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Binary mutual diffusion coefficients measured by the Taylor dispersion method in two different laboratories
(University of Naples, Federico II, Italy, and University of Coimbra, Portugal) are reported for aqueous solutions
of lactose, sucrose, glucose, and fructose at various concentrations (0.001 to 0.1) mol‚dm-3 and temperatures
(298.15 to 328.15) K. The hydrodynamic radius and activation energy for the diffusion of aqueous sugars are
calculated from those results. In addition, the measured diffusion coefficients are used with the Hartley equation
to estimate activity coefficients for aqueous lactose, sucrose, glucose, and fructose.

Introduction

Carbohydrates are not only technological important com-
pounds but also enjoy biological relevance.1-3 As typical non-
electrolytes carrying hydrophilic hydroxyl groups capable of
hydrogen bonding, their properties play a significant role in the
reaction conditions of many current industrial processes such
as enzymatic conversion of biomass to useful chemicals.
Furthermore, they are important components in formulations
for pharmaceutical, food, and biomedical applications (e.g., for
stabilization of proteins and membranes).1-3

While numerous studies have been carried out on the
thermodynamic properties of binary aqueous sugar solutions
(e.g., activity coefficients, excess enthalpies, etc.),2,4-7 data are
more limited on the transport behavior of these sugar systems
in aqueous solutions.8-12 Transport properties, particularly
diffusion coefficients, provide a direct measure of molecular
mobility, an important factor in the preservation of biological
materials in sugar matrixes. Hopefully, the studies reported here
will lead to an increase in know-how, which will allow a better
understanding of the physical chemistry conditions underlining
the diffusion phenomena occurring in different systems (e.g.,
human oral cavity).

Diffusion coefficients for sucrose and glucose have been
previously reported.8-11 However, those studies mainly focused
on sucrose concentrations greater than 0.05 mol‚dm-3 at 298.15
K. A study of mutual diffusion coefficients (D) of glucose and
sucrose, at (303.15 and 323.15) K, obtained by the capillary
cell method in concentrated solutions (c > 1.0 mol‚dm-3) was
reported by Sano and Yamamoto.1 These authors establish an
empirical linear relationship between logD and the mole fraction
of the solute (carbohydrate). However, bearing in mind the
empirical nature of those equations and considering that the
above authors admit the possible error limits in these values of
D are of the order up to 30 %, the efforts in our repeating
experimental diffusion study of these sugars appears justified.
In fact, comparison of our experimental results with those

obtained in this work through the cited equations leads to
deviations greater than 30 % for these two carbohydrates. As
far as we are aware, no data are available in the literature for
lactose and fructose.

In the present study, mutual diffusion (interdiffusion) coef-
ficients D, measured by the Taylor dispersion method, are
reported for aqueous solutions of lactose, sucrose, glucose, and
fructose at concentrations from (0.001 to 0.1) mol‚dm-3 and
temperatures from (298.15 to 328.15) K. The accuracy of the
Taylor diffusion measurements is assessed by measuring binary
mutual diffusion coefficients for aqueous solutions of potassium
chloride at 298.15 K and comparing them with previously
reportedD values measured by accurate optical interferometric
and conductometric techniques.13-15 The reproducibility of these
results was usually within( 1 %. Comparison of the results
suggests an uncertainty of (1 to 2) % for theD values reported
here, which is typical for Taylor dispersion measurements.
Experimental mutual diffusion coefficients were used to estimate
various parameters such as the hydrodynamic radii and activa-
tion energy for the diffusion of those aqueous carbohydrates.
In addition, the measured diffusion coefficients are used with
the Hartley equation to estimate activity coefficients for aqueous
carbohydrate solutions.

Experimental Section

Materials.The solutes used in this study were lactose (BDH
Chemicals with a water content of 10.0 %), sucrose (Sigma,
pro analysi> 99 %),D(+)-glucose (Fluka, pro analysi> 99.5
%) andD(-)-fructose (Riedel-de-Hae¨n, Chem. pure). These were
used without further purification.

The solutions for the diffusion measurements were prepared
in calibrated volumetric flasks using bi-distilled water. The
solutions were freshly prepared and de-aerated for about 30 min
before each set of runs. The uncertainty on their compositions
was usually within( 0.1 %.

Procedure.Dispersion methods for diffusion measurements
are based on the dispersion of small amounts of solution injected
into laminar carrier streams of solvent or solution of different
composition, flowing through a long capillary tube.16-19 The
length of the Teflon dispersion tube used in the present study
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was measured directly by stretching the tube in a large hall and
using two high-quality theodolytes and appropriate mirrors to
accurately focus on the tube ends. This technique gave a tube
length of 3.2799 (( 0.0001)× 103 cm, in agreement with less-
precise control measurements using a good-quality measuring
tape. The radius of the tube, 0.05570 (( 0.00003) cm, was
calculated from the tube volume and the known density of water
by accurately weighing (resolution 0.1 mg) the tube when empty
and when filled with distilled water.

At the start of each run, a six-port Teflon injection valve
(Rheodyne, model 5020) was used to introduce 0.063 cm3 of
solution into a laminar carrier stream of slightly different
composition. A flow rate of 0.17 cm3‚min-1 was maintained
by a metering pump (Gilson model Minipuls 3) to give retention
times of about 8× 103 s. The dispersion tube and the injection
valve were kept at (298.15 and 303.15) K (( 0.01 K) in an air
thermostat.

Dispersion of the injected samples was monitored using
a differential refractometer (Waters model 2410) at the

outlet of the dispersion tube. Detector voltages,V(t), were
measured with a digital voltmeter (Agilent 34401 A) with
an IEEE interface at accurately timed 5 s intervals. Binary
diffusion coefficients were evaluated by fitting the dispersion
equation16-19

to the detector voltages. The additional fitting parameters were
the mean sample retention timetR, peak heightVmax, baseline
voltageV0, and baseline slopeV1.

The concentrations of the injected solutions (cj + ∆c) and
the carrier solutions (cj) differed by 0.004 mol‚dm-3 or less.
Solutions of different composition were injected into each carrier
solution to confirm that the measured diffusion coefficients were
independent of the initial concentration difference and therefore
represented the differential value ofD at the carrier-stream
composition.

Table 1. Mutual Diffusion Coefficients of Aqueous Lactose Solutions and the Respective Standard Deviations,D ( SD, at Different
Temperatures,T, and Concentrations,cj

cj ∆c D ( SD

mol‚dm-3 mol‚dm-3
10-9 m2‚s-1 a

T/K ) 298.15
10-9 m2‚s-1 b

T/K ) 303.15
10-9 m2‚s-1 a

T/K ) 308.15
10-9 m2‚s-1 b

T/K ) 312.15
10-9 m2‚s-1 a

T/K ) 318.15
10-9 m2‚s-1 a

T/K ) 328.15

0.001 0.568( 0.035c 0.643( 0.010c 0.723( 0.047c 0.789(0.030c 0.862( 0.057c 1.060( 0.099c

0.005 0.005 0.565( 0.040 0.639( 0.011 0.720( 0.085 0.785( 0.025 0.855( 0.082 1.058( 0.074
0.010 0.01 0.561( 0.037 0.631( 0.012 0.708( 0.035 0.774( 0.040 0.850( 0.031 1.044( 0.009
0.100 0.06 0.541( 0.012 0.602( 0.005 0.677( 0.027 0.740( 0.033 0.785( 0.023 1.018( 0.008

a Experimental values obtained from the Taylor technique installed in the Department of Chemistry at Naples University.b Experimental values obtained
from the Taylor technique installed in the Department of Chemistry at Coimbra University.c Extrapolated values obtained from theD least-squares for total
number of injections.

Table 2. Mutual Diffusion Coefficients of Aqueous Sucrose Solutions and the Respective Standard Deviations,D ( SD,a at Different
Temperatures,T, and Concentrations,cj

cj ∆c D ( SD

mol‚dm-3 mol‚dm-3
10-9 m2‚s-1

T/K ) 298.15
10-9 m2‚s-1

T/K ) 303.15
10-9 m2‚s-1

T/K ) 308.15
10-9 m2‚s-1

T/K ) 312.15
10-9 m2‚s-1

T/K ) 318.15

0.002 0.005 0.525( 0.009 0.611( 0.009 0.711( 0.008 0.804( 0.015 0.917( 0.02
0.005 0.005 0.521( 0.002 0.607( 0.004 0.706( 0.011 0.799( 0.010 0.911( 0.02
0.010 0.005 0.520( 0.005 0.605( 0.012 0.704( 0.017 0.793( 0.015 0.905( 0.01
0.100 0.005 0.504( 0.004 0.594( 0.017 0.692( 0.007 0.775( 0.011 0.888( 0.012

a Experimental values obtained from the Taylor technique installed in Department of Chemistry at Coimbra University.

Table 3. Mutual Diffusion Coefficients of Aqueous Glucose Solutions and the Respective Standard Deviations,D ( SD,a at Different
Temperatures,T, and Concentrations,cj

cj ∆c D ( SD

mol‚dm-3 mol‚dm-3
10-9 m2‚s-1

T/K ) 298.15
10-9 m2‚s-1

T/K ) 303.15
10-9 m2‚s-1

T/K ) 308.15
10-9 m2‚s-1

T/K ) 312.15

0.002 0.002 0.678( 0.020 0.769( 0.030 0.857( 0.030 0.978( 0.040
0.005 0.002 0.677( 0.020 0.765( 0.020 0.854( 0.032 0.972( 0.030
0.010 0.004 0.676( 0.020 0.761( 0.020 0.850( 0.020 0.966( 0.020
0.10 0.004 0.651( 0.001 0.740( 0.007 0.832( 0.006 0.924( 0.007

a Experimental values obtained from the Taylor technique installed in Department of Chemistry at Coimbra University.

Table 4. Mutual Diffusion Coefficients of Aqueous Fructose Solutions and the Respective Standard Deviations,D ( SD,a at Different
Temperatures,T, and Concentrations,cj

cj ∆c D ( SD

mol‚dm-3 mol‚dm-3
10-9 m2‚s-1

T/K ) 298.15
10-9 m2‚s-1

T/K ) 303.15
10-9 m2‚s-1

T/K ) 308.15
10-9 m2‚s-1

T/K ) 312.15

0.002 0.002 0.689( 0.030 0.770( 0.020 0.851( 0.030 0.943( 0.040
0.005 0.002 0.684( 0.020 0.767( 0.020 0.850( 0.015 0.939( 0.030
0.010 0.004 0.680( 0.020 0.765( 0.020 0.850( 0.020 0.936( 0.020
0.100 0.004 0.661( 0.008 0.744( 0.008 0.824( 0.010 0.915( 0.010

a Experimental values obtained from the Taylor technique installed in Department of Chemistry at Coimbra University.

V(t) ) V0 + V1t + Vmax(tR/t)1/2 exp[-12D(t - tR)2/r2t] (1)
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Results and Discussion

The Taylor dispersion equipment was used to measure
diffusion coefficients for lactose, sucrose, fructose, and glucose
in aqueous solutions from (298.15 to 328.15) K and concentra-
tions from (0.002 to 0.1) mol‚dm-3. Tables 1 to 4 give the
averageD value for each carrier solution determined from four
profiles generated by injecting samples that were more or less
concentrated than the carrier solution. Good reproducibility was
obtained, within( 1 %. Comparison of our results at 298.15 K
with theD values for aqueous sucrose found in the literature8-11

(Table 2) suggests an acceptable uncertainty of (1 to 2) % for
the TaylorD values.

The concentration dependence of the measured diffusion
coefficients is accurately represented (standard deviation< 1

%) by the linear equation:

D0 is the diffusion coefficient at infinite dilution. The least-
squares values ofD0 and parameterA are listed in Table 5.

Concentration Dependence of D.The concentration depen-
dence of the mutual diffusion coefficient for dilute solutions of
nonionic, nonassociating solutes is given by Hartley’s equation:
15

whereγ is the thermodynamic activity coefficient of the solute.
The Hartley equation, although very useful, is limited to the
analysis of diffusion in dilute solutions because variations in
the viscosity with concentration and the counterflow of solvent
relative to the solute are neglected. The effect of carbohydrate
concentration on the natural logarithm of the activity coefficient
follows a second-order polynomial equation for a sufficiently
large concentration range.20 However, for dilute solutions (c <
0.1 mol‚dm-3) we may assume21,22 that

whereB is a constant. Combining Hartley’s equation and eq 4
gives

for the predicted concentration dependence of the mutual
diffusion coefficient of dilute aqueous solutions of lactose,
sucrose, glucose, and fructose.

If activity data are available for the evaluation of d lnγ/dc
) B, then eq 4 can be used to calculate the concentration
dependence ofD. By inverting this procedure, activity coef-
ficients can be estimated from the concentration dependence
of D using d(D/D0)/dc ) B, eq 4 and consideringB ) A (eq 2)
(Table 5). To check the reliability of this procedure, which rests

Table 5. Least-Squares Values of ParametersD0 and A for the
Concentration Dependence ofD in Aqueous Solutions of Lactose,
Sucrose, Glucose, and Fructose (eq 2)

system T/K D0 Aa σb

lactose+ water 298.15 0.566 -0.25 2.38× 10-3

303.15 0.640 -0.38 4.42× 10-3

308.15 0.719 -0.43 6.11× 10-3

312.15 0.785 -0.46 5.77× 10-3

318.15 0.858 -0.73 9.54× 10-3

328.15 1.056 -0.39 7.11× 10-3

sucrose+ water 298.15 0.523 -0.19 1.99× 10-3

303.15 0.609 -0.15 2.50× 10-3

308.15 0.708 -0.16 3.01× 10-3

312.15 0.800 -0.26 4.49× 10-3

318.15 0.915 -0.27 3.67× 10-3

glucose+ water 298.15 0.679 -0.28 1.89× 10-4

303.15 0.767 -0.27 2.94× 10-3

308.15 0.855 -0.23 2.58× 10-3

312.15 0.975 -0.51 3.97× 10-3

fructose+ water 298.15 0.686 -0.25 3.53× 10-3

303.15 0.769 -0.25 1.57× 10-3

308.15 0.852 -0.28 7.62× 10-4

312.15 0.941 -0.26 2.50× 10-3

a We considerA ) B, where B is the thermodynamic coefficient.
b Standard deviations.

Table 6. Activity Coefficients for Lactose, Sucrose, Glucose, and Fructose,γ, Evaluated from Equation 5 Using the ThermodynamicB
Coefficients Indicated in Table 5

c γ

mol‚dm-3 T/K ) 298.15 T/K ) 303.15 T/K ) 308.15 T/K ) 312.15 T/K ) 318.15 T/K ) 328.15

Lactose+ Water
0.001 0.9998 0.9996 0.9996 0.9995 0.9993 0.9996
0.002 0.9995 0.9992 0.9991 0.9991 0.9985 0.9992
0.005 0.9987 0.9981 0.9979 0.9977 0.9963 0.9981
0.010 0.9975 0.9962 0.9957 0.9954 0.9927 0.9961
0.100 0.9753 0.9627 0.9579 0.9550 0.9296 0.9618

Sucrose+ Water
0.001 0.9998 0.9998 0.9998 0.9997 0.9997
0.002 0.9996 0.9997 0.9997 0.9995 0.9995
0.005 0.9991 0.9993 0.9992 0.9987 0.9986
0.010 0.9981 0.9985 0.9984 0.9974 0.9973
0.100 0.9812 0.9851 0.9841 0.9743 0.9734

Glucose+ Water
0.001 0.9997 0.9997 0.9998 0.9995
0.002 0.9994 0.9995 0.9995 0.9990
0.005 0.9986 0.9986 0.9988 0.9975
0.010 0.9972 0.9973 0.9977 0.9949
0.100 0.9724 0.9734 0.9773 0.9503

Fructose+ Water
0.001 0.9998 0.9998 0.9997 0.9997
0.002 0.9995 0.9995 0.9994 0.9995
0.005 0.9988 0.9988 0.9986 0.9987
0.010 0.9975 0.9975 0.9972 0.9974
0.100 0.9753 0.9753 0.9724 0.9743

D/10-9 m2‚s-1 ) D0 [1 + A(c/mol‚dm-3)] (2)

D/10-9 m2‚s-1 ) D0 (1 + d ln γ
d ln c)T,P

(3)

ln γ ) B(c/mol‚dm-3) (4)

D/10-9 m2‚s-1 ) D0 (1 + B(c/mol‚dm-3)) (5)
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on several assumptions, we estimated activity coefficients values
from our diffusion coefficients (Table 6) and we compared them
with those obtained by Robinson and Stokes.23 The activity
coefficients of sucrose in aqueous solutions calculated from our
diffusion coefficients (see Table 6) and from the literature23 give,
in general, acceptable agreement (< 1 %).

Temperature Dependence of D.A study was made to see if
the changes inD with temperature for aqueous lactose, sucrose,
glucose, and fructose, respectively, follow the Stokes-Einstein
equation:15

Table 7 gives the values ofD0η0/T and the effective hydrody-
namic radiusa for lactose, sucrose, glucose, and fructose
solutions at infinitesimal concentration.kB and η0 are Boltz-
mann’s constant and the viscosity of pure water at temperature
T.24 The variations ina with temperature are, in general,
relatively small,< 3 %, which is within the imprecision of the
diffusion measurements. The Stokes-Einstein equation therefore
gives a reliable account of the variation inD0 over the
temperature range used in the present study.D values measured
at different temperatures can be used to evaluate activation
energiesED for diffusion by using the Eyring relation:

whereR is the gas constant. Table 8 shows that logarithm of
the limitingD0 values plotted against 1/T is linear. The activation

energies calculated from the slope of the limiting in lactose,
sucrose, glucose, and fructose systems are 14.28 kJ‚mol-1, 20.13
kJ‚mol-1, 17.75 kJ‚mol-1, and 15.64 kJ‚mol-1, respectively.
These values are only slightly different from the values 18.49
kJ‚mol-1, 18.70 kJ‚mol-1, 19.28 kJ‚mol-1, and 19.28 kJ‚mol-1,
respectively, suggested by the Stokes-Einstein relation (that
is -R[d ln(T/η0)/d(1/T)]).

Conclusions

Diffusion coefficients measured for aqueous solutions of
lactose, sucrose, glucose, and fructose provide transport data
necessary to model the diffusion for various chemical and
pharmaceutical applications. From the diffusion coefficients,
activity coefficients and activation energies have been evaluated
and provide data for a better understanding of the thermody-
namic and transport properties of these important carbohydrates
in aqueous solutions.
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