Heat Capacities of Uracil, Thymine, and Its Alkylated, Cyclooligomethylenated, and Halogenated Derivatives by Differential Calorimetry

Wojciech Zielenkiewicz,* Malgorzata Kozbiał, Rafal Swierzewski, and Piotr Szterner

Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

The molar heat capacity (C_p) of solid uracil, its alkylated and halogenated derivatives, and cyclooligomethylenouracils in the temperature range of (298.15 to 343.15) K by a differential scanning calorimeter (SETARAM TG-DSC 111) were determined. It was demonstrated that the C_p value increases by increasing the number of methylene groups attached to the diketopyrimidine ring. The correlations $C_p = f(T)$ are given. The contributions of C-CH₃, N-CH₃, and C-NO₂ groups as well as F, Cl, Br, and I atoms in the value of C_p for the temperature of 298.15 K are presented. The Chickos method for calculation of C_p values is discussed.

Introduction

Thermodynamic properties of uracil and thymine (Figure 1) and its alkylated, halogenated, amino, and nitro derivatives and cyclooligomethylenouracils were the subject of our previous research.¹⁻¹¹ The enthalpy of solvatation based on the experimentally determined enthalpy of solution ($\Delta_{sol}H_m^{\circ}$) at 298.15 K and the van't Hoff enthalpy of sublimations $\Delta_{sub}H_m$ were determined. These measurements were made in aqueous solutions for 39 compounds and in methanol and *N*,*N*-dimethylformamide solutions for 14 compunds. The values of partial molar volumes (V_2^0) and partial molar heat capacities ($C_{p,2}^0$) of aqueous solutions were made for 44 derivatives of nucleic acid bases; whereas in methanol solutions they were determined for 20 compounds. Experimental data of these investigations have been presented before.⁹⁻¹¹

The aim of this work is to enlarge the scope of study by determination of the heat capacity of these compounds. In these investigations, the same samples of compounds derivatives were used as in earlier studies.

Materials and Methods

The object of our study was 28 compounds. Some of them were obtained from specialized chemical companies and used without further purification. Uracil, 3-methyluracil, 5-methyluracil (thymine), 6-methyluracil, 1,3-dimethyluracil, 5-fluorouracil, 5-chlorouracil, and 5-bromouracil of minimum 99 % purity were purchased from Sigma Chemical Co Ltd. 1-Methyluracil and 5-(trifluoromethyl)uracil, both of 97 % purity, were supplied by Aldrich Chemicals Co. Ltd. 5-Nitrouracil (> 97 % purity) was supplied by Fluka Chemicals, and 5-iodouracil (> 98 % purity) was supplied by Avocado Research Chemicals Ltd.

A significant number of substances used were individually synthesized in the Department of Organic Chemistry (Military Academy of Medicine, Łódź, Poland) headed by Prof. Dramiński, namely, 1,5-dimethyluracil, 1,6-dimethyluracil, 3,6-dimethyluracil, 5,6-dimethyluracil, 1,3,6-trimethyluracil, 1,3,5,6tetramethyluracil, 1,3-dimethyl-5-ethyluracil, 1,3-dimethyl-5propyluracil, 1,3-dimethyl-5-butyluracil, 1,3-dimethyl-6-ethyluracil, 1,3-dimethyl-6-propyluracil, 1,3-dimethyl-6-butyluracil, 1,3-

Figure 1. Structural formulas of uracil and thymine.

dimethyl-5,6-trimethyleneuracil, 1,3-dimethyl-5,6-tetramethyleneuracil, and 1,3-dimethyl-5,6-pentamethyleneuracil. All of these compounds were thoroughly purified by repeated crystallization or repeated vacuum sublimation. Their purity was checked by melting point determinations and chromatographic analyses in several solvents systems as described previously.⁵ Purity of these compounds was determined as 99.8 %.

The C_p determinations were made with use of a Calvet TG-DSC 111 differential scanning microcalorimeter (Setaram, France). The measurements were performed differentially, relative to the empty crucible in the range (298.15 to 343.15) K with the scan rate of 0.5 K·min⁻¹. All the samples were prepared in the same way. The investigated compounds were placed in stainless steal crucibles of the total volume of 150 μ L. The stainless steal cover was crimped with an aluminum seal with use of a crimping press.

The DSC device was calibrated using benzoic acid samples (no. 19.A.3, 99.8 %, received from the Central Office of Measures, Department of Analytical Chemistry, Łódź, Poland, Polish Committee for Standardization) as a standard substance. The obtained C_p value of benzoic acid of (146.9 ± 0.8) J•mol⁻¹•K⁻¹ is in good agreement with the value recommended by IUPAC¹² (146.8 J•mol⁻¹•K⁻¹). The experimentally determined C_p values in the temperature range (298.15 to 343.15) K were approximated by the expression $C_p = f(T)$.

The contributions of C–CH₃ and N–CH₃ groups in the C_p values at 398.15 K were calculated using the general additivity scheme, according to the equation:

$$C_{p} = C_{p,0} + \sum_{i} n_{i} C_{p,i}$$
(1)

* Corresponding author. E-mail: zifv@ichf.edu.pl.

where $C_{p,0}$ is a constant, $C_{p,i}$ is the additive value of molar heat

Table 1.	Experimental	$(C_p(\mathbf{ex}))$ and A	Approximated	$(C_p(appr))$ V	alue of Molar	Heat Capaci	ity and the	Correlation	Functions of	f Uracil and Its
Derivativ	es	•		•		_				

	Т	$C_p(\mathbf{ex})$	$C_p(appr)$		Т	$C_p(\mathbf{ex})$	$C_p(appr)$		Т	$C_p(\mathbf{ex})$	$C_p(appr)$	
no	K	$I \cdot mol^{-1} \cdot K^{-1}$	$I \cdot mol^{-1} \cdot K^{-1}$	no	K	$I \cdot mol^{-1} \cdot K^{-1}$	$I \cdot mol^{-1} \cdot K^{-1}$	no	K	$I \cdot mol^{-1} \cdot K^{-1}$	$I \cdot mol^{-1} \cdot K^{-1}$	
	IX.	5 mor it	J IIIOI IX	110.	п	5 mor it	J IIIOI IX	но.	IX.	5 1101 11	J IIIOI IK	
1		Uracil		2	~	1-Methylura	cil	3	~	3-Methylurac	il .	
	$C_p/(J)$	$\cdot \operatorname{mol}^{-1} \cdot \operatorname{K}^{-1}) = 1$	19.3(1.5) +		$C_p/(J)$	$\cdot \operatorname{mol}^{-1} \cdot \mathrm{K}^{-1}) = 1$	01.4(0.8) +		$C_p/(J \cdot mol^{-1} \cdot K^{-1}) = 100.8(1.3) +$			
	(1.58(0.03) (T/K 2	(73.15)		-	2.22(0.02) (<i>T</i> /K 2	2/3.15)			2.29(0.03) (<i>T</i> /K 2	/3.15)	
	208 15	nsd/(J•mol ••K	(-1) = 1.4		2009 1.5	nsd/(J•mol ••K	(1) = 0.7		209.15	nsd/(J•mol ·•K ·) = 1.2	
	298.15	131.8	133.7		298.15	156.9	156.8		298.15	157.0	158.0	
	303.15	135.5	130.0		303.15	10/.2	107.9		303.15	108.8	169.4	
	313 15	140.9	139.3		313 15	1/9.0	1/0.9		313.15	101.2	100.9	
	318.15	145.0	145.2		318.15	200.5	201.1		318.15	206.1	203.8	
	323.15	149.0	148.1		323.15	200.5	212.2		323.15	214.3	215.2	
	328.15	151.8	151.0		328.15	223.0	223.2		328.15	226.1	2267	
	333.15	154.3	153.9		333.15	235.0	234.3		333.15	239.2	238.1	
	338.15	156.8	156.8		338.15	245.9	245.4		338.15	249.0	249.5	
	343.15	157.4	159.6		343.15	256.1	256.5		343.15	260.2	261.0	
4		5-Methylurad	cil	5		6-Methylura	cil	6		1,3-Dimethylur	acil	
	$C_p/(J)$	$\cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 12$	39.0(1.5) +		$C_p/(J)$	$\cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1} = 1$	46.2(0.8) +		$C_p/(J$	$\cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}) = 17$	70.0(0.5) +	
	. (0.99(0.03) (T/K 2	73.15)		. (0.68(0.02) (<i>T</i> /K 2	273.15)		-	0.5(0.01) (T/K 27	(3.15)	
	rr	$nsd/(J \cdot mol^{-1} \cdot K^{-1})$	(1) = 1.3		rr	nsd/(J•mol ⁻¹ •K ⁻	$^{1}) = 0.8$		n	nsd/(J•mol ⁻¹ •K ⁻¹) = 0.4	
	298.15	163.0	163.9		298.15	162.5	163.2		298.15	182.5	183.0	
	303.15	168.2	168.9		303.15	167.2	166.5		303.15	185.4	185.7	
	308.15	1/3./	1/3.8		308.15	170.2	169.9		308.15	188.7	188.3	
	313.15	1/8./	1/8.8		313.15	172.2	1/5.5		313.15	191.2	190.9	
	222.15	104.5	103.0		202.15	1/0.9	1/0./		222.15	195.0	195.5	
	323.15	105.2	103.7		323.15	182.0	182.5		323.15	190.4	190.1	
	333 15	200.0	193.7		333.15	185.0	185.5		333.15	201.0	201.4	
	338.15	203.5	203.6		338.15	190.4	190.3		338.15	201.0	201.4	
	343.15	205.9	208.6		343.15	193.0	193.7		343.15	206.8	206.6	
7		3.6-Dimethylu	racil	8		1.6-Dimethylu	racil	9		1.5-Dimethylur	acvl	
	$C_n/(J)$	$mol^{-1} \cdot K^{-1} = 1$	76.9(0.5) +		$C_p/(J)$	$\cdot \text{mol}^{-1} \cdot \text{K}^{-1}) = 1$	58.5(2.5) +		$C_n/(J$	$\cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 17$	77.6(0.8) +	
	r ×	0.5(0.03) (<i>T</i> /K 27	73.15)		P N	1.1(0.05) (<i>T</i> /K 2	73.15)		0.4(0.02) (T/K 273.15)			
	rr	nsd/(J•mol ⁻¹ •K ⁻¹	$^{1}) = 1.3$		rı	nsd/(J•mol ⁻¹ •K ⁻	$^{1}) = 2.3$		rı	msd/(J•mol ⁻¹ •K ⁻¹) = 0.7	
	298.15	187.4	187.3		298.15	188.1	186.5		298.15	187.6	187.6	
	303.15	193.1	189.7		303.15	194.3	192.1		303.15	190.0	189.5	
	308.15	191.4	192.1		308.15	197.9	197.7		308.15	190.3	191.5	
	313.15	193.5	194.5		313.15	202.6	203.3		313.15	194.1	193.5	
	318.15	198.4	197.0		318.15	206.8	208.9		318.15	194.8	195.5	
	323.15	200.3	201.8		323.15	217.0	214.5		323.15	198.5	197.5	
	333.15	202.4	201.8		333.15	225.1	225.6		333.15	202.0	201.4	
	338.15	205.0	204.2		338.15	233.1	223.0		338.15	202.0	201.4	
	343.15	209.0	209.0		343.15	239.8	236.8		343.15	205.2	205.4	
10		5,6-Dimethylur	acyl	11		1,3,6-Trimethylu	uracyl	12	1	.3.5.6-Tetramethy	luracil	
	$C_p/(J)$	$-mol^{-1} \cdot K^{-1} = 1$	70.7(1.3) +		$C_p/(J$	$\cdot mol^{-1} \cdot K^{-1} = 19$	95.2(0.6) +		$C_p/(J$	$\cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 2$	8.1(2.1) +	
	P ·	0.9(0.03) (T/K 27	73.15)		P ·	2.2(0.04) (T/K 2	73.15)		r ·	0.99(0.04) (T/K 2	73.15)	
	rr	nsd/(J•mol ⁻¹ •K ⁻	$^{1}) = 1.2$		rı	nsd/(J•mol ⁻¹ •K ⁻	$^{1}) = 2.0$		n	$msd/(J\cdot mol^{-1}\cdot K^{-1})$) = 1.9	
	298.15	191.1	193.2		298.15	212.6	210.3		298.15	244.5	242.9	
	303.15	198.3	197.7		303.15	213.5	213.3		303.15	248.8	247.9	
	308.15	205.2	202.2		212 15	217.1	210.3		212.15	254.0	252.9	
	318.15	208.0	200.7		313.15	210.5	219.3		318.15	250.5	257.8	
	323 15	212.0	211.2		323 15	217.8	222.3		323.15	266.7	267.8	
	328.15	219.0	220.1		328.15	228.3	228.3		328.15	271.2	272.8	
	333.15	223.3	224.6		333.15	229.0	231.4		333.15	276.6	277.7	
	338.15	229.3	229.1		338.15	236.5	234.4		338.15	282.3	282.7	
	343.15	234.1	233.6		343.15	239.6	237.4		343.15	291.5	287.7	
13	1	,3-Dimethyl-5-et	yluracil	14	1,3-	Dimethyl-5-n-pr	opyluracil	16	1,	3-Dimethyl-6-eth	yluracil	
	$C_p/(J)$	$\operatorname{mol}^{-1} \cdot \mathrm{K}^{-1}) = 2$	20.0(2.8) +		$C_p/(J)$	$\cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}) = 2$	95.9(2.5) +		C_p /($(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}) = 2$	225(6.2) +	
	(J.9/(0.06) (I/K 2)	(13.15)		($J.22(0.07)(T/K)^{-1}$	(13.15)			0.6(0.16)(I/K 2)	(3.15)	
	208 15	11SU/(J•IIIOI ••K	-2.5		208 15	202.7	⁻) = 1.4 201.5		208.15	11SU/(J•IIIOI ·•K ·	-3.4	
	303.15	241.1	244.2		303.15	302.7	302.6		303.15	241.8	240.0	
	308.15	256.5	253.8		308.15	302.8	303.7		308.15	245.3	245.0	
	313 15	261.0	258.7		313 15	303.0	304.9		313 15	2463	248.9	
	318.15	264.3	263.5		318.15	306.2	306.0		318.15	248.3	251.9	
	323.15	267.4	268.3		323.15	308.4	307.1		323.15	259.6	254.9	
	328.15	270.7	273.2	15	1,3	-Dimethyl-5-n-b	utyluracil					
	333.15	275.2	278.0		$C_p/(J$	$(\cdot \operatorname{mol}^{-1} \cdot \mathrm{K}^{-1}) = 3$	37.2(0.0) -					
	220.15	201 5	202.0		5	72.4(0.0) (<i>T</i> /K –	273.15)					
	338.15	281.7	282.8		2009 15	$msd/(J \cdot mol^{-1} \cdot K^{-1})$	$^{1}) = 0.0$					
	343.15	291.1	287.6		298.15	358.1 544.2	338.2 544.2					
17	13-	Dimethvl-6-n-pr	opyluracil	18	1	3-Dimethvl-6-hu	tvluracil	19	1.3-Di	methyl-5.6-trimet	hyleneuracil	
	$C_n/(J$	$\cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}) = 2'$	71.2(5.3) +		$C_n/(J)$	$\cdot \operatorname{mol}^{-1} \cdot \mathrm{K}^{-1}) = 2$	87.8(0.1) +		$C_n/(J$	$\cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 23$	30.9(2.6) +	
	r ` (0.57(0.14) (T/K 2	73.15)		r `(0.33(0.03) (<i>T</i> /K 2	273.15)		r	0.9(0.09) (<i>T</i> /K 27	(3.15)	
	rr	nsd/(J•mol ⁻¹ •K ⁻¹	() = 2.9		rr	nsd/(J•mol ⁻¹ •K ⁻	$^{1}) = 0.6$		n	$msd/(J \cdot mol^{-1} \cdot K^{-1})$) = 0.6	
	298.15	287.2	285.6		298.15	296.4	296.1		298.15	252.9	253.2	
	303.15	288.8	288.4		303.15	297.9	297.8		303.15	258.1	257.6	
	308.15	290.5	291.3		308.15	299.4	299.5		508.15	201.8	262.1	
	313.13	292.2	294.2		313.13	202.9	202.9					
	323.15	273.7	297.1		323 15	302.1	304.5					
		202.7				000.0	501.5					

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Table	1. (Contin	ued)									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Т	$C_p(\mathbf{ex})$	$C_p(appr)$		Т	$C_p(ex)$	$C_p(appr)$		Т	$C_p(ex)$	$C_p(appr)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	no.	K	$J \cdot mol^{-1} \cdot K^{-1}$	$J \cdot mol^{-1} \cdot K^{-1}$	no.	K	$J \cdot mol^{-1} \cdot K^{-1}$	$J \cdot mol^{-1} \cdot K^{-1}$	no.	K	$\overline{J \cdot mol^{-1} \cdot K^{-1}}$	$\overline{J \cdot mol^{-1} \cdot K^{-1}}$
$ \begin{array}{c} C_{p}(d-mol^{-1}K^{-1}) = 236, 6(1, 0) + \\ 1.45(0.05)(TK 273.15) \\ msd(d-mol^{-1}K^{-1}) = 1.1 \\ msd(d-mol^{-1}K^{-1}) = 1.5 \\ msd(d-mol^{-1}K^{-1}) = 1.5 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 291.2 & 290.3 \\ 303.15 & 316.4 & 316.3 \\ 318.15 & 316.5 & 306.8 \\ 318.15 & 316.3 & 316.1 \\ 318.15 & 310.9 & 312.0 \\ 318.15 & 310.9 & 312.0 \\ 323.15 & 319.8 & 319.2 \\ 323.15 & 319.8 & 319.2 \\ 323.15 & 319.8 & 319.2 \\ 323.15 & 319.8 & 319.2 \\ 333.15 & 355.3 & 351.9 \\ 333.15 & 345.1 & 445.5 \\ 338.15 & 365.2 & 363.8 \\ 338.15 & 365.2 & 363.8 \\ 338.15 & 146.0 & 146.3 \\ 338.15 & 146.0 & 146.3 \\ 300.03 (TK 273.15) \\ msd(d-mol^{-1}K^{-1}) = 128.3(1.4) + \\ 0.30(0.3) (TK 273.15) \\ msd(d-mol^{-1}K^{-1}) = 0.7 \\ msd(d-mol^{-1}K^{-1}) = 1.3 \\ msd(d-mol^{-1}K^{-1}) = 0.7 \\ msd(d-mol^{-1}K^{-1}) = 13.8 \\ 303.15 & 147.9 & 147.2 \\ 308.15 & 140.0 & 140.0 \\ 308.15 & 140.0 & 140.0 \\ 308.15 & 140.0 & 140.0 \\ 308.15 & 142.0 & 143.3 \\ 313.15 & 142.0 & 143.3 \\ 313.15 & 142.0 & 143.3 \\ 313.15 & 142.0 & 143.3 \\ 313.15 & 142.0 & 144.3 \\ 313.15 & 144.7 & 144.7 \\ 313.15 & 144.7 & 144.7 \\ 313.15 & 157.0 & 157.3 \\ 333.15 & 147.9 & 147.9 \\ 447.9 & 147.0 \\ 308.15 & 144.0 & 144.3 \\ 313.15 & 150.6 & 150.0 \\ 333.15 & 147.2 & 148.0 \\ 333.15 & 147.9 & 148.3 \\ 333.15 & 147.9 & 148.3 \\ 333.15 & 157.0 & 157.3 \\ 333.15 & 157.0 & 157.3 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.1 \\ 6.57(00.0)(TK 273.15) \\ msd(d-mol^{-1}K^{-1}) = 163.4(0.5) + \\ 0.57(00.0)(TK 273.15) \\ msd(d-mol^{-1}K^{-1}) = 163.4(0.5) + \\ 0.57(0.0)(TK 273.15) \\ msd(d-mol^{-1}K^{-1}) = 168.4(0.5) \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\ 333.15 & 157.9 & 158.7 \\$	20	1,3-Dii	nethyl-5,6-tetrame	ethyleneuracil	2 1	1,3-Dimethyl-5,6-pentamethyleneuracil					6-Chlorourac	il
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$C_{p}/(.$	$\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1} = 2^{2}$	46.9(2.1) +		$C_p/(\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1}) = 286.6(1.6) +$				$C_p/(J$	$\cdot \operatorname{mol}^{-1} \cdot \mathrm{K}^{-1}) = 13$	34.8(1.0) +
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.45(0.05) (<i>T</i> /K 2	(73.15)			1.19(0.03) (T/K 27	73.15)		0.18(0.02) (T/K 273.15)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1000 15	msd/(J•mol ⁻¹ •K ⁻¹	(1) = 1.1		200.15	$msd/(J \cdot mol^{-1} \cdot K^{-1})$) = 1.5		r.	$msd/(J \cdot mol^{-1} \cdot K^{-1})$) = 0.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		298.15	282.9	283.0		298.15	314.5	316.3		298.15	139.4	139.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		303.15	291.2	290.3		303.15	321.6	322.2		303.15	141.0	140.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		308.15	296.2	297.5		308.15	329.0	328.2		308.15	141.2	141.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		313.15	305.8	304.8		313.15	333.6	334.1		313.15	140.8	141.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		318.15	310.9	312.0		318.15	341.1	340.0		318.15	141.3	142.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		323.15	319.8	319.2		323.15	347.9	346.0		323.15	144.7	145.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						328.15	353.3	351.9		328.15	144.9	144.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						333.15	358.4	357.8		333.15	145.1	145.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						242.15	303.2	303.8		242 15	140.0	140.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22		5 Elucrouros	.:1	24	343.15	5 Chlorouroa	309.7	25	545.15	147.9 5 Promouroa	.147.2
$ \begin{array}{c} C_{p'}(J^{+}101^{-1}K^{-}) = 1.3, S(1+)^{+} \\ 0.33(0.3) (TK 273.15) \\ msd/(J^{+}m0]^{-1}K^{-1}) = 1.3 \\ \hline msd/(J^{+}m0]^{-1}K^{-1}) = 1.3 \\ \hline msd/(J^{+}m0]^{-1}K^{-1}) = 1.3 \\ \hline msd/(J^{+}m0]^{-1}K^{-1}) = 0.7 \\ \hline msd/(J^{+}m0]^{-1}K^{-1}$	23	C IC	5-Fluorourac	28 2(1 4) ⊥	24	G/(1 = 1 = 1 = 1) = 124.0(0.8)			25	$C /(\text{I-mol}^{-1} \cdot K^{-1}) = 122.0 \pm$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$C_{p'}(J \cdot mol^{-1} \cdot K^{-1}) = 128.3(1.4) + 0.32(0.02)(T/K 272.15)$				$C_{p}/($	0.46(0.02)(T/K.2)	$(4.9(0.8) \pm 73.15)$		0.47(0.02) (T/K 273.15)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$rmsd/(I \cdot mol^{-1} \cdot K^{-1}) = 1.3$				$rmsd/(J \cdot mol^{-1} \cdot K^{-1}) = 0.7$				r	$M_{\rm msd}/(1.02) (1/K^2)$	(3.13)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		298.15	138.3	1367		298.15	136.7	136.5		298.15	144.7	144 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		303.15	139.1	138.3		303.15	137.9	138.8		303.15	147.9	147.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		308.15	140.0	140.0		308.15	142.1	141.1		308.15	148.5	149.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		313.15	140.9	141 7		313.15	142.9	143.4		313 15	151.0	1517
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		318.15	142.0	143.3		318.15	146.1	145.7		318.15	153.9	154.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		323.15	143.6	145.0		323.15	147.2	148.0		323 15	157.1	156.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		328.15	145.5	146.7		328.15	151.2	150.4		328.15	157.9	158.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		333.15	147.9	148.3		333.15	152.9	152.7		333.15	162.0	161.1
343.15 151.7 343.15 157.0 157.3 343.15 164.8 165.8 26 5-Iodouracil 27 5-Trifluoromethyluracil 28 5-Nitrouracil $C_p/(J \cdot mol^{-1} \cdot K^{-1}) = 137.0(0.7) + 0.57(0.01) (7/K 273.15)$ 343.15 157.0 157.3 343.15 164.8 165.8 165.8 298.15 150.9 151.1 298.15 182.2 181.9 298.15 167.2 167.5 303.15 153.9 154.0 303.15 183.9 184.6 303.15 167.2 167.5 308.15 156.8 156.8 308.15 188.1 187.3 308.15 169.9 169.2 313.15 162.8 162.5 318.15 190.3 190.1 313.15 169.9 170.0 318.15 165.8 165.3 323.15 195.9 195.5 323.15 171.1 170.9 323.15 168.6 168.2 328.15 198.2 198.2 328.15 171.1 170.9 333.15 170.3 171.0 333.15 199.4 200.9 333.15		338.15	150.6	150.0		338.15	154.9	155.0		338.15	164.3	163.4
265-lodouracil275-Trifluoromethyluracil285-Nitrouracil $C_p/(J \cdot mol^{-1} \cdot K^{-1}) = 137.0(0.7) + 0.57(0.01) (T/K 273.15)$ $C_p/(J \cdot mol^{-1} \cdot K^{-1}) = 168.4(0.8) + 0.54(0.02) (T/K 273.15)$ $C_p/(J \cdot mol^{-1} \cdot K^{-1}) = 163.4(0.5) + 0.17(0.01) (T/K 273.15)$ $msd/(J \cdot mol^{-1} \cdot K^{-1}) = 0.6$ $msd/(J \cdot mol^{-1} \cdot K^{-1}) = 0.8$ $msd/(J \cdot mol^{-1} \cdot K^{-1}) = 0.4$ 298.15150.9151.1298.15182.2181.9298.15167.2303.15153.9154.0303.15183.9184.6303.15167.9168.4308.15156.8156.8308.15188.1187.3308.15169.9169.2313.15159.8159.7313.15190.3190.1313.15169.9170.0318.15162.8165.3323.15195.9195.5323.15171.1170.9323.15165.8165.3323.15198.2198.2333.15173.0172.5333.15170.3171.0333.15199.4200.9333.15173.1173.4338.15172.7173.8338.15204.4203.6343.15174.5174.2343.15172.7176.7343.15206.6206.3343.15174.5174.2		343.15	153.8	151.7		343.15	157.0	157.3		343.15	164.8	165.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26		5-Iodouraci	1	27		5-Trifluoromethyl	uracil	28		5-Nitrouraci	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$C_p/(\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1}) = 137.0(0.7) + 0.57(0.01)(T/\mathbf{K}.273.15)$				$C_p/(\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1}) = 168.4(0.8) + 0.54(0.02) (T/\mathbf{K}\ 273.15)$				$C_p/(J$	53.4(0.5) + 73.15)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$rmsd/(I \cdot mol^{-1} \cdot K^{-1}) = 0.6$				$rmsd/(J \cdot mol^{-1} \cdot K^{-1}) = 0.8$				r) = 0.4	
303.15153.9154.0303.15183.9184.6303.15167.9168.4308.15156.8156.8308.15188.1187.3308.15169.9169.2313.15159.8159.7313.15190.3190.1313.15169.9170.0318.15162.8162.5318.15192.2192.8318.15171.1170.9323.15165.8165.3323.15195.9195.5323.15171.8171.7328.15168.6168.2328.15198.2198.2328.15173.0172.5333.15170.3171.0333.15199.4200.9333.15173.1173.4338.15172.7173.8338.15204.4203.6338.15174.5174.2343.15177.5176.7343.15206.6206.3343.15174.5175.1		298.15	150.9	151.1		298.15	182.2	181.9		298.15	167.2	167.5
308.15156.8156.8308.15188.1187.3308.15169.9169.2313.15159.8159.7313.15190.3190.1313.15169.9170.0318.15162.8162.5318.15192.2192.8318.15171.1170.9323.15165.8165.3323.15195.9195.5323.15171.8171.7328.15168.6168.2328.15198.2198.2328.15173.0172.5333.15170.3171.0333.15199.4200.9333.15173.1173.4338.15172.7173.8338.15204.4203.6338.15174.5174.2343.15177.5176.7343.15206.6206.3343.15174.5175.1		303.15	153.9	154.0		303.15	183.9	184.6		303.15	167.9	168.4
313.15159.8159.7313.15190.3190.1313.15169.9170.0318.15162.8162.5318.15192.2192.8318.15171.1170.9323.15165.8165.3323.15195.9195.5323.15171.8171.7328.15168.6168.2328.15198.2198.2328.15173.0172.5333.15170.3171.0333.15199.4200.9333.15173.1173.4338.15172.7173.8338.15204.4203.6338.15174.5174.2343.15177.5176.7343.15206.6206.3343.15174.5175.1		308.15	156.8	156.8		308.15	188.1	187.3		308.15	169.9	169.2
318.15162.8162.5318.15192.2192.8318.15171.1170.9323.15165.8165.3323.15195.9195.5323.15171.8171.7328.15168.6168.2328.15198.2198.2328.15173.0172.5333.15170.3171.0333.15199.4200.9333.15173.1173.4338.15172.7173.8338.15204.4203.6338.15174.5174.2343.15177.5176.7343.15206.6206.3343.15174.5175.1		313.15	159.8	159.7		313.15	190.3	190.1		313.15	169.9	170.0
323.15 165.8 165.3 323.15 195.9 195.5 323.15 171.8 171.7 328.15 168.6 168.2 328.15 198.2 198.2 328.15 173.0 172.5 333.15 170.3 171.0 333.15 199.4 200.9 333.15 173.1 173.4 338.15 172.7 173.8 338.15 204.4 203.6 338.15 174.5 174.2 343.15 177.5 176.7 343.15 206.6 206.3 343.15 174.5 175.1		318.15	162.8	162.5		318.15	192.2	192.8		318.15	171.1	170.9
328.15 168.6 168.2 328.15 198.2 198.2 328.15 173.0 172.5 333.15 170.3 171.0 333.15 199.4 200.9 333.15 173.1 173.4 338.15 172.7 173.8 338.15 204.4 203.6 338.15 174.5 174.2 343.15 177.5 176.7 343.15 206.6 206.3 343.15 174.5 175.1		323.15	165.8	165.3		323.15	195.9	195.5		323.15	171.8	171.7
333.15 170.3 171.0 333.15 199.4 200.9 333.15 173.1 173.4 338.15 172.7 173.8 338.15 204.4 203.6 338.15 174.5 174.2 343.15 177.5 176.7 343.15 206.6 206.3 343.15 174.5 175.1		328.15	168.6	168.2		328.15	198.2	198.2		328.15	173.0	172.5
338.15 172.7 173.8 338.15 204.4 203.6 338.15 174.5 174.2 343.15 177.5 176.7 343.15 206.6 206.3 343.15 174.5 174.2		333.15	170.3	171.0		333.15	199.4	200.9		333.15	173.1	173.4
343 15 177 5 176 7 343 15 206 6 206 3 343 15 174 5 175 1		338.15	172.7	173.8		338.15	204.4	203.6		338.15	174.5	174.2
515115 ITTE ITTE 17511 515115 2005 2005 545115 1745 1751		343.15	177.5	176.7		343.15	206.6	206.3		343.15	174.5	175.1

capacity for group *i*, and n_i is the number of type N–CH₃ or C–CH₃ groups. The $C_{p,0}$ and $C_{p,i}$ values were estimated by using the multiple regression routine (Excel 2003, Microsoft).

The experimentally determined C_p values at 298.15 K were also compared with those estimated by the Chickos and Acree group additivity model.¹³ The C_p value of uracil was accepted as being equal to 127.8 J·mol⁻¹·K⁻¹ assuming that it corresponds to the sum of the contents of two cyclic secondary groups — CONH— and two tertiary aromatics sp² C groups =CH—.

Results and Discussion

The C_p data of particular compounds determined by continuous DSC method and the correlations $C_p = f(T)$ are given in Table 1. As it is shown in Figure 2, for the majority of compounds under study there exists a linear dependence between the C_p values and the number (*n*) of $-CH_2-$ groups at 298.15 K. This correlation was not fulfilled by the thymine series derivatives with elongated alkyl side chains.

The variation of $C_p = f(n-CH_2-)$ is expressed by the relation: $C_p/(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}) = 129.62 + 27.90 (n-CH_2-)$ with rmsd = 1.4 J·mol⁻¹·K⁻¹. In the case of cyclooligomethylene derivatives of uracil (Figure 3) the linearity is maintained, but the values of C_p are lower than those for methylated and alkylated ones. This is probably due to more compact structures of these compounds because that hydrocarbonated ring induces constraints in a molecule's freedom degrees.³

Figure 2. Molar heat capacities (C_p) of solid alkyluracils against the number of carbon alkyls groups (n). The number of compound corresponds to Table 2.

The increments of C_p per $-CH_2-$ in cyclooligomethyleneuracils are equal to 30.7 J·mol⁻¹·K⁻¹. This value is close to C-CH₃ contributions in the C_p value of methylated and alkylated uracils (30.4 J·mol⁻¹·K⁻¹). The same trends were also observed for apparent molar heat capacities and partial molar

		$C_p(\mathbf{ex})^a$	$C_p(appr)^a$	$C_p{}^b$	$C_p{}^c$	$C_p(\text{appr}) - C_p^c$
no.	compound	$\overline{\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1}}$	$J \cdot mol^{-1} \cdot K^{-1}$	$\overline{J \cdot mol^{-1} \cdot K^{-1}}$	$\overline{J \cdot mol^{-1} \cdot K^{-1}}$	$J \cdot mol^{-1} \cdot K^{-1}$
1	uracil	131.8	134.6	131.8	127.8	6.8
2	1-methyluracil	156.9	156.7	157.3	153.5	3.2
3	3-methyluracil	157.0	158.4	157.3	153.5	4.9
4	5-methyluracil	163.0	164.0	162.6	155.4	8.6
5	6-methyluracil	162.5	163.3	162.6	155.4	7.9
6	1,3-dimethyluracil	182.5	183.0	182.7	179.2	3.8
7	3,6-dimethyluracil	187.4	187.3	188.0	181.8	5.5
8	1,6-dimethyluracil	188.1	189.7	188.0	181.8	7.9
9	1,5-dimethyluracyl	187.6	187.5	188.0	181.8	5.7
10	5,6-dimethyluracyl	191.1	193.3	193.4	183.0	10.3
11	1,3,6-trimethyluracil	212.6	213.1	213.5	206.8	6.3
12	1,3,5,6-tetramethyluracil	244.5	242.8	244.4	234.4	8.4
13	1,3-dimethyl-5-etyluracil	241.1	244.8	244.4	233.7	11.1
14	1,3-dimethyl-5-n-propyluracil	302.7	301.5	275.1	260.6	40.9
15	1,3-dimethyl-5-n-butyluracil	358.1	358.2	305.9	287.8	70.4
16	1,3-dimethyl-6-etyluracil	241.8	241.8	244.4	233.7	8.1
17	1,3-dimethyl-6-n-propyluracil	287.2	287.2	275.1	260.6	26.6
18	1,3-dimethyl-6-n-butyluracil	296.4	296.2	305.9	287.8	8.4
19	1,3- dimethyl-5,6-trimethyleneuracil	252.9	253.2	275.9	210.4	42.8
20	1,3-dimethyl-5,6-tetramethyleneuracil	282.9	282.9	305.9	235.0	47.9
21	1,3-dimethyl-5,6-pentamethyleneuracil	314.5	316.3	336.6	259.6	56.7
22	6-chlorouracil	139.4	139.6	139.4	147.5	-7.9
23	5-fluorouracil	138.3	136.6	138.3	143.6	-7.0
24	5-chlorouracil	136.7	136.6	139.4	147.5	-10.9
25	5-bromouracil	144.7	144.6	144.7	151.2	-6.6
26	5-iodouracil	150.9	151.1	149.8	146.7	4.4
27	5-trifluoromethyluracil	182.2	182.0	181.9	188.2	-6.2
28	5-nitrouracil	167.2	167.5	167.9	174.9	-7.4

 $^{{}^{}a}C_{p}(ex)$ and $C_{p}(appr)$ see Table 1. ${}^{b}C_{p}$ values calculated by additivity scheme (see eq 1). ${}^{c}C_{p}$ values calculated using the Chickos and Acree group additivity method.

Figure 3. Structural formulas of cyclooligouracils: 1,3-dimethyl-5,6-trimethylenouracil; 1,3-dimethyl-5,6-tetramethylenouracil; and 1,3-dimethyl-5,6-pentamethylenouracil.

volumes in the case of alkylated and cyclooligomethylene derivatives of uracil in aqueous solutions.³

The C_p data at 298.15 K were analyzed in terms of general additivity scheme.¹⁴ The C_p values of methylated uracils indicate that the contribution of N–CH₃ group differs markedly from the contributions of C–CH₃ group, but the ΔC_p values for 1-methyluracil and 3-methyluracil are almost the same, similarly as in the case of 5-methyluracil and 6-methyluracil. Taking into account the C_p values of all methylated uracils under study and those alkylated at C(6) (compounds 1–12 and 16–18 listed in Table 2), the calculated contributions of C–CH₃ group and N–CH₃ group are equal to (30.4 ± 1.1) J·mol⁻¹·K⁻¹ and (25.9 ± 1.5) J·mol⁻¹·K⁻¹, respectively, whereas the $C_{p,0}$ value is equal to (131.7 ± 2.1) J·mol⁻¹·K⁻¹.

The experimental C_p data (Table 2) for 298.15 K were compared with those obtained by the Chickos¹³ group additivity scheme for C_p of solid compounds at 298.15 K. The experimentally determined values of C_p and the C_p values calculated on the basis of group additivity method of uracil and its derivatives are collected in Table 2. These data are close to each other. The Chickos method of C_p determination at 298.15 K does not allow one to recognize the substituents position in the case of methylated uracils. On the contrary, the C_p values of alkylated (acyclic and cyclic) and halogenated derivatives of uracil are different for the same group located at other positions in diketopyrimidine ring in the uracil molecule.

Literature Cited

- Zielenkiewicz, W. Thermodynamic investigations on derivatives of pyrimidine nucleic acid bases. *Thermochim. Acta* 2003, 405, 155– 169.
- (2) Grolier, J. P. E.; Roux, A. H.; Roux-Desgranges, G.; Tomaszkiewicz, I.; Zielenkiewicz, W. Thermochemistry of aqueous solutions of alkylated nucleic acid bases. *Thermochim. Acta* **1991**, *176*, 141–148.
- (3) Zielenkiewicz, W.; Zielenkiewicz, A.; Grolier, J. P. E.; Roux, A. H.; Roux-Desgranges, G. Apparent molar heat capacities and volumes of some alkylated derivatives of uracil and adenine in aqueous solutions at 25 °C. J. Solution Chem. 1992, 21, 1–13.
- (4) Zielenkiewicz, A.; Roux-Desgranges, G.; Roux, A. H.; Grolier, J. P. E.; Wierzchowski, K. L.; Zielenkiewicz, W. Apparent molar heat capacities and volumes, van der Waals volumes and accesible surface areas of alkylated derivatives of cytosine and uracil in aqueous solutions at 25 °C. J. Solution Chem. 1993, 22, 907–918.
- (5) Zielenkiewicz, W.; Zielenkiewicz, A.; Wierzchowski, K. L. Thermochemistry of aqueous solutions of alkylated nucleic acid bases. VIII. Enthalpies of hydration of 6-alkyluracils. J. Solution Chem. 1993, 22, 975–981.
- (6) Kamiński, M.; Zielenkiewicz, W. Vapour pressures and molar enthalpies of sublimation for 5-alkyl derivatives of 1,3-dimethyluracil. *J. Chem. Thermodyn.* **1996**, 28, 153–158.
- (7) Zielenkiewicz, W.; Poznański, J.; Zielenkiewicz, A. Partial molar volumes of aqueous solutions of some halo and amino derivatives of uracil. J. Solution Chem. 2000, 29, 757–768.
- (8) Szterner, P.; Kamiński, M.; Zielenkiewicz, A. Vapour pressures, molar enthalpies of sublimation and molar enthalpies of solution in water of five halogenated derivatives of uracil. *J. Chem. Thermodyn.* 2002, 34, 1005–1012.
- (9) Szterner, P.; Kamiński, M.; Zielenkiewicz, A. Vapor pressures, molar enthalpies of sublimation, and molar enthalpies of solution in water of selected amino derivatives of uracil and 5-nitrouracil. *J. Chem. Eng. Data* **2003**, *48*, 1132–1136.

- (10) Zielenkiewicz, W.; Szterner, P. Vapor pressures, molar enthalpies of sublimation, and molar enthalpies of solution in water of 5-(trifluoromethyl) uracil. *J. Chem. Eng. Data* 2004, *49*, 1197–1200.
 (11) Zielenkiewicz, W.; Szterner, P. Thermodynamic investigation of uracil
- (11) Zielenkiewicz, W.; Szterner, P. Thermodynamic investigation of uracil and its haloderivatives. enthalpies of solution and solvation in methanol. *J. Chem. Eng. Data* 2005, *50*, 1139–1143.
 (12) Cox, J. D. *IUPAC Recommended Calibration and Test Materials for*
- (12) Cox, J. D. IUPAC Recommended Calibration and Test Materials for the Realization of Physicochemical Properties, Section V: Calorimetry Recast; Division of Chemical Standards, National Physical Laboratory: Teddington Middlesex, UK, November 1972.

- (13) Chickos, J. S.; Acree, W. E., Jr. Enthalpies of sublimation of organic and organometallic compounds 1910–2001. J. Phys. Chem. Ref. Data 2002, 31, 537–698.
- (14) Cabani, M.; Gianni, P.; Mollica, V.; Lepori, L. Group contributions to the thermodynamic properties of non-ionic organic solute in dilute aqueous solution. J. Solution Chem. 1981, 10, 563-594.

Received for review June 9, 2006. Accepted October 5, 2006. JE060257Y