropane and the propane $+1,1,1,2,3,3,3$-heptafluoropropane systems. Fluid Phase Equilib. 2004, 224, 119-123.
(10) Fedele, L.; Bobbo, S.; De Stefani, V.; Camporese, R.; Stryjek, R. Isothermal VLE measurements for difluoromethane + dimethyl ether and an evaluation of hydrogen bonding. J. Chem. Eng. Data 2005, 50, 128-132.
(11) Valtz, A.; Gicquel, L.; Coquelet, C.; Richon, D. Vapour-liquid equilibrium data for the 1,1,1,2-tetrafluoroethane (R134a) + dimethyl ether (DME) system at temperatures from 293.18 to 358.15 K and pressures up to about 3 MPa. Fluid Phase Equilib. 2005, 230, 184191.
(12) Yasumoto, M.; Uchida, Y.; Ochi, K.; Furuya, T.; Otake, K. Critical properties of three dimethyl ether binary systems: dimethyl ether (RE170) + propane (HC-290), butane (HC-600), and 2-methyl propane (HC-600A). J. Chem. Eng. Data 2005, 50, 596-602.
(13) Wu, J. T.; Liu, Z. G.; Wang, B.; Pan, J. Measurements of critical parameters and saturated densities of dimethyl ether. J. Chem. Eng. Data 2004, 49, 704-708.
(14) Wu, J. T.; Liu, Z. G.; Wang, F. K.; Ren, C. Surface tension of dimethyl ether from (213 to 368) K. J. Chem. Eng. Data 2003, 48, 15711573.
(15) Wu, J. T.; Liu, Z. G.; Bi, S. S.; Meng, X. Y. Viscosity of saturated liquid dimethyl ether from 227 to 343 K. J. Chem. Eng. Data 2003, 48, 426-429.
(16) Wu, J. T.; Liu, Z. G.; Jin, X. G.; Pan, J. The thermal conductivity of some oxygenated fuels and additives in the saturated liquid phase. J. Chem. Eng. Data 2005, 50, 102-104.
(17) Wu, J. T.; Liu, Z. G.; Pan, J.; Zhao, X. M. Vapor pressure measurements of dimethyl ether from (233 to 399) K. J. Chem. Eng. Data 2004, 49, 32-34.
(18) Lemmon, E. W.; McLinden, M. O.; Huber, M. L. NIST Standard Reference Database 23, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), Version 7.0;

National Institute of Standards and Technology: Gaithersburg, MD, 2002.
(19) Lemmon, E. W. Private communication.
(20) Di Nicola, G.; Polonara, F.; Ricci, R.; Stryjek, R. PVTx measurements for the $\mathrm{R} 116+\mathrm{CO}_{2}$ and $\mathrm{R} 41+\mathrm{CO}_{2}$ systems. New isochoric apparatus. J. Chem. Eng. Data 2005, 50, 312-318.
(21) Giuliani, G.; Kumar, S.; Polonara, F. A Constant volume apparatus for vapour pressure and gas phase $P-v-T$ measurements: validation with data for R22 and R134a. Fluid Phase Equilib. 1995, 109, 265279.
(22) Giuliani, G.; Kumar, S.; Zazzini, P.; Polonara, F. Vapor pressure and gas-phase $P V T$ data and correlation for 1,1,1-trifluoroethane (R143a). J. Chem. Eng. Data 1995, 40, 903-908.
(23) Di Nicola, G.; Giuliani, G.; Polonara, F.; Stryjek, R. Saturated pressure and $P-V-T$ measurements for $1,1,1,3,3,3$-hexafluoropropane (R 236fa). J. Chem. Eng. Data 1999, 44, 696-700.

Received for review April 5, 2006. Accepted May 23, 2006. This work was supported by MIUR, the Ministry of Education, University and Research.

JE060148J

[^0]: * Corresponding author. Tel: +39-0712204277. Fax: +39-0712204770. E-mail: g.dinicola@univpm.it.

