# Acoustical and Excess Properties of {Chlorobenzene + 1-Hexanol, or 1-Heptanol, or 1-Octanol, or 1-Nonanol, or 1-Decanol} at (298.15, 303.15, 308.15, and 313.15) K

## Adel S. Al-Jimaz,\* Jasem A. Al-Kandary, and Abdul-Haq M. Abdul-Latif

Department of Chemical Engineering, College of Technological Studies, P.O. Box 42325, Shuwaikh, 70654, Kuwait

Isentropic compressibility  $k_s$ , excess isentropic compressibility  $k_s^E$ , excess molar volume  $V^E$ , viscosity deviations  $\Delta\eta$ , and speed of sound deviations  $u^D$  for {chlorobenzene + 1-hexanol or 1-heptanol, or 1-octanol, or 1-nonanol, or 1-decanol} binary mixtures at temperatures ranging from (298.15 to 313.15) K and at atmospheric pressure were derived from experimental viscosity  $\eta$ , density  $\rho$ , and speed of sound u data. The calculated excess and deviation functions were further fitted to the polynomial relation to estimate the coefficients and standard errors. While the experimental viscosity data was compared with the predicted values obtained from empirical expressions, the speeds of sound data was analyzed in term of Schaaffs' collision factor theory and Jacobson's intermolecular free length theory of solutions. The effects of *n*-alkan-1-ol chain length as well as the temperature on the excess molar volume were studied.

## Introduction

The knowledge of transport and thermodynamic properties of binary liquid mixtures containing halogenated hydrocarbons are very important due to their practical applications in various fields including detergents, rubber, plastics, and aerosol propellants. Chlorobenzene is one of the halobenzenes that is used as a degreaser in the metal industry and a thinning, dissolving, and starting point for preparation of various derivatives. It is also used together with 1-alkanols as mixed solvents in the production of emulsifiers, absorbents, and surfactants. A perusal of the literature on physical properties of halobenzene with 1-alkanols revealed that the databases are limited,<sup>1-7</sup> so it seems to be very useful in this area of research to carry out systematic investigations involving the physical properties for the binary mixtures containing chlorobenzene + 1-alkanols. In this study, we measured densities, viscosities, and speed of sound for  $\{$ chlorobenzene (1) + 1-alkanol  $(2) \}$  binary mixtures at temperatures ranging from (298.15 to 313.15) K and atmospheric pressure. The corresponding derived magnitudes of excess molar volume  $V^{\rm E}$ , excess isentropic compressibility  $k_{\rm s}^{\rm E}$ , viscosity deviations  $\Delta n$ , and speed of sound deviations  $u^{\rm D}$  were calculated. The excess functions were fitted to the Redlich and Kister type polynomial equation<sup>8</sup> to derive the binary coefficients and estimate the standard deviations between experimental and calculated data. The viscosity data were correlated with singleparameter equation of Grunberg and Nissan,9 McAllister's threeand four-body models,<sup>10</sup> and the Heric and Brewer equation.<sup>11</sup> The speeds of sound in the binary mixtures were predicted using Schaaffs' collision factor theory (CFT)<sup>12</sup> and Jacobson's intermolecular free length theory (FLT)<sup>13</sup> and compared with the experimental values.

### **Experimental Section**

*Chemicals.* Chlorobenzene was an Aldrich product. 1-Hexanol, 1-heptanol, 1-octanol, and 1-decanol were purchased from

the Fluka Chemical Co. The purities of these substances range from 0.990 to 0.997 on a mass fraction according to gas chromatographic Varian GC (star 3400 cx) analysis using a FID (flame ionization detector), (WCOT fused silica 10 m long, 0.53 mm. diameter) CP-Sil 5 (Catalog No. 7645) and (WCOT fused silica 50 m long, 0.32 mm. diameter) CP-Wax 52 (Catalog No.7753), and Chrompack capillary columns for chlorobenzene and 1-alkanol, respectively. All reagents were used without further purification. The purity of these solvents was ascertained by comparing the measured densities, viscosities, and speed of sound of the pure components at (298.15 and 303.15) K with the available literature 1,8,14-20 shown in Table 1. The reported experimental values conform closely to their corresponding literature values, with an average absolute value of deviation of  $3.2 \times 10^{-3}$  kg·m<sup>-3</sup>,  $2.8 \times 10^{-3}$  mPa·s, and 0.25 m·s<sup>-1</sup> for density, dynamic viscosity, and speed of sound, respectively.

*Measurements.* All samples were stored in dark bottles over freshly activated molecular sieve (Union Carbide type 4A 1/16 in., pellets) to minimize adsorption of moisture. As soon as the bottles were opened, the water contents of chemicals were checked by a Mettler Toledo DL39-KF coulometer, and the moistures were in the range of  $(13 \times 10^{-4} \text{ to } 22 \times 10^{-4}) \text{ mg} \cdot \text{g}^{-1}$ . Each sample mixture was prepared, on mass basis, by mixing the calculated volumes of liquid components in specially designed glass stopper bottles. An electronic balance model (Mettler AT460) with a precision of  $\pm 10^{-7}$  kg was used for the mass measurement. The uncertainty in the mole fraction composition was estimated to be  $\pm 0.6 \times 10^{-4}$  units.

A set of three compositions was prepared for each system, and the density  $\rho$  and speed of sound u were measured on the same day at temperatures of interest using a precision digital Anton Paar densimeter/speed of sound (model DMA 5000). The instrument is made up of two oscillating U-tubes, one designed for measuring density based on the relation between oscillation period and density and the second one equipped with a Piezo transmitter for measuring the speed of sound from the time the sound impulse takes to travel the set distance at constant sample

<sup>\*</sup> Corresponding author. Tel: +965-2314412. Fax: +965-4811568. E-mail: a\_jimaz@yahoo.com.

|           |                                                                         | T = 298       | 3.15 K                                        |           |                                                             |               |                                           | T = 303.            | 15 K              |           |                        |
|-----------|-------------------------------------------------------------------------|---------------|-----------------------------------------------|-----------|-------------------------------------------------------------|---------------|-------------------------------------------|---------------------|-------------------|-----------|------------------------|
| ρ/kg      | g•m <sup>−3</sup>                                                       | $\eta/{ m m}$ | Pa•s                                          | n         | D                                                           | u/m•          | s <sup>-1</sup>                           | k <sub>s</sub> /TPa | <b>1</b> −1       | α/kŀ      | <b>C</b> <sup>-1</sup> |
| this work | lit.                                                                    | this work     | lit.                                          | this work | lit.                                                        | this work     | lit.                                      | this work           | lit.              | this work | lit.                   |
| 1100.97   | 1100.90 <sup>14</sup><br>1101.08 <sup>1</sup><br>1101.038 <sup>19</sup> | 0.757         | 0.759 <sup>18</sup>                           | 1.4154    | Chlorobenze<br>1.4151 <sup>14</sup><br>1.4154 <sup>18</sup> | ne<br>1249.41 |                                           | 584.94              |                   | 1.0430    |                        |
| 815.230   | 815.2 <sup>16</sup><br>815.22 <sup>17</sup><br>815.23 <sup>15</sup>     | 4.594         | 4.593 <sup>16</sup><br>4.4029 <sup>15</sup>   | 1.5220    | 1-Hexanol<br>1.5223 <sup>14</sup><br>1.5221 <sup>18</sup>   | 1287.9        | 1287 <sup>20</sup><br>1286.5 <sup>8</sup> | 742.36              | 743 <sup>20</sup> | 0.8861    | 0.885 <sup>20</sup>    |
| 818.732   | 818.7 <sup>16</sup><br>818.79 <sup>15</sup>                             | 5.944         | 5.942 <sup>16</sup><br>6.0016 <sup>15</sup>   | 1.4224    | 1-Heptanol<br>1.4225 <sup>14</sup><br>1.4225 <sup>18</sup>  | l<br>1313.58  | 1313 <sup>20</sup><br>1311 <sup>8</sup>   | 712.11              | 711 <sup>20</sup> | 0.8772    | 0.879 <sup>20</sup>    |
| 821.826   | 821.8 <sup>16</sup><br>821.81 <sup>17</sup><br>821.82 <sup>15</sup>     | 7.661         | 7.663 <sup>16</sup><br>7.5981 <sup>15</sup>   | 1.4279    | 1-Octanol<br>1.4282 <sup>14</sup><br>1.4283 <sup>18</sup>   | 1338.02       | 1339 <sup>20</sup><br>1332.1 <sup>8</sup> | 689.85              |                   | 0.8644    | 0.865 <sup>20</sup>    |
| 824.455   | 824.4 <sup>16</sup><br>824.6 <sup>18</sup>                              | 9.715         | 9.715 <sup>16</sup><br>9.6921 <sup>15</sup>   | 1.4318    | 1-Nonanol<br>1.4319 <sup>14</sup><br>1.4318 <sup>18</sup>   | 1353.6        | $1354^{20}$<br>$1350^{8}$                 | 669.68              |                   | 0.8416    | 0.843 <sup>20</sup>    |
| 826.762   | 826.7 <sup>18</sup><br>826.8 <sup>16</sup>                              | 11.825        | 11.829 <sup>16</sup><br>11.7968 <sup>15</sup> | 1.4356    | 1-Decanol<br>1.4354 <sup>14</sup><br>1.4354 <sup>18</sup>   | 1364.49       | 1366 <sup>20</sup><br>1363.3 <sup>8</sup> | 654.17              |                   | 0.8301    | 0.829 <sup>20</sup>    |

Table 1. Experimental Results for Pure Component at (298.15 and 303.15) K

temperature. The temperature control was achieved by the builtin integrated thermostat with cascaded Peltier elements and Pt-100 platinum thermometers. The calibration of the instrument was done at a temperature of interest by dry air and with certified ultrapure water supplied by the manufacturer standards. For all mixtures and pure components, triplicate measurements were performed. The results were average with absolute value of deviations of  $2.5 \times 10^{-3}$  kg·m<sup>-3</sup> and 0.12 m·s<sup>-1</sup> in measured density  $\rho$  and speed of sound *u*. The uncertainty was found not to be more than  $5 \times 10^{-3}$  kg·m<sup>-3</sup> and 0.17 m·s<sup>-1</sup>, respectively.

Dynamics viscosity  $\eta$  measurements of all pure components and their binary mixtures were determined by using a new advanced digital Anton Paar Stabinger viscometer (model SVM 3000/G2). This instrument is made up of two measuring cells, while the first one is designed for measuring density of the samples based on the relation between oscillation period and density, the other is used for dynamic viscosity measurements. The definite measurement for the dynamic viscosity is calculated by the instrument according to the following expression:

$$\eta = k\omega_2/(w_1 - w_2) \tag{1}$$

where k,  $w_1$ , and  $w_2$  are the mean adjustment coefficient and speeds of outer tube and inner rotor of the instrument, respectively.

The whole instrument measuring ranges were adjusted automatically by the aid of a built-in program and four certified standard samples supplied by the manufacturer. The calibration of the instrument was done by a double measurement of the three reference samples S3, S6, and N10 (Canon Instruments Co.) of dynamic viscosity and  $(33 \times 10^{-1}, 76 \times 10^{-1}, 150 \times 10^{-1})$  and  $(25 \times 10^{-1}, 51 \times 10^{-1}, 94 \times 10^{-1})$  mPa\*s at (298.15 and 313.15) K, respectively. The average experimental errors in dynamic viscosity measurements were found at  $(4 \times 10^{-4}, 3 \times 10^{-3})$  mPa\*s at the temperatures of interest. The estimated uncertainty in dynamic viscosity measurements for all measurements was found not to be more than  $34 \times 10^{-4}$  mPa\*s. The temperature of the cells was achieved by a solid-state thermostat and two integrated Pt-100 measuring sensors of temperature reproducibility of  $\pm 10^{-2}$  K.

# **Results and Discussion**

The results for the density  $\rho$ , viscosities  $\eta$ , and speeds of sound *u* measurements and the calculated isentropic compressibility  $k_s$  (=1/ $u^2\rho$ ) are given in Table 2. To examine the precision of measurement, the experimental data were fitted to polynomial equation of the fourth degree.<sup>21,22</sup> The coefficients with standard errors are listed in Table 3.

This equation reproduces the experimental data; with an average of absolute value of deviations of  $2 \times 10^{-3}$  kg·m<sup>-3</sup>, 27  $\times 10^{-4}$  mPa·s, and  $9 \times 10^{-2}$  m·s<sup>-1</sup>, respectively. The excess molar volume  $V^{\rm E}$  was calculated through the following equation: <sup>23</sup>

$$V^{\rm E} = \sum_{i=1}^{n} x_i M_i \left( \frac{1}{\rho_m} - \frac{1}{\rho_i} \right)$$
(2)

where, V, x, M, and r are the molar volume, mole fraction, molar mass, and density, respectively. The subscripts i and m represent the pure components and the mixture, respectively.

The excess isentropic compressibilities  $k_s^E$  were calculated from relations recommended by Benson and Kiyohara<sup>24</sup> and Douheret as reported elsewhere:<sup>5</sup>

$$k_{\rm s}^{\rm E} = k_{\rm s} - k_{\rm s}^{\rm id} \tag{3}$$

$$k_{\rm s}^{\rm E} = k_{\rm s} - \sum \phi_i \left\{ \frac{k_{s,i}^{\circ} + TV_i^{\circ}(\alpha_i^{\circ})^2}{C_{p,i}^{\circ}} \right\} - \frac{T(\sum x_i V_j^{\circ})(\sum \phi_i \alpha_j^{\circ})^2}{\sum x_i C_{p,i}^{\circ}}$$
(4)

$$k_{\rm s}^{\rm id} = (\phi_1 k_{T,1}^{\circ} + \phi_2 k_{T,2}^{\circ}) - \frac{T(\sum x_i V_i^{\circ})(\sum \phi_i \alpha_i^{\circ})^2}{\sum x_i C_{p,i}^{\circ}}$$
(5)

$$k_{s}^{id} = \phi_{1} \left\{ k_{s,1}^{\circ} + TV_{1}^{\circ} \frac{(\alpha_{1}^{\circ})^{2}}{C_{p,1}^{\circ}} \right\} + \phi_{2} \left\{ k_{s,2}^{\circ} + TV_{2}^{\circ} \frac{(\alpha_{1}^{\circ})^{2}}{C_{p,2}^{\circ}} \right\} - \frac{T(\sum x_{i}V_{i}^{\circ})(\sum \phi_{i}\alpha_{i}^{\circ})^{2}}{\sum x_{i}C_{p,i}^{\circ}}$$
(6)

where  $k_s^{id}$  is the isentropic compressibility of the ideal solution; *T* is the temperature;  $x_i$  is the mole fraction of the pure

| <b>Fable 2.</b> | Experimer          | ntal Value     | s of Densit                           | y p, Viscos      | sitie η, Spo | eed of Sound        | l Refracti     | ve Index fo                           | r {Chloro        | benzene (] | 1) + 1-Alk         | anol (2)} ]    | Binary Mix                               | tures at I       | Different T      | emperature          | s          |                                       |                  |
|-----------------|--------------------|----------------|---------------------------------------|------------------|--------------|---------------------|----------------|---------------------------------------|------------------|------------|--------------------|----------------|------------------------------------------|------------------|------------------|---------------------|------------|---------------------------------------|------------------|
| $x_1$           | θ                  | h              | п                                     | $k_{ m s}$       | $x^{1}$      | σ                   | h              | п                                     | $k_{ m s}$       | $x^{1}$    | θ                  | μ              | т                                        | $k_{ m s}$       | $x^{\mathrm{I}}$ | d                   | μ          | п                                     | $k_{ m s}$       |
|                 | kg•m <sup>-3</sup> | mPa•s          | $\mathrm{m}^{\bullet}\mathrm{s}^{-1}$ | $TPa^{-1}$       |              | kg•m <sup>-3</sup>  | mPa•s          | $\mathrm{m}^{\bullet}\mathrm{s}^{-1}$ | $TPa^{-1}$       |            | kg•m <sup>-3</sup> | mPa•s          | $\mathrm{m}^{\mathrm{s}}\mathrm{s}^{-1}$ | $TPa^{-1}$       |                  | kg•m <sup>-3</sup>  | mPa•s      | $\mathrm{m}^{\bullet}\mathrm{s}^{-1}$ | $TPa^{-1}$       |
|                 |                    |                |                                       |                  |              |                     |                | Chlorot                               | enzene (1)       | + 1-Hexa   | nol (2)            |                |                                          |                  |                  |                     |            |                                       |                  |
| 00000           | 915 730            | 7 507          | 1304 77                               | T = 29           | 98.15 K      | 007 531             | 1 197          | 176/37                                | 622 16           | 00000      | 011 010            | 2 007          | 1787 00                                  | T = 30           | 3.15 K           | 067 086             | 1 070      | 174556                                | 621 60           |
| 0.1144          | 842.629            | 3.576          | 1297.70                               | 704.72           | 0.7457       | 1015.514            | 1.008          | 1260.86                               | 619.41           | 0.1144     | 839.289            | 3.096          | 1280.61                                  | 726.53           | 0.7457           | 1010.711            | 0.935      | 1243.07                               | 640.30           |
| 0.2338          | 872.274            | 2.746          | 1289.83                               | 689.10           | 0.8353       | 1044.185            | 0.873          | 1259.29                               | 603.91           | 0.2338     | 868.705            | 2.414          | 1272.45                                  | 710.96           | 0.8353           | 1039.122            | 0.824      | 1241.54                               | 624.33           |
| 0.3573          | 904.193            | 2.107          | 1281.57                               | 673.37           | 0.9171       | 1071.621            | 0.788          | 1260.91                               | 586.94           | 0.3573     | 900.355            | 1.870          | 1264.01                                  | 695.16           | 0.9171           | 1066.267            | 0.752      | 1243.23                               | 606.78           |
| 0.4628          | 932.670            | 1.699          | 1274.79                               | 659.77           | 1.0000       | 1100.975            | 0.757          | 1267.96                               | 565.11           | 0.4628     | 928.591            | 1.515          | 1257.10                                  | 681.45           | 1.0000           | 1095.104            | 0.714      | 1249.41                               | 584.97           |
| 0.5568          | 959.077            | 1.417          | 1269.25                               | 647.22<br>T = 20 | 12 D         |                     |                |                                       |                  | 0.5568     | 954.767            | 1.274          | 1251.57                                  | 668.64           | 2 15 V           |                     |            |                                       |                  |
| 00000           | 808 487            | 3 350          | 1271 14                               | 16 - 1           | A CL.00      | 977 948             | 0 997          | 1228 92                               | 677 08           | 0 0000     | 804 811            | 2 914          | 1254 45                                  | 1c = 1           | 0 6547           | 773 777             | 0 896      | 1211 62                               | 699 93           |
| 0.1144          | 835.421            | 2.695          | 1263.57                               | 749.71           | 0.7457       | 1005.424            | 0.870          | 1225.40                               | 662.36           | 0.1144     | 831.574            | 2.350          | 1246.54                                  | 773.90           | 0.7457           | 1000.531            | 0.780      | 1207.89                               | 685.04           |
| 0.2338          | 864.604            | 2.123          | 1255.39                               | 733.88           | 0.8353       | 1033.552            | 0.772          | 1224.30                               | 645.49           | 0.2338     | 860.561            | 1.865          | 1238.45                                  | 757.63           | 0.8353           | 1028.463            | 0.692      | 1206.56                               | 667.90           |
| 0.3573          | 895.988            | 1.665          | 1246.68                               | 718.10           | 0.9171       | 1060.412            | 0.711          | 1225.80                               | 627.60           | 0.3573     | 891.747            | 1.478          | 1229.79                                  | 741.47           | 0.9171           | 1055.093            | 0.637      | 1208.18                               | 649.30           |
| 0.4628          | 923.985            | 1.369          | 1239.73                               | 704.17           | 1.0000       | 1089.081            | 0.677          | 1230.87                               | 606.06           | 0.4628     | 919.571            | 1.223          | 1222.88                                  | 727.19           | 1.0000           | 1083.665            | 0.617      | 1212.63                               | 627.55           |
| 00CC.U          | 949.942            | C01.1          | 1200.44                               | 00.140           |              |                     |                |                                       |                  | 00CC.U     | 000.046            | 1.044          | 1210.00                                  | 00.41/           |                  |                     |            |                                       |                  |
|                 |                    |                |                                       |                  |              |                     |                | Chlorob                               | enzene (1)       | + 1-Hepta  | nol (2)            |                |                                          |                  |                  |                     |            |                                       |                  |
| 0000            |                    |                |                                       | T = 29           | 98.15 K      |                     |                |                                       |                  | 0          |                    | 1              |                                          | T = 30           | 3.15 K           |                     |            |                                       |                  |
| 0.0000          | 818.732            | 5.944          | 1327.32                               | 693.28           | 0.6827       | 988.992             | 1.273          | 1269.10                               | 627.79           | 0.0000     | 815.287            | 5.069          | 1313.58                                  | 712.11           | 0.6827           | 984.268             | 1.160      | 1253.80                               | 646.29           |
| 0.1306          | 840.348<br>874 810 | 4.409<br>3 335 | 1305 54                               | 06.180           | 0.7682       | 1016.226            | 1.0/3          | 1264.60                               | 25.010           | 0.1306     | 842.089<br>870.064 | 3.852<br>7 806 | CC.0621                                  | 601 01           | 0./682           | 1020 687            | 0.984      | 1248.72                               | 634.14           |
| 0.3866          | 906 448            | 2.453          | 1293.83                               | 659.02           | 0.0255       | 1071 666            | 0.817          | 1263.81                               | 584 22           | 0.3866     | 902 362            | 2.164          | 1277 56                                  | 60 876           | 0 9255           | 1066.234            | 0.764      | 1245 55                               | 607 53           |
| 0.4947          | 934.739            | 1.911          | 1283.99                               | 648.91           | 1.0000       | 1100.975            | 0.757          | 1267.96                               | 565.11           | 0.4947     | 930.425            | 1.709          | 1268.16                                  | 668.30           | 1.0000           | 1095.104            | 0.714      | 1249.41                               | 584.97           |
| 0.5878          | 960.727            | 1.557          | 1275.95                               | 639.34           |              |                     |                |                                       |                  | 0.5878     | 956.224            | 1.406          | 1260.67                                  | 658.01           |                  |                     |            |                                       |                  |
|                 |                    |                |                                       | T = 3(           | )8.15 K      |                     |                |                                       |                  |            |                    |                |                                          | T = 31           | 3.15 K           |                     |            |                                       |                  |
| 0.0000          | 811.737            | 4.333          | 1293.86                               | 735.89           | 0.6827       | 979.252             | 1.059          | 1234.96                               | 669.57           | 0.0000     | 808.162            | 3.726          | 1277.15                                  | 758.61           | 0.6827           | 974.575             | 0.953      | 1217.92                               | 691.78           |
| 0.1306          | 838.900            | 3.311          | 1283.28                               | 723.85           | 0.7682       | 1006.020            | 0.915          | 1230.09                               | 656.93           | 0.1306     | 835.146            | 2.872          | 1266.52                                  | 746.47           | 0.7682           | 1001.128            | 0.822      | 1212.94                               | 678.94           |
| 0.2566          | 866.926            | 2.532          | 1272.12                               | 700.00           | 0.8521       | 1034.115            | 0.816          | 80.1221                               | 641./0           | 0.2266     | 862.967            | 2.219          | 29.6621                                  | 00.657           | 0.8521           | 1029.023            | 0.723      | 1209.90                               | 663.88           |
| 0.3866          | 250.868            | 1.922          | 1260.38                               | /00.96           | 0.000        | 1060.416            | 0.733          | 1221.98                               | 602.38           | 0.3866     | CU6.568            | CU/.1          | 1243.84<br>1722 50                       | 712.09           | 000001           | 1082 665            | 0.662      | 1209.66                               | 647.10           |
| 0.5878          | 951.470            | 1.283          | 1242.05                               | 681.28           | 1.0000       | 100/001             | 10.0           | 10.0021                               | 00.000           | 0.5878     | 946.950            | 1.135          | 1225.34                                  | 703.33           | 1.0000           | C00.0001            | 1 10.0     | C0:7171                               | CC: 170          |
|                 |                    |                |                                       |                  |              |                     |                | Chlorof                               | enzene (1)       | + 1-Octar  | 101 (2)            |                |                                          |                  |                  |                     |            |                                       |                  |
|                 |                    |                |                                       | T = 29           | 98.15 K      |                     |                |                                       |                  |            |                    |                |                                          | T = 30           | $3.15  {\rm K}$  |                     |            |                                       |                  |
| 0.0000          | 821.826<br>848 715 | 7.661<br>5 448 | 1347.82                               | 669.82<br>662.04 | 0.7073       | 990.466<br>1017 455 | 1.363<br>1 132 | 1272.70<br>1266.08                    | 623.32           | 0.0000     | 818.230<br>844 917 | 6.402<br>4.640 | 1338.02                                  | 689.85<br>681.86 | 0.7073           | 985.680<br>1012 469 | 1.243      | 1260.00<br>1253 37                    | 639.03<br>678.77 |
| C7+1.0          | 010.010            |                |                                       | 107704           | 0.000        | 101 - 101           | 7500           | 1264.00                               | 17:710           | 0.141.0    | 011.712            | 4.040          | C+:/101                                  | 001.00           | 0.000            | 1012.407            | 040.1      | 10.0021                               | 71.070           |
| 0.280/          | 877.044<br>908-104 | 5.8/U          | 1303.67                               | 024.81<br>647 93 | 0.8002       | 1040.041            | 00000          | 1264.00                               | 00.040<br>583 83 | 0.280/     | 003 886            | 200.0<br>252 C | 12.0001                                  | 10.010           | 0.0331           | 1040.472            | 0.787<br>0 | 1248./U<br>1247 49                    | 600 46           |
| 0.5237          | 936.698            | 2.116          | 1291.06                               | 640.48           | 1.0000       | 1100.975            | 0.757          | 1267.96                               | 565.11           | 0.5237     | 932.283            | 1.890          | 1277.85                                  | 656.89           | 1.0000           | 1095.104            | 0.714      | 1249.41                               | 584.97           |
| 0.6158          | 962.489            | 1.692          | 1281.24                               | 632.91           |              |                     |                |                                       |                  | 0.6158     | 957.910            | 1.528          | 1268.56                                  | 648.71           |                  |                     |            |                                       |                  |
|                 |                    |                |                                       | T=3(             | 08.15 K      |                     |                |                                       |                  |            |                    |                |                                          | T = 31           | 3.15 K           |                     |            |                                       |                  |
| 0.0000          | 814.737            | 5.425          | 1314.27                               | 710.58           | 0.7073       | 980.694             | 1.119          | 1245.73                               | 657.08           | 0.0000     | 810.098            | 4.628          | 1297.60                                  | 733.13           | 0.7073           | 975.500             | 1.037      | 1230.69                               | 676.82           |
| 0.1423          | 841.161            | 3.981          | 1302.61                               | 700.65           | 0.7885       | 1007.212            | 0.956          | 1238.65                               | 647.11           | 0.1423     | 836.375            | 3.436          | 1285.80                                  | 723.20           | 0.7885           | 1001.950            | 0.891      | 1223.45                               | 666.77           |
| 0.280/          | 869.610            | 2.919          | 20.201                                | 55.169           | 0.8662       | 1034.919            | 0.833          | 1233.39                               | 635.16           | 0.2807     | 864.727            | 2.262          | 12/3.24                                  | 715.33           | 0.8662           | 095.6201            | 0./00      | 121/.84                               | 654.88           |
| 0.4121          | C207.700           | 2.1/4          | CK.C/21                               | 682.10           | 1.9551       | 1060.818            | 761.0          | 1230.90                               | 6222.2U          | 0.4121     | 727 CC0            | 1.954<br>1 570 | CC.0971                                  | C0.5U/           | 1.0000           | 1002.421            | 0.681      | 1214.52                               | 40.249           |
| 0.6158          | 953.186            | 1.366          | 1254.63                               | 0.4.00<br>666.49 | 1.0000       | 1007.001            | 0.07           | 10.0671                               | 00.000           | 0.6158     | 948.078            | 1.267          | 1239.56                                  | 024.77<br>686.48 | 1.0000           | con.cont            | / 10.0     | CU.2121                               | دد. 120          |

|        |                    | (      |                                    |            |                  |                    |       |                  |            |           |                    |       |                  |             |        |                    |       |                  |            |
|--------|--------------------|--------|------------------------------------|------------|------------------|--------------------|-------|------------------|------------|-----------|--------------------|-------|------------------|-------------|--------|--------------------|-------|------------------|------------|
| $x_1$  | φ                  | μ      | п                                  | $k_{ m s}$ | $x^{\mathrm{I}}$ | d                  | μ     | п                | $k_{ m s}$ | $x_1$     | φ                  | μ     | п                | $k_{\rm s}$ | $x_1$  | φ                  | μ     | п                | $k_{ m s}$ |
|        | kg•m <sup>-3</sup> | mPa•s  | $\mathrm{m} \cdot \mathrm{s}^{-1}$ | $TPa^{-1}$ |                  | kg•m <sup>-3</sup> | mPa•s | $m \cdot s^{-1}$ | $TPa^{-1}$ |           | kg•m <sup>-3</sup> | mPa•s | $m \cdot s^{-1}$ | $TPa^{-1}$  |        | kg•m <sup>-3</sup> | mPa•s | $m \cdot s^{-1}$ | $TPa^{-1}$ |
|        |                    |        |                                    |            |                  |                    |       | Chlorob          | enzene (1) | + 1-Nonai | nol (2)            |       |                  |             |        |                    |       |                  |            |
|        |                    |        |                                    | T = 29     | 8.15 K           |                    |       |                  |            |           |                    |       |                  | T = 30.     | 3.15 K |                    |       |                  |            |
| 0.0000 | 824.478            | 9.715  | 1365.48                            | 650.52     | 0.7273           | 991.186            | 1.455 | 1281.16          | 614.66     | 0.0000    | 821.044            | 7.927 | 1353.60          | 669.68      | 0.7273 | 986.433            | 1.325 | 1265.39          | 633.10     |
| 0.1529 | 850.648            | 6.576  | 1350.52                            | 644.54     | 0.8031           | 1017.422           | 1.192 | 1273.96          | 605.58     | 0.1529    | 846.995            | 5.560 | 1332.63          | 664.83      | 0.8031 | 1012.442           | 1.097 | 1257.72          | 624.39     |
| 0.3008 | 879.504            | 4.488  | 1333.30                            | 639.59     | 0.8744           | 1044.709           | 0.999 | 1268.98          | 594.41     | 0.3008    | 875.625            | 3.876 | 1315.77          | 659.65      | 0.8744 | 1039.485           | 0.924 | 1252.00          | 613.71     |
| 0.4379 | 910.112            | 3.135  | 1316.18                            | 634.26     | 0.9370           | 1071.143           | 0.864 | 1267.06          | 581.55     | 0.4379    | 906.014            | 2.752 | 1299.52          | 653.58      | 0.9370 | 1065.724           | 0.802 | 1249.06          | 601.50     |
| 0.5505 | 938.617            | 2.329  | 1302.22                            | 628.28     | 1.0000           | 1100.675           | 0.757 | 1267.96          | 565.11     | 0.5505    | 934.309            | 2.070 | 1286.02          | 647.18      | 1.0000 | 1095.104           | 0.714 | 1249.41          | 584.97     |
| 0.6413 | 964.273            | 1.828  | 1291.12                            | 622.12     |                  |                    |       |                  |            | 0.6413    | 959.757            | 1.646 | 1275.10          | 640.87      |        |                    |       |                  |            |
|        |                    |        |                                    | T = 30     | 8.15 K           |                    |       |                  |            |           |                    |       |                  | T = 31      | 3.15 K |                    |       |                  |            |
| 0.0000 | 817.582            | 6.664  | 1331.78                            | 689.61     | 0.7273           | 981.393            | 1.205 | 1246.29          | 656.01     | 0.0000    | 814.098            | 5.645 | 1315.00          | 710.35      | 0.7273 | 976.738            | 1.094 | 1229.77          | 676.96     |
| 0.1529 | 843.265            | 4.745  | 1315.54                            | 685.22     | 0.8031           | 1007.142           | 1.014 | 1238.45          | 647.36     | 0.1529    | 839.584            | 4.074 | 1299.38          | 705.45      | 0.8031 | 1002.280           | 0.919 | 1221.83          | 668.31     |
| 0.3008 | 871.650            | 3.365  | 1298.50                            | 680.41     | 0.8744           | 1033.954           | 0.869 | 1232.97          | 636.20     | 0.3008    | 867.761            | 2.935 | 1282.02          | 701.14      | 0.8744 | 1028.877           | 0.775 | 1215.64          | 657.70     |
| 0.4379 | 901.759            | 2.433  | 1281.73                            | 675.02     | 0.9370           | 1059.964           | 0.764 | 1231.47          | 622.21     | 0.4379    | 897.663            | 2.152 | 1264.94          | 696.22      | 0.9370 | 1054.697           | 0.676 | 1213.28          | 644.23     |
| 0.5505 | 929.764            | 1.858  | 1267.66                            | 669.30     | 1.0000           | 1089.081           | 0.677 | 1230.87          | 606.06     | 0.5505    | 925.493            | 1.658 | 1250.99          | 690.44      | 1.0000 | 1083.665           | 0.617 | 1212.63          | 627.55     |
| 0.6413 | 954.969            | 1.493  | 1256.35                            | 663.42     |                  |                    |       |                  |            | 0.6413    | 950.508            | 1.346 | 1239.81          | 684.44      |        |                    |       |                  |            |
|        |                    |        |                                    |            |                  |                    |       | Chlorob          | enzene (1) | + 1-Decai | nol (2)            |       |                  |             |        |                    |       |                  |            |
|        |                    |        |                                    | T = 296    | 8.15 K           |                    |       |                  |            |           |                    |       |                  | T = 300     | 3.15 K |                    |       |                  |            |
| 0.0000 | 826.762            | 11.825 | 1380.01                            | 635.12     | 0.7456           | 992.108            | 1.517 | 1288.54          | 607.07     | 0.0000    | 822.853            | 9.754 | 1364.99          | 654.17      | 0.7456 | 987.138            | 1.388 | 1270.53          | 627.52     |
| 0.1664 | 852.913            | 7.762  | 1362.60                            | 631.49     | 0.8174           | 1017.953           | 1.243 | 1280.10          | 599.43     | 0.1664    | 848.821            | 6.542 | 1343.91          | 652.29      | 0.8174 | 1012.826           | 1.147 | 1262.60          | 619.28     |
| 0.3220 | 881.587            | 5.123  | 1344.36                            | 627.61     | 0.8857           | 1045.673           | 1.017 | 1273.34          | 589.82     | 0.3220    | 877.329            | 4.407 | 1325.02          | 649.20      | 0.8857 | 1040.317           | 0.949 | 1256.08          | 609.24     |
| 0.4609 | 911.692            | 3.484  | 1326.97                            | 622.93     | 0.9426           | 1071.478           | 0.865 | 1269.48          | 579.15     | 0.4609    | 907.247            | 3.058 | 1307.21          | 645.02      | 0.9426 | 1065.894           | 0.808 | 1252.20          | 598.37     |
| 0.5731 | 939.879            | 2.539  | 1311.74                            | 618.36     | 1.0000           | 1100.675           | 0.757 | 1267.96          | 565.11     | 0.5731    | 935.236            | 2.262 | 1292.44          | 640.11      | 1.0000 | 1095.104           | 0.714 | 1249.41          | 584.97     |
| 0.6619 | 965.236            | 1.967  | 1299.54                            | 613.47     |                  |                    |       |                  |            | 0.6619    | 960.447            | 1.771 | 1280.90          | 634.60      |        |                    |       |                  |            |
|        |                    |        |                                    | T = 30     | 8.15 K           |                    |       |                  |            |           |                    |       |                  | T = 31      | 3.15 K |                    |       |                  |            |
| 0.0000 | 819.427            | 8.135  | 1346.10                            | 673.50     | 0.7456           | 982.146            | 1.273 | 1249.54          | 652.08     | 0.0000    | 815.983            | 6.842 | 1329.31          | 693.53      | 0.7456 | 977.488            | 1.156 | 1230.12          | 676.03     |
| 0.1664 | 845.166            | 5.554  | 1326.00                            | 672.95     | 0.8174           | 1007.558           | 1.045 | 1240.84          | 644.54     | 0.1664    | 841.509            | 4.751 | 1308.57          | 693.97      | 0.8174 | 1002.683           | 0.968 | 1222.07          | 667.73     |
| 0.3220 | 873.388            | 3.814  | 1306.37                            | 670.89     | 0.8857           | 1034.748           | 0.868 | 1234.63          | 633.99     | 0.3220    | 869.536            | 3.323 | 1288.14          | 693.05      | 0.8857 | 1029.639           | 0.809 | 1216.52          | 656.23     |
| 0.4609 | 903.044            | 2.695  | 1288.07                            | 667.45     | 0.9426           | 1060.077           | 0.756 | 1231.03          | 622.55     | 0.4609    | 898.972            | 2.388 | 1269.12          | 690.63      | 0.9426 | 1054.838           | 0.702 | 1213.40          | 644.02     |
| 0.5731 | 930.800            | 2.021  | 1272.93                            | 663.07     | 1.0000           | 1089.081           | 0.677 | 1230.87          | 606.06     | 0.5731    | 926.509            | 1.816 | 1253.35          | 687.10      | 1.0000 | 1083.665           | 0.617 | 1212.63          | 627.55     |
| 0.6619 | 955.749            | 1.597  | 1260.79                            | 658.24     |                  |                    |       |                  |            | 0.6619    | 951.271            | 1.454 | 1241.08          | 682.49      |        |                    |       |                  |            |

| Table 3.  | Coefficients and Standard Deviation  | of Equation 3 for 1 | Density $\rho$ , Viscositie | es $\eta$ , and Speed of So | ound {Chlorobenzene ( | 1) + 1 | -Alkanol |
|-----------|--------------------------------------|---------------------|-----------------------------|-----------------------------|-----------------------|--------|----------|
| (2)} Bina | ry Mixtures at Different Temperature | es                  |                             |                             |                       |        |          |

|                                    |                  |                    | -               |                |             |              |              |                    |                  |                   |         |       |
|------------------------------------|------------------|--------------------|-----------------|----------------|-------------|--------------|--------------|--------------------|------------------|-------------------|---------|-------|
|                                    | $b_0$            | $b_1$              | $b_2$           | $b_3$          | $b_4$       | σ            | $b_0$        | $b_1$              | $b_2$            | $b_3$             | $b_4$   | σ     |
|                                    |                  |                    |                 | С              | hlorobenzen | e(1) + 1-    | Hexanol (2)  |                    |                  |                   |         |       |
|                                    |                  |                    | T = 298         | .15 K          |             |              |              |                    | T = 303          | 3.15 K            |         |       |
| $ ho/kg\cdot m^{-3}$               | 815.250          | 234.540            | 39.826          | -2.88          | 14.205      | 0.005        | 812.120      | 233.290            | 35.480           | 4.810             | 9.394   | 0.006 |
| η/mPa•s                            | 4.598            | -10.258            | 11.709          | -7.752         | 2.456       | 0.004        | 3.890        | -7.770             | 6.880            | -2.660            | 0.377   | 0.003 |
| $u/m \cdot s^{-1}$                 | 1304.90          | -71.75             | 59.20           | -153.5         | 128.73      | 0.140        | 1287.70      | -72.31             | 46.82            | -125.27           | 111.84  | 0.22  |
| a/Irarm=3                          | <u>000 400</u>   | 221.000            | I = 308         | 1265           | 10.027      | 0.007        | 904 920      | 220.080            | I = 313          | 1.10 K            | 12 261  | 0.004 |
| $\rho/\text{kg}\cdot\text{m}^{-3}$ | 808.490          | 231.000            | 57.212          | 1.305          | 10.987      | 0.007        | 804.830      | 229.080            | 59.010           | -1.509            | 12.201  | 0.004 |
| $\eta/mPa$ ·s                      | 3.303            | -0.558             | 5.997           | -2.072         | 0.544       | 0.004        | 2.917        | -5.014             | 5.458            | -3.071            | 0.923   | 0.002 |
| u/m•s                              | 12/1.20          | -69.52             | 20.37           | -/5.56         | 84.28       | 0.08         | 1254.50      | -/1.48             | 27.07            | -8/.14            | 89.17   | 0.07  |
|                                    |                  |                    | T = 200         | 15 V           | hlorobenzen | e(1) + 1 - 1 | Heptanol (2) |                    | T = 202          | 2 15 V            |         |       |
| o/karm=3                           | 919 760          | 202 710            | 1 - 298         | -10 27         | 27.086      | 0.007        | 815 200      | 201 680            | I = 503          |                   | 22.097  | 0.004 |
| $\rho/\text{kg}$                   | 5 048            | -12 858            | 02.040          | -10.27         | 27.080      | 0.007        | 5 070        | -10,800            | 10 202           | -4.132            | 23.087  | 0.004 |
| $\eta/\text{mPa-s}$                | 3.940<br>1227 20 | -12.838            | 2.57            | -4.327         | 0.385       | 0.002        | 1212.60      | -10.800            | 10.292           | -4.909<br>-251.27 | 1.119   | 0.005 |
| u/m•s                              | 1527.50          | -81.50             | 2.37<br>T = 308 | -80.11<br>15 K | 99.07       | 0.05         | 1313.00      | -118.38            | $T = 31^{\circ}$ | -231.37<br>3 15 K | 107.22  | 0.10  |
| $o/kg \cdot m^{-3}$                | 811.760          | 199 400            | 61.510          | -8.973         | 25,300      | 0.005        | 808,190      | 197,660            | 63 490           | -12.960           | 27,200  | 0.007 |
| n/mPa•s                            | 4.334            | -8.860             | 8.097           | -3.590         | 0.703       | 0.004        | 3.727        | -7.379             | 6.710            | -3.298            | 0.857   | 0.002 |
| $u/m \cdot s^{-1}$                 | 1293.90          | -79.10             | -11.08          | -56.22         | 83.40       | 0.07         | 1277.20      | -80.60             | 2.21             | -81.44            | 95.25   | 0.06  |
|                                    |                  |                    |                 | C              | hlorobenzer | 10 = (1) + 1 | Octanol (2)  |                    |                  |                   |         |       |
|                                    |                  |                    | T = 298         | .15 K          |             |              |              |                    | T = 303          | 3.15 K            |         |       |
| $\rho/\text{kg}\cdot\text{m}^{-3}$ | 821.860          | 176.960            | 81.480          | -24.79         | 45.380      | 0.005        | 818.250      | 176.050            | 77.876           | -17.880           | 40.740  | 0.006 |
| η/mPa•s                            | 7.662            | -18.110            | 19.143          | -10.45         | 2.514       | 0.003        | 6.404        | -14.345            | 14.360           | -7.489            | 1.775   | 0.003 |
| $u/m \cdot s^{-1}$                 | 1347.80          | -96.56             | -2.43           | -102.3         | 121.10      | 0.15         | 1337.90      | -170.84            | 262.70           | -420.88           | 240.43  | 0.16  |
|                                    |                  |                    | T = 308         | .15 K          |             |              |              |                    | T = 313          | 3.15 K            |         |       |
| $ ho/kg\cdot m^{-3}$               | 814.770          | 173.810            | 80.590          | -22.98         | 42.830      | 0.006        | 810.130      | 172.310            | 84.090           | -28.320           | 45.380  | 0.004 |
| η/mPa•s                            | 5.424            | -11.540            | 10.600          | -4.730         | 0.923       | 0.003        | 4.628        | -9.640             | 9.466            | -5.239            | 1.400   | 0.004 |
| $u/m \cdot s^{-1}$                 | 1314.30          | -81.16             | -9.51           | -82.37         | 89.35       | 0.14         | 1297.60      | -82.74             | 2.97             | -84.02            | 78.71   | 0.12  |
|                                    |                  |                    |                 | С              | hlorobenzen | e(1) + 1-    | Nonanol (2)  |                    |                  |                   |         |       |
|                                    |                  |                    | T = 298         | .15 K          |             |              |              |                    | T = 303          | 3.15 K            |         |       |
| $\rho/\text{kg}\cdot\text{m}^{-3}$ | 824.520          | 155.570            | 99.980          | -49.65         | 70.137      | 0.005        | 821.090      | 153.610            | 103.380          | -56.326           | 73.213  | 0.006 |
| $\eta/mPa \cdot s$                 | 9.714            | -24.418            | 28.321          | -17.92         | 5.070       | 0.003        | 7.929        | -18.040            | 17.720           | -8.861            | 1.960   | 0.004 |
| $u/m \cdot s^{-1}$                 | 1365.49          | -99.65             | 5.55<br>T - 200 | -133.3         | 129.53      | 0.26         | 1353.60      | -160.82            | 204.55           | -364.65           | 216.48  | 0.15  |
| a/Irarm=3                          | 917 600          | 151.050            | I = 308         | .15 K          | 72 009      | 0.009        | 914 150      | 150 280            | I = 313          | 5.15 K            | 75 720  | 0.007 |
| $\rho/\text{kg-m}$                 | 6 6 6 5          | -14525             | 105.700         | -38.23         | 1 5 5 2     | 0.008        | 5 647        | -11.025            | 105.950          | -62.370           | 1 7 4 1 | 0.007 |
| $\eta/\min a^{-1}$                 | 1221.00          | -14.333<br>-112.50 | 51 24           | -100.2         | 1.552       | 0.003        | 1215 10      | -11.923<br>-106.40 | 22.08            | -0.298<br>-141.42 | 1.741   | 0.004 |
| <i>u</i> /111•S                    | 1551.90          | -112.30            | 51.24           | -190.3         | 130.04      | 0.25         | 1313.10      | -100.49            | 22.08            | -141.43           | 123.10  | 0.27  |
|                                    |                  |                    | T = 200         | 15 V           | hlorobenzen | 1e(1) + 1-   | Decanol (2)  |                    | T = 202          | 2 15 V            |         |       |
| o/karm=3                           | 826 700          | 127 250            | 1 - 296         | .13 K          | 102 650     | 0.002        | 822 020      | 125 770            | I = 503          | -02127            | 105 570 | 0.006 |
| $p/\mathbf{kg}^{\text{III}}$       | 11 826           | -29150             | 30,990          | -17.07         | 4 158       | 0.003        | 9 755        | -22.840            | 22 980           | -12.004           | 2 816   | 0.000 |
| $u/m \cdot s^{-1}$                 | 1380.10          | -111.63            | 58 59           | 215.27         | 155.90      | 0.004        | 1365.00      | -135.26            | 22.900           | -187.83           | 126.09  | 0.004 |
| u/111 5                            | 1500.10          | 111.03             | T = 308         | .15 K          | 155.70      | 0.17         | 1505.00      | 133.20             | $T = 31^{2}$     | 3.15 K            | 120.07  | 0.11  |
| $\rho/\text{kg}\cdot\text{m}^{-3}$ | 819.500          | 133,880            | 126.370         | -98.77         | 107.840     | 0.004        | 816.060      | 132.410            | 127.990          | -102.46           | 109.400 | 0.006 |
| n/mPa•s                            | 8.139            | -18.317            | 18.180          | -10.0          | 2.660       | 0.003        | 6.843        | -14.716            | 13.960           | -7.365            | 1.889   | 0.003 |
| $u/m \cdot s^{-1}$                 | 1346.20          | -137.70            | 121.37          | -294.5         | 194.90      | 0.19         | 1329.35      | -132.56            | 66.79            | -206.56           | 155.47  | 0.09  |
|                                    |                  |                    |                 |                |             |              |              |                    |                  |                   |         |       |

component in the mixture;  $C_{p,i}^{\circ}$ ,  $V_i^{\circ}$ , and  $\alpha_i^{\circ}$  are the molar isobaric heat capacity, molar volume, and isobaric expansion coefficient of pure component *i*, respectively.  $\phi_i$  is the ideal volume fraction of pure component *i* in the mixture and is defined by the relation

$$\phi_i = x_i V_i / (\sum x_i V_i^\circ) \tag{7}$$

The values of the heat capacities  $C_{p,i}^{\circ}/J \cdot mol^{-1} \cdot K^{-1}$  for the pure component at the temperature range (298.15 to 313.15) K were taken from the DIPPR database,<sup>18</sup> shown in Table 4. The thermal expansion coefficient defined as  $\alpha = V^{-1} (dV/dT)_p = -\rho^{-1} (d\rho/dT)_p$ , listed in Table 5, was calculated from the experimental  $\rho$  data of each pure component using  $A_i$ , the coefficients of<sup>5</sup>

$$\rho = \sum_{i=1}^{m=3} A_i (T - 273.15)^{i-1} \tag{8}$$

The deviation of the measured speeds of sound from their values in an ideal mixture  $u^{D}$  were calculated from the following equations as reported in Pal and Singh:<sup>25</sup>

$$u^{\rm D} = u - u^{\rm id} \tag{9}$$

$$u^{\rm id} = V_{\rm m}^{\rm id} \{ (\sum x_i M_i) k_{\rm s}^{\rm id} \}^{-0.5}$$
(10)

-ophere  $u^{id}$ ,  $V_m^{id}$ ,  $k_s^{id}$ ,  $x_i$ , and  $M_i$  are the calculated speed sound, molar volume, and isentropic compressibility of the ideal solution, the mole fraction, and molar mass of the pure component, respectively

The viscosity deviations  $\Delta h$  from a linear dependence on mole fraction were calculated according to the literature suggestions<sup>26</sup> through the following relation:

$$\Delta \eta = \eta_m - \sum_{i=1}^n (x_i \eta_i) \tag{11}$$

where x and  $\eta$  are the molar mass and dynamic viscosity, respectively. The subscripts *i* and *m* represent the pure components and the mixture respectively.

The excess molar volumes  $V^{\rm E}$ , excess molar isentropic compressibility  $k_{\rm s}^{\rm E}$ , deviations of the speed of sound  $u^{\rm D}$ , and viscosity deviation  $\Delta \eta$  for binary mixtures were fitted by the method of least-squares to a Redlich–Kister<sup>8</sup> polynomial type



**Figure 1.** Excess molar volumes  $V^{\rm E}$  for the binary mixtures:  $\Diamond$ , chlorobenzene + 1-hexanol;  $\Box$ , + 1-heptanol;  $\Delta$ , + 1-octanol;  $\bigcirc$ , + 1-nonanol; +, + 1-decanol at 298.15 K. Solid line (Redlich-Kister equation).<sup>8</sup>



**Figure 2.** Equimolar excess molar volume  $V^{\text{E}} x_1 = 0.5$ , as a function of number of carbon atoms n for 1-alkanol of {chlorobenzene (1) + 1-alkanol (2)} binary mixtures at  $\diamond$ , 298.15 K;  $\Box$ , 303.15 K;  $\Delta$ , 308.15 K; and  $\times$ , 313.15 K.

equation:

$$Y = x_1 x_2 \sum_{j=1}^{p} a_{j-1} (x_1 - x_2)^{j-1}$$
(12)

where *Y* is  $V^{\rm E}$ ,  $\Delta\eta$ ,  $u^{\rm D}$ , or  $k_{\rm s}^{\rm E}$ , and  $x_1$  and  $x_2$  are the mole fractions of pure components 1 and 2, respectively.  $a_{j-1}$  is the polynomial coefficient, and *p* is the polynomial degree. The degree of eq 12 was optimized by applying the *F*-test;<sup>27</sup> the correlated results are shown in Table 6 in which the tabulated standard deviation  $\sigma$  was defined as

$$\sigma = ((\sum_{i=1}^{n} {}^{2}(Y_{\exp} - Y_{cal}))) / \{(n-j)\})$$
(13)



**Figure 3.** Viscosity deviation  $\Delta \eta$  for the binary mixtures:  $\diamond$ , chlorobenzene + 1-hexanol;  $\Box$ , + 1-heptanol;  $\Delta$ , + 1-octanol;  $\bigcirc$ , + 1-nonanol; +, + 1-decanol} at 298.15 K. Solid line (Redlich-Kister equation).<sup>8</sup>



**Figure 4.** Deviation in isentropic compressibility  $k_s^E$  as a function of  $x_1$  for the binary mixtures:  $\diamond$ , chlorobenzene + 1-hexanol;  $\Box$ , + 1-heptanol;  $\Delta$ , + 1-octanol;  $\bigcirc$ , + 1-nonanol; +, + 1-decanol} at 298.15 K. Solid line (Redlich–Kister equation.<sup>8</sup>

where n is the number of data points and j is the number of the coefficients. The subscripts exp and cal denote experimental and correlated values, respectively.

Figure 1 shows that the dependency of excess molar volumes  $V^{\rm E}$  on the composition of {chlorobenzene + 1-alkanol} binary mixtures at 298.15 K. A sigmoidal trend could be seen on the behavior of {chlorobenzene + 1-hexanol or 1-heptanol}, and the values vary from negative to positive with the increase of chlorobenzene mole fraction. The remaining binary mixtures exhibit positive deviation for the entire mole fraction. Such a behavior could be a result of several opposing effects as was suggested by Treszczanowicz and Benson.<sup>28</sup> The negative excess molar volumes changes in mixtures rich in alcohol could be attributed to predominant interaction between the -OH group

Table 4. Values of Heat Capacities  $(C_{n,i}^{\circ})$  at T = (298.15 to 313.15) K and Critical Temperatures  $(T_c)$  of Pure Components

|               |               | $C_{p,i}^{\circ}/\mathrm{J}\cdot\mathrm{m}$ | $ol^{-1}K^{-1}$ |               |             |
|---------------|---------------|---------------------------------------------|-----------------|---------------|-------------|
|               | T = 298.15  K | T = 303.15  K                               | T = 308.15  K   | T = 313.15  K | $T_{\rm c}$ |
| chlorobenzene | 150.47        | 150.98                                      | 151.67          | 152.60        | 632.35      |
| 1-hexanol     | 241.64        | 246.52                                      | 251.47          | 256.48        | 610.30      |
| 1-heptanol    | 273.24        | 275.37                                      | 289.83          | 295.35        | 630.10      |
| 1-octanol     | 308.39        | 313.60                                      | 320.12          | 325.98        | 652.50      |
| 1-nonanol     | 336.33        | 342.40                                      | 348.18          | 354.40        | 670.70      |
| 1-decanol     | 371.10        | 375.40                                      | 380.40          | 384.50        | 687.30      |

| Table 5. Is | sobaric Expansion | <b>Coefficients of Pure</b> | Components at $T = 1$ | (298.15 to 313.15 | ) K |
|-------------|-------------------|-----------------------------|-----------------------|-------------------|-----|
|-------------|-------------------|-----------------------------|-----------------------|-------------------|-----|

|               | α/k                                                     | $K^{-1}$                                                 |                                                                                                                                                                                                    |
|---------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T = 298.15  K | T = 303.15  K                                           | T = 308.15  K                                            | T = 313.15  K                                                                                                                                                                                      |
| 1.0410        | 1.0430                                                  | 1.0460                                                   | 1.0480                                                                                                                                                                                             |
| 0.8747        | 0.8861                                                  | 0.9078                                                   | 0.9297                                                                                                                                                                                             |
| 0.8533        | 0.8732                                                  | 0.8908                                                   | 0.9100                                                                                                                                                                                             |
| 0.8362        | 0.8644                                                  | 0.8803                                                   | 0.8969                                                                                                                                                                                             |
| 0.8202        | 0.8416                                                  | 0.8633                                                   | 0.8851                                                                                                                                                                                             |
| 0.8112        | 0.8301                                                  | 0.8550                                                   | 0.8758                                                                                                                                                                                             |
|               | T = 298.15  K 1.0410 0.8747 0.8533 0.8362 0.8202 0.8112 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $\alpha/kK^{-1}$ $T = 298.15 \text{ K}$ $T = 303.15 \text{ K}$ $T = 308.15 \text{ K}$ 1.04101.04301.04600.87470.88610.90780.85330.87320.89080.83620.86440.88030.82020.84160.86330.81120.83010.8550 |

Table 6. Redlich–Kister Coefficients  $a_i$  and Standard Deviations  $\sigma$  for Excess and Deviations Functions of {Chlorobenzene (1) + 1-Alkanol (2)} Binary Mixtures from T = (298.15 to 313.15) K

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | $a_0$             | $a_1$             | $a_2$                   | $a_3$        | σ              | $a_0$     | $a_1$              | $a_2$                   | <i>a</i> <sub>3</sub> | σ       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|-------------------|-------------------------|--------------|----------------|-----------|--------------------|-------------------------|-----------------------|---------|
| $ \begin{array}{c c cm^3-mol^{-1} \\ \hline Cm^$                                            |                                                                |                   |                   | С                       | hlorobenzene | (1) + 1-Hex    | anol (2)  |                    |                         |                       |         |
| $\begin{split} & \psi^{c}(\mathrm{cm}^{-1}\mathrm{cm}\mathrm{cn}^{-1} & 0.2411 & -0.659 & 0.0007 & 0.0080 & 0.2640 & -0.6565 & 0.0142 & -0.0238 & 0.0005 \\ & \psi^{c}(\mathrm{rm}^{-1}\mathrm{cm}^{-1} & -1.6444 & -29.364 & 23.706 & -20.665 & 0.0007 & -1.5871 & -3.0523 & 19.414 & -16.912 & 0.0006 \\ & \psi^{c}(\mathrm{rm}^{-1}\mathrm{cm}\mathrm{cn}^{-1} & 15.321 & 20.806 & -14.4075 & 3.499 & 0.0003 & 14.092 & 28.807 & -16.703 & 3.822 & 0.0002 \\ & \tau^{-3}08.15 & \tau^{-3}08.008 & -0.00204 & 0.0001 & 0.3061 & -0.6585 & 0.0846 & -0.0605 & 0.0009 \\ & \phi^{m}\mathrm{m}^{+s} & -2.9023 & -0.891 & -0.1690 & 0.4700 & 0.0004 & -2.4696 & -0.7154 & -0.189 & 0.3776 & 0.0003 \\ & \phi^{m}\mathrm{m}^{+s} & -2.9023 & -0.891 & -0.1690 & 0.4700 & 0.0003 & 9.284 & 30.988 & -16.198 & -1.926 & 0.0004 \\ & \phi^{m}\mathrm{m}^{+s} & -1.2.789 & -3.132 & 12.849 & -5.392 & 0.0003 & -11212 & -3.676 & 16.770 & 0.307 & 0.0003 \\ & \phi^{m}\mathrm{m}^{+s} & -5.8462 & -1.847 & -0.184 & 0.0004 & 0.3596 & -0.6468 & 0.1701 & -0.1166 & 0.0006 \\ & \Delta gm^{m}\mathrm{m}^{+s} & -5.8462 & -1.847 & -0.184 & 0.0004 & 0.3596 & -0.6468 & 0.1701 & -0.1166 & 0.0006 \\ & \Delta gm^{m}\mathrm{m}^{+s} & -5.8462 & -1.847 & -0.140 & 0.035 & 0.0000 & -4.8049 & -1.4733 & -0.2592 & 0.3067 & 0.0007 \\ & \pi^{-3}0.815 & \tau^{-3}3.135 & \mathrm{K} & \tau^{-3}3.135 & \mathrm{K} & \mathrm{K}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}\mathrm{m}^{-3}$ |                                                                |                   |                   | T = 298.15  K           |              |                |           |                    | T = 303.15  K           |                       |         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$               | 0.2411            | -0.659            | 0.0007                  | 0.0080       | 0.0008         | 0.2640    | -0.6565            | 0.0142                  | -0.0238               | 0.0005  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta \eta$ /mPa·s                                           | -4.3847           | -1.544            | -0.5982                 | 0.4519       | 0.0004         | -3.5492   | -1.0697            | -0.0822                 | 0.4221                | 0.0006  |
| $\begin{array}{c} u^2 (\mathrm{mer}^{-1} & 15.321 \\ u^2 (\mathrm{mer}^{-1} & 15.321 \\ v^2 (\mathrm{cm}^{-1} \mathrm{mol}^{-1} & 0.2711 \\ -0.676 \\ 0.0803 \\ u^3 (\mathrm{mar}^{-1} & -1.278 \\ -2.9823 \\ -2.9823 \\ -2.9823 \\ u^3 (\mathrm{mar}^{-1} & -1.278 \\ -2.9823 \\ -2.9823 \\ u^3 (\mathrm{mar}^{-1} & -1.278 \\ -2.982 \\ -2.9823 \\ -2.9823 \\ u^3 (\mathrm{mar}^{-1} & -1.278 \\ -2.982 \\ -2.788 \\ -3.3132 \\ -3.313 \\ -3.323 \\ -3.323 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332 \\ -3.332$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $k_{\rm s}^{\rm E}/{\rm TPa^{-1}}$                             | -16.446           | -29.364           | 23.706                  | -20.665      | 0.0007         | -15.871   | -30.523            | 19.414                  | -16.912               | 0.0005  |
| $ \begin{array}{c} V^{2}(\mathrm{cm}^{3}\mathrm{-mol}^{-1} & 0.2771 & -0.676 & 0.0204 & 0.0001 & 0.3061 & -0.6885 & 0.0846 & -0.0605 & 0.0009 \\ \Delta y(\mathrm{m}^{3}\mathrm{-r}_{2} & -1.2789 & -3.132 & 13.844 & -5.392 & 0.0003 & -2.4666 & -0.7154 & -0.2189 & 0.3776 & 0.0003 \\ \mu^{3}(\mathrm{m}\mathrm{r}\mathrm{s}^{-1} & 11.578 & 29.525 & -16.223 & 3.813 & 0.0003 & 9.284 & 30.988 & -16.198 & -1.926 & 0.0004 \\ \mu^{3}(\mathrm{m}\mathrm{s}^{-1} & 11.578 & 29.525 & -16.223 & 3.813 & 0.0003 & 9.284 & 30.988 & -16.198 & -1.926 & 0.0004 \\ \Delta y(\mathrm{m}^{3}\mathrm{r}\mathrm{s}^{-1} & 11.578 & 29.525 & -16.223 & 3.813 & 0.0004 & 0.3596 & -0.6468 & 0.1701 & -0.1166 & 0.0006 \\ \Delta y(\mathrm{m}^{3}\mathrm{m}\mathrm{s}^{-1} & -3.8462 & -1.847 & -0.1140 & 0.6135 & 0.0004 & 3.296 & -3.4042 & 13.039 & 1.932 & 0.0002 \\ \Delta y(\mathrm{m}^{3}\mathrm{r}\mathrm{s}^{-1} & 4.695 & 34.000 & -13.691 & -2.772 & 0.0004 & 3.265 & 35.300 & -13.809 & -4.142 & 0.0006 \\ T = 30.815 K & T = 33.813 & N & V^{3}(\mathrm{m}^{3}\mathrm{r}\mathrm{mol}^{-1} & 0.3384 & -0.016 & 0.2342 & -0.2376 & 0.0007 & 0.4988 & -0.4463 & 0.1300 & -0.5723 & 0.0009 \\ \mu^{3}(\mathrm{m}\mathrm{s}^{-1} & -2.339 & -35.657 & 15.593 & 3.733 & 0.0002 & -0.3924 & -0.3648 & 17.099 & 2.247 & 0.0005 \\ \mu^{3}(\mathrm{m}\mathrm{s}^{-1} & -2.339 & -35.677 & 15.591 & -1.232 & 0.0009 & 0.599 & 32.793 & -17.187 & 2.465 & 0.0006 \\ \Delta y(\mathrm{m}^{3}\mathrm{r}\mathrm{m}^{-1} & 2.226 & 33.811 & -15.891 & -1.232 & 0.0009 & 0.599 & 32.793 & -17.187 & 2.465 & 0.0006 \\ \Delta y(\mathrm{m}^{3}\mathrm{r}\mathrm{m}^{-1} & 2.376 & -2.769 & -0.6128 & 0.0005 & 4.472 & -3.536 & 0.2894 & -0.1870 & 0.0008 \\ \Delta y(\mathrm{m}^{3}\mathrm{m}\mathrm{s}^{-1} & -3.819 & 27.394 & -15.877 & 0.0005 & 0.4773 & -0.5584 & 0.2894 & -0.1870 & 0.0008 \\ \Delta y(\mathrm{m}^{3}\mathrm{m}\mathrm{s}^{-1} & -3.519 & 2.7.69 & -0.627 & -0.077 & 0.0005 & 0.4723 & -0.5584 & 0.2894 & -0.1870 & 0.0008 \\ \mu^{3}\mathrm{m}\mathrm{s}^{-1} & -3.819 & 27.394 & -15.877 & -0.088 & 0.0000 & 0.4723 & -0.5480 & 0.0036 \\ \mu^{3}\mathrm{m}\mathrm{s}^{-1} & -3.519 & 2.7.69 & 0.0668 & -0.4273 & -0.5584 & 0.2894 & -0.1870 & 0.0008 \\ \mu^{3}\mathrm{m}\mathrm{s}^{-1} & -3.519 & 2.7.69 & 0.0668 & -0.2677 & -0.4802 & 0.6480 & 0.0005 \\ \mu^{3}\mathrm{m}\mathrm{m}\mathrm{s}^{-1} & -3.519 & 2.7.69 & 0.0658 & 0.0000 & -3.274 & -0.25584 & 0.2.684 & -1.1.644 & 0.0$                                                                                                                                                                                                                                                                                                                                                                                     | $u^{\mathrm{D}}/\mathrm{m}\cdot\mathrm{s}^{-1}$                | 15.321            | 28.086            | -14.075                 | 3.499        | 0.0003         | 14.092    | 28.893             | -16.703                 | 3.822                 | 0.0002  |
| $\begin{array}{c} V_{\rm Cm}^{+}{\rm mol}^{-1} & 0.2/11 & -0.6/6 & 0.0803 & -0.0204 & 0.0001 & 0.3061 & -0.0585 & 0.0846 & -0.0169 & -0.0005 \\ V_{\rm T}^{+}{\rm Ta}^{-1} & -12.789 & -3.312 & 13.894 & -5.302 & 0.0003 & -1.212 & -36.76 & 16.770 & 3.037 & 0.0003 \\ V_{\rm Cm}^{+}{\rm mol}^{-1} & -12.789 & -3.312 & 13.894 & -5.302 & 0.0004 & -2.466 & 0.1714 & -0.189 & -1.926 & 0.0004 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | 0.0551            | 0.474             | T = 308.15  K           | 0.0004       | 0.0001         | 0.00.51   | 0                  | T = 313.15  K           | 0.0.00                | 0.0000  |
| $\begin{split} & \lambda \mu miras & -2.9623 & -0.891 & -0.1690 & 0.4700 & 0.0004 & -2.4896 & -0.718 & -0.2189 & 0.3776 & 0.0005 \\ & \mu^3 mirs^{-1} & 11.578 & 29.525 & -1.6223 & 3.813 & 0.0003 & -11.212 & -36.796 & 16.170 & 3.037 & 0.0003 \\ & \mu^3 mirs^{-1} & 11.578 & 29.525 & -1.6223 & 3.813 & 0.0003 & -11.212 & -36.796 & 16.198 & -1.926 & 0.0004 \\ & -1.584 & 0.0004 & 0.3396 & -0.648 & 0.1701 & -0.1166 & 0.0006 \\ & \Delta \mu^3 mirs^{-1} & -4.727 & -34.532 & 11.694 & 4.573 & 0.0005 & -4.8049 & -1.473 & -0.2592 & 0.3967 & 0.0007 \\ & \mu^3 mirs^{-1} & 4.695 & 34.060 & -13.091 & -2.772 & 0.0004 & 3.265 & 35.300 & -13.809 & -4.142 & 0.0006 \\ & \Delta \mu^3 mirs^{-1} & 4.695 & 34.060 & -13.091 & -2.772 & 0.0004 & 3.265 & 35.300 & -13.809 & -4.142 & 0.0006 \\ & \Delta \mu^3 mirs^{-1} & 0.3834 & -0.616 & 0.2422 & -0.2376 & 0.0007 & 0.4958 & -0.4463 & 0.1300 & -0.5723 & 0.0009 \\ & \Delta \mu^3 mirs^{-1} & 2.339 & -3.567 & 15.933 & 3.733 & 0.0002 & -0.392 & -0.7868 & 1.709 & 2.247 & 0.0005 \\ & \mu^3 mirs^{-1} & 2.226 & 33.811 & -15.891 & -1.232 & 0.0009 & 0.599 & 32.793 & -17.187 & 2.465 & 0.0007 \\ & \mu^3 mirs^{-1} & 2.226 & 33.811 & -15.891 & -1.232 & 0.0009 & 0.5793 & 3.736 & 12.465 & -2.407 & 0.0002 \\ & \mu^3 mirs^{-1} & -3.819 & 27.394 & -0.6128 & 0.2084 & 0.0005 & 4.472 & -0.3574 & 0.2384 & -0.1870 & 0.0008 \\ & \Delta \mu^3 mirs^{-1} & -3.819 & 27.394 & -15.877 & 8.483 & 0.0002 & -5.833 & 26.944 & -17.698 & 0.0306 \\ & \Delta \mu^3 mirs^{-1} & -3.819 & 27.394 & -15.877 & 8.483 & 0.0002 & -5.332 & 26.944 & -17.698 & 0.0005 \\ & \mu^3 mirs^{-1} & -3.819 & 27.394 & -1.5877 & -7.698 & 0.0006 & 9.179 & -0.4180 & 0.3284 & -0.0316 & 0.1224 & 0.0015 \\ & \mu^3 mirs^{-1} & -3.819 & 27.394 & -1.5877 & -7.698 & 0.0006 & 9.179 & -0.3522 & 16.548 & -11.576 & 0.0007 \\ & \mu^3 mirs^{-1} & -7.502 & 26.844 & -21.125 & 13.709 & 0.0003 & -9.374 & 25.747 & -23.737 & 17.516 & 0.0005 \\ & \mu^3 mirs^{-1} & -1.6243 & -0.566 & -0.4148 & 0.0001 & 0.5522 & -0.5456 & 0.6180 & -0.5299 & 0.0004 \\ & \mu^3 mirs^{-1} & -1.2037 & 33.229 & -1.291 & -0.284 & 0.0006 & -9.737 & -2.5474 & -2.3.737 & 1.756 & 0.0007 \\ & \mu^3 mirs^{-1} & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $V^{\rm E}/\rm{cm}^{3}\cdot\rm{mol}^{-1}$                      | 0.27/1            | -0.676            | 0.0803                  | -0.0204      | 0.0001         | 0.3061    | -0.6585            | 0.0846                  | -0.0605               | 0.0009  |
| $ \begin{array}{c} \chi_{1}^{\alpha} \Pi_{1}^{-1} & -12.789 & -33.12 & 15.894 & -5.392 & 0.0003 & -11.212 & -30.79 & 10.7.0 & 3.003 & 0.0005 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta \eta$ /mPa·s                                           | -2.9623           | -0.891            | -0.1690                 | 0.4700       | 0.0004         | -2.4696   | -0./154            | -0.2189                 | 0.3776                | 0.0005  |
| $ \begin{array}{c} \mu^{2} (m; s^{-1} & 11.5 / 8 & 29.5 S & -16.2.23 & 3.815 & 0.0003 & 9.284 & 30.988 & -16.198 & -1.92.6 & 0.0004 \\ \mathbf{Chlcrobenzene (1) + 1-Heptanol (2)} \\ T = 303.15 & K $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $k_{\rm s}^{\rm E}/{\rm TPa^{-1}}$                             | -12.789           | -33.132           | 13.894                  | -5.392       | 0.0003         | -11.212   | -36.796            | 16.770                  | 3.037                 | 0.0003  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $u^{\rm D}/{\rm m}^{\rm s}{\rm s}^{-1}$                        | 11.578            | 29.525            | -16.223                 | 3.813        | 0.0003         | 9.284     | 30.988             | -16.198                 | -1.926                | 0.0004  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                   |                   | C                       | hlorobenzene | (1) + 1-Hep    | tanol (2) |                    | T 000 15 W              |                       |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VE/2003-00-1-1                                                 | 0.2402            | 0.602             | I = 298.15  K           | 0 1594       | 0.0004         | 0.2506    | 0 6469             | I = 303.15  K           | 0.1166                | 0.0006  |
| $ \begin{array}{c} \Delta p^{(1)}_{11} \Gamma a^{(1)}_{21} & -1.3/3 & -1.0.47 & -0.140 & 0.013 & 0.0002 & -1.8.049 & -1.47.13 & -0.2.92 & 0.390 & 0.0000 \\ \mu^{(2)}_{11} \Gamma a^{(1)}_{21} & -4.727 & -1.34.52 & 11.694 & 4.573 & 0.0022 & -3.569 & -34.042 & 13.039 & -4.142 & 0.0000 \\ \Gamma & = 308.15 K & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A m/m Pose                                                     | 0.3403<br>-5.8462 | -0.602            | -0.1140                 | -0.1584      | 0.0004         | 0.3596    | -0.0408<br>-1.4722 | 0.1701                  | -0.1100               | 0.0006  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta \eta/\mathrm{IIIF}a^{*}S$<br>$t^{E}/\mathrm{TD}_{2}=1$ | -3.8402<br>-4.727 | -1.047<br>-34.532 | -0.1140                 | 0.0135       | 0.0003         | -3 560    | -1.4733<br>-34.042 | 13 030                  | 1 032                 | 0.0007  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\kappa_{\rm s}/1{\rm Pa}^{-1}$                                | 4.727             | 24.000            | 12 001                  | 4.575        | 0.0022         | 2.309     | 25 200             | 12 800                  | 1.932                 | 0.0002  |
| $ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>u<sup>2</sup></i> /m•s                                      | 4.095             | 34.060            | T = 308.15  K           | -2.772       | 0.0004         | 3.205     | 35.300             | T = 313.15  K           | -4.142                | 0.0006  |
| $ \begin{array}{c} \Delta y   \text{m} \text{Pars} & -3.9545 & -1.097 & -0.2147 & 0.1065 & 0.0003 & -3.2614 & -0.7820 & -0.2106 & -0.0371 & 0.0039 \\ \psi^{h} / \text{TPa}^{-1} & -2.339 & -35.657 & 15.593 & 3.733 & 0.0002 & -0.992 & -36.458 & 17.099 & 2.247 & 0.0005 \\ \hline \\ \psi^{h} \text{m} \text{s}^{-1} & 2.226 & 33.811 & -15.891 & -1.232 & 0.0009 & 0.599 & 32.793 & -17.187 & 2.465 & 0.0006 \\ \hline \\ \Delta y   \text{m} \text{Pars} & -7.8670 & -2.769 & -0.6128 & 0.2080 & 0.0004 & -6.2464 & -2.0623 & -0.4188 & 0.3469 & 0.0003 \\ \Delta y   \text{m} \text{Pars} & -7.8670 & -2.769 & -0.6128 & 0.2080 & 0.0004 & -6.2464 & -2.0623 & -0.4188 & 0.3469 & 0.0003 \\ \Delta y   \text{m} \text{Pars} & -3.819 & 27.394 & -15.877 & 8.483 & 0.0002 & -5.833 & 26.944 & -17.698 & 10.528 & 0.0003 \\ \mu^{0}   \text{m} \text{s}^{-1} & -3.819 & 27.394 & -15.877 & 8.483 & 0.0002 & -5.833 & 26.944 & -17.698 & 10.528 & 0.0003 \\ \mu^{0}   \text{m} \text{s}^{-1} & -5.1366 & -1.365 & -0.2807 & -0.1777 & 0.0008 & -4.073 & -1.2847 & -0.316 & 0.1284 & 0.0015 \\ \Delta y   \text{m} \text{Pars} & -5.1366 & -1.365 & -0.2807 & -0.1777 & 0.0008 & -4.073 & -1.2847 & -0.316 & 0.1284 & 0.0015 \\ \mu^{0}   \text{m} \text{s}^{-1} & -7.502 & 26.848 & -21.125 & 13.709 & 0.0003 & -9.374 & 26.747 & -23.737 & 17.516 & 0.0004 \\ \mu^{b}   \text{m} \text{s}^{-1} & -7.502 & 26.848 & -21.125 & 13.709 & 0.0003 & -9.374 & 26.747 & -23.737 & 17.516 & 0.0005 \\ \hline \\ V^{b} (\text{cm}^{3} \text{-mol}^{-1} & 0.6560 & -0.5560 & 0.5146 & -0.4148 & 0.001 & 0.5922 & -0.5465 & 0.6180 & -0.5299 & 0.0004 \\ \mu^{b}   \text{m} \text{s}^{-1} & -1.2037 & 33.229 & -1.6241 & -10.297 & 0.0007 & 13.739 & -31.583 & 18.396 & -12.733 & 0.0003 \\ \mu^{0}   \text{m} \text{s}^{-1} & -10.297 & -3.820 & -1.291 & -0.268 & 0.0008 & -7.873 & -2.549 & -0.463 & 0.298 & 0.0007 \\ \Delta y^{b}   \text{m} \text{s}^{-1} & -16.824 & 1.0.584 & 0.0002 & 20.841 & -28.467 & 26.146 & -17.647 & 0.0009 \\ \mu^{0}   \text{m} \text{s}^{-1} & -16.745 & 30.506 & -1.432 & 0.0007 & 6.7559 & -0.5559 & 0.7544 & -0.659 & 0.0007 \\ \mu^{0}   \text{m} \text{s}^{-1} & -16.745 & 30.506 & -0.6531 & 0.0003 & 6.913 & -0.6165 & 0.7504 & -0.6599 & 0.0005 \\ \Psi^{b}   \text{m} \text{s}^{-1} & -16.745 & 30.506 & -1.6531 & 0.0003 & 6.913 & -0.616$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V^{\rm E}/\rm cm^3 \cdot mol^{-1}$                            | 0.3834            | -0.616            | 0.2342                  | -0.2376      | 0.0007         | 0.4958    | -0.4463            | 0.1300                  | -0.5723               | 0.0009  |
| $ \begin{split} & \frac{k^5}{1} \Gamma p_a^{-1} & -2.339 & -35.657 & 15.593 & 3.733 & 0.0002 & -0.992 & -36.458 & 17.099 & 2.247 & 0.0005 \\ & u^5/m^{3}r^{-1} & 2.226 & 33.811 & -15.891 & -1.232 & 0.0009 & 0.599 & 32.793 & -17.187 & 2.465 & 0.0006 \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Delta \eta$ /mPa·s                                           | -3.9545           | -1.097            | -0.2147                 | 0.1065       | 0.0003         | -3.2614   | -0.7820            | -0.2106                 | -0.0371               | 0.0039  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $k_{\rm e}^{\rm E}/{\rm TPa^{-1}}$                             | -2.339            | -35.657           | 15.593                  | 3.733        | 0.0002         | -0.992    | -36.458            | 17.099                  | 2.247                 | 0.0005  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $u^{\rm D}/{\rm m}\cdot{\rm s}^{-1}$                           | 2.226             | 33.811            | -15.891                 | -1.232       | 0.0009         | 0.599     | 32.793             | -17.187                 | 2.465                 | 0.0006  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                   |                   | C                       | hlorobenzene | (1) + 1 - 0 ct | (2)       |                    |                         |                       |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                   |                   | T = 298.15  K           | morobenzene  |                | unor (2)  |                    | T = 303.15  K           |                       |         |
| $ \begin{array}{c} \Delta\eta/\mathrm{mPars} & -7.8670 & -2.769 & -0.6128 & 0.2080 & 0.0004 & -6.2464 & -2.0623 & -0.4188 & 0.3469 & 0.0003 \\ k_{\perp}^{2}/\mathrm{TPa^{-1}} & 2.578 & -32.161 & 10.994 & -4.089 & 0.0005 & 4.472 & -33.736 & 12.456 & -2.497 & 0.0002 \\ u^{\mathrm{b}/\mathrm{m}\mathrm{s}^{-1}} & -3.819 & 27.394 & -15.877 & 8.483 & 0.0002 & -5.833 & 26.944 & -17.698 & 10.528 & 0.0003 \\ \pi = 308.15 \mathrm{K} & T = 308.15 \mathrm{K} & T = 313.15 \mathrm{K} \\ V^{\mathrm{e}/\mathrm{cm}^{3}}\mathrm{mol}^{-1} & 0.4978 & -0.516 & 0.3680 & -0.2667 & 0.0005 & -0.4802 & 0.4598 & -0.300 & 0.0005 \\ \mu/\mathrm{m}\mathrm{s}^{\mathrm{s}-1} & -7.502 & 26.848 & -21.125 & 13.709 & 0.0003 & -4.0573 & -1.284 & -0.316 & 0.1284 & 0.0015 \\ \mu/\mathrm{m}\mathrm{s}^{\mathrm{s}-1} & -7.502 & 26.848 & -21.125 & 13.709 & 0.0003 & -9.374 & 26.747 & -23.737 & 17.516 & 0.0004 \\ \mu/\mathrm{m}\mathrm{s}^{\mathrm{s}-1} & -7.502 & 26.848 & -21.125 & 13.709 & 0.0003 & -9.374 & 26.747 & -23.737 & 17.516 & 0.0005 \\ \hline & V^{\mathrm{e}/\mathrm{cm}^{3}}\mathrm{mol}^{-1} & 0.5602 & -0.566 & 0.5146 & -0.4148 & 0.0011 & 0.5922 & -0.5465 & 0.6180 & -0.5299 & 0.0004 \\ \Delta\mu/\mathrm{m}\mathrm{m}\mathrm{m}\mathrm{s}^{\mathrm{s}-1} & -10.297 & -3.820 & -1.291 & -0.268 & 0.0008 & -7.873 & -2.549 & -0.463 & 0.298 & 0.0007 \\ \Delta\mu/\mathrm{m}\mathrm{m}\mathrm{s}^{\mathrm{s}-1} & -12.037 & 33.229 & -16.824 & 17.124 & 0.0004 & -14.481 & 32.221 & -19.104 & 19.982 & 0.0005 \\ T = 308.15 \mathrm{K} & T = 303.15 \mathrm{K} & T = 313.15 \mathrm{K} & T = 303.15 \mathrm{K} \\ V^{\mathrm{e}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1} & 0.6453 & -0.5960 & 0.6850 & -0.432 & 0.0007 & 6.6759 & -0.5559 & 0.7447 & -0.5600 & 0.0007 \\ \Delta\mu/\mathrm{m}\mathrm{m}\mathrm{s}^{\mathrm{s}-1} & -16.743 & 30.056 & -18.358 & 24.629 & 0.0006 & -19.501 & 27.005 & -19.510 & 37.933 & 0.0002 \\ \mu/\mathrm{m}\mathrm{s}^{-1} & -16.745 & 30.506 & -18.358 & 24.629 & 0.0006 & -19.501 & 27.005 & -19.510 & 37.933 & 0.0002 \\ \mu/\mathrm{m}\mathrm{s}^{\mathrm{e}/\mathrm{TP}\mathrm{a}^{-1} & 1.6917 & -30.832 & 24.281 & -10.584 & 0.0002 & 24.841 & -28.467 & 26.146 & -17.647 & 0.0009 \\ \mu/\mathrm{m}\mathrm{s}^{\mathrm{e}/\mathrm{TP}\mathrm{a}^{-1} & 21.944 & -32.025 & 20.510 & 5.639 & 0.0002 & 24.493 & -25.840 & 24.735 & -17.805 & 0.0003 \\ \mu/\mathrm{m}\mathrm{s}^{\mathrm{e}/\mathrm{TP}\mathrm{a}^{-1} & 21.944 & -32.025 & 0.551 & 0.659 & 0.0005 & -9.916 & -3.297 & -0.713 & 0.4$                                                                                                                                                                                                                                                                                                                        | $V^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$                          | 0 4446            | -0.604            | 0.2423                  | -0.0844      | 0.0005         | 0.4723    | -0.5584            | 0.2894                  | -0.1870               | 0.0008  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Lambda n/mPa \cdot s$                                        | -7.8670           | -2.769            | -0.6128                 | 0.2080       | 0.0004         | -6.2464   | -2.0623            | -0.4188                 | 0.3469                | 0.0003  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k^{\rm E}/{\rm TPa^{-1}}$                                     | 2.578             | -32.161           | 10.994                  | -4.089       | 0.0005         | 4.472     | -33.736            | 12.456                  | -2.497                | 0.0002  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $u^{D/m} \cdot s^{-1}$                                         | -3.819            | 27.394            | -15.877                 | 8.483        | 0.0002         | -5.833    | 26.944             | -17.698                 | 10.528                | 0.0003  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                   |                   | T = 308.15  K           |              |                |           |                    | T = 313.15  K           |                       |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$               | 0.4978            | -0.516            | 0.3680                  | -0.2667      | 0.0005         | 0.5207    | -0.4802            | 0.4598                  | -0.3000               | 0.0005  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta \eta$ /mPa·s                                           | -5.1366           | -1.365            | -0.2807                 | -0.1777      | 0.0008         | -4.0573   | -1.2847            | -0.316                  | 0.1284                | 0.0015  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $k_{\rm s}^{\rm E}/{\rm TPa^{-1}}$                             | 6.8542            | -32.497           | 15.537                  | -7.698       | 0.0006         | 9.179     | -30.532            | 16.548                  | -11.576               | 0.0004  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $u^{\rm D}/{\rm m}\cdot{\rm s}^{-1}$                           | -7.502            | 26.848            | -21.125                 | 13.709       | 0.0003         | -9.374    | 26.747             | -23.737                 | 17.516                | 0.0005  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                   |                   | С                       | hlorobenzene | (1) + 1-Nor    | nanol (2) |                    |                         |                       |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |                   |                   | T = 298.15  K           |              |                |           |                    | T = 303.15  K           |                       |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$               | 0.5602            | -0.566            | 0.5146                  | -0.4148      | 0.0001         | 0.5922    | -0.5465            | 0.6180                  | -0.5299               | 0.0004  |
| $ \begin{split} k_{\rm p}^{\rm k} ({\rm TPa}^{-1} & 10.952 & -31.995 & 14.187 & -10.297 & 0.0007 & 13.739 & -31.583 & 18.396 & -12.733 & 0.0003 \\ u^{\rm b}/{\rm m} {\rm s}^{-1} & -12.037 & 33.229 & -16.824 & 17.124 & 0.0004 & -14.481 & 32.221 & -19.104 & 19.982 & 0.0005 \\ T = 308.15 {\rm K} & T = 308.15 {\rm K} & T = 313.15 {\rm K} \\ V^{\rm e}/{\rm cm}^{3} {\rm \cdot mol}^{-1} & 0.6453 & -0.5960 & 0.6850 & -0.432 & 0.0007 & 0.6759 & -0.5559 & 0.7447 & -0.5600 & 0.0007 \\ \Delta \eta / {\rm mPa} {\rm rs} & -6.299 & -1.880 & -0.383 & 0.055 & 0.0004 & -5.0589 & -1.4924 & -0.414 & 0.328 & 0.0009 \\ \mu^{\rm b}/{\rm m} {\rm s}^{-1} & 16.917 & -30.832 & 24.281 & -10.584 & 0.0002 & 20.841 & -28.467 & 26.146 & -17.647 & 0.0009 \\ u^{\rm b}/{\rm m} {\rm s}^{-1} & -16.745 & 30.506 & -18.358 & 24.629 & 0.0006 & -19.501 & 27.005 & -19.510 & 37.933 & 0.0002 \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta \eta$ /mPa·s                                           | -10.297           | -3.820            | -1.291                  | -0.268       | 0.0008         | -7.873    | -2.549             | -0.463                  | 0.298                 | 0.0007  |
| $ \begin{split} u^{\rm D} {\rm m} \cdot {\rm s}^{-1} & -12.037 & 33.229 & -16.824 & 17.124 & 0.0004 & -14.481 & 32.221 & -19.104 & 19.982 & 0.0005 \\ T = 308.15  {\rm K} & T = 308.15  {\rm K} & T = 313.15  {\rm K} & 0.0007 & 0.6759 & -0.5559 & 0.7447 & -0.5600 & 0.0007 & 0.0009 & 0.0004 & -5.0589 & -1.4924 & -0.414 & 0.328 & 0.0009 & 0.0009 & 0.0002 & 20.841 & -28.467 & 26.146 & -17.647 & 0.0009 & 0.0002 & 0.006 & -19.501 & 27.005 & -19.510 & 37.933 & 0.0002 & 0.0002 & 0.006 & -19.501 & 27.005 & -19.510 & 37.933 & 0.0002 & 0.0002 & 0.006 & -19.501 & 27.005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0005 & -19.501 & 0.0005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0015 & 0.0005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0015 & 0.0005 & -19.510 & 37.933 & 0.0002 & 0.0005 & 0.0016 & -18.588 & 0.6432 & -0.6531 & 0.0003 & 0.6913 & -0.6165 & 0.7504 & -0.6599 & 0.0005 & 0.0005 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0013 & 0.6913 & -0.6165 & 0.7504 & -0.6599 & 0.0005 & 0.0012 & 0.0012 & 0.0012 & 0.0005 & -9.916 & -3.297 & -0.713 & 0.428 & 0.0008 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0013 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0013 & 0.00012 & 0.0012 & 0.0012 & 0.0013 & 0.00012 & 0.0012 & 0.0012 & 0.0013 & 0.0012 & 0.0013 & 0.0012 & 0.0013 & 0.0012 & 0.0013 & 0.0012 & 0.0013 & 0.00012 & 0.0012 & 0.0013 & 0.0012 & 0.0013 & 0.0012 & 0.0013 & 0.00012 & 0.0013 & 0.00013 & 0.0012 & 0.0013 & 0.00013 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $k_{\rm s}^{\rm E}/{\rm TPa^{-1}}$                             | 10.952            | -31.995           | 14.187                  | -10.297      | 0.0007         | 13.739    | -31.583            | 18.396                  | -12.733               | 0.0003  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $u^{\mathrm{D}}/\mathrm{m}\cdot\mathrm{s}^{-1}$                | -12.037           | 33.229            | -16.824                 | 17.124       | 0.0004         | -14.481   | 32.221             | -19.104                 | 19.982                | 0.0005  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F. 2 . 1                                                       |                   |                   | T = 308.15  K           |              |                |           |                    | T = 313.15  K           |                       |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VE/cm <sup>3</sup> ·mol <sup>-1</sup>                          | 0.6453            | -0.5960           | 0.6850                  | -0.432       | 0.0007         | 0.6759    | -0.5559            | 0.7447                  | -0.5600               | 0.0007  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta \eta$ /mPa·s                                           | -6.299            | -1.880            | -0.383                  | 0.055        | 0.0004         | -5.0589   | -1.4924            | -0.414                  | 0.328                 | 0.0009  |
| $ \begin{array}{c} u^{\text{D}/\text{m}\cdot\text{s}^{-1}} & -16.745 & 30.506 & -18.358 & 24.629 & 0.0006 & -19.501 & 27.005 & -19.510 & 37.933 & 0.0002 \\ & & & & \\ \text{Chlorobenzene (1) + 1-Decanol (2)} \\ & & & & \\ T = 298.15 \text{ K} & & & \\ T = 303.15 \text{ K} \\ V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}} & 0.670 & -0.5880 & 0.6432 & -0.6531 & 0.0003 & 0.6913 & -0.6165 & 0.7504 & -0.6599 & 0.0005 \\ \Delta\eta/\text{mPa}\cdot\text{s} & 0.669 & -0.592 & 0.650 & -0.651 & 0.0005 & -9.916 & -3.297 & -0.713 & 0.428 & 0.0008 \\ k_{5}^{\text{E}}/\text{TPa}^{-1} & 21.944 & -32.025 & 20.510 & 5.639 & 0.0002 & 24.493 & -25.840 & 24.735 & -17.805 & 0.0004 \\ u^{\text{D}/\text{m}\cdot\text{s}^{-1}} & -22.004 & 20.622 & -20.758 & 17.664 & 0.0008 & -24.111 & 21.183 & -27.420 & 23.536 & 0.0003 \\ T = 308.15 \text{ K} & & T = 313.15 \text{ K} \\ V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1} & 0.7277 & -0.548 & 0.8137 & -1.0020 & 0.0009 & 0.7666 & -0.4825 & 0.8519 & -1.2842 & 0.0005 \\ \Delta\eta/\text{mPa}\cdot\text{s} & -7.867 & -2.426 & -0.611 & 0.343 & 0.0009 & -6.227 & -1.830 & -0.451 & 0.128 & 0.0006 \\ \mu^{\text{D}/\text{m}\cdot\text{s}^{-1}} & 27.031 & -22.967 & 30.157 & -27.637 & 0.0005 & 30.024 & -21.505 & 33.477 & -38.421 & 0.0003 \\ \mu^{\text{D}/\text{m}\cdot\text{s}^{-1}} & -26.288 & 20.912 & -30.530 & 28.417 & 0.0006 & -29.065 & 17.749 & -33.175 & 41.166 & 0.0005 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k_{\rm s}^{\rm E}/{\rm TPa^{-1}}$                             | 16.917            | -30.832           | 24.281                  | -10.584      | 0.0002         | 20.841    | -28.467            | 26.146                  | -17.647               | 0.0009  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $u^{\rm D}/{\rm m} \cdot {\rm s}^{-1}$                         | -16.745           | 30.506            | -18.358                 | 24.629       | 0.0006         | -19.501   | 27.005             | -19.510                 | 37.933                | 0.0002  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                   |                   | C                       | hlorobenzene | (1) + 1-Dec    | canol (2) |                    |                         |                       |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                | 0.650             |                   | T = 298.15  K           | 0.4504       | 0.0000         | 0.0010    | 0 1                | T = 303.15  K           | 0.6500                | 0.000 - |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sup>E</sup> /cm <sup>3</sup> ·mol <sup>-1</sup>             | 0.670             | -0.5880           | 0.6432                  | -0.6531      | 0.0003         | 0.6913    | -0.6165            | 0.7504                  | -0.6599               | 0.0005  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta \eta$ /mPa·s                                           | 0.669             | -0.592            | 0.650                   | -0.651       | 0.0005         | -9.916    | -3.297             | -0.713                  | 0.428                 | 0.0008  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k_s^2/TPa^{-1}$                                               | 21.944            | -32.025           | 20.510                  | 5.639        | 0.0002         | 24.493    | -25.840            | 24.735                  | -17.805               | 0.0004  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $u^{\rm D}/{\rm m}^{\rm s}{\rm s}^{-1}$                        | -22.004           | 20.622            | -20.758<br>T = 308.15 K | 17.664       | 0.0008         | -24.111   | 21.183             | -2/.420<br>T = 313 15 K | 23.536                | 0.0003  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V^{\rm E/cm^3 \cdot mol^{-1}}$                                | 0 7277            | -0.548            | 0.8137                  | -1.0020      | 0 0009         | 0 7666    | -0.4825            | 0.8519                  | -12842                | 0.0005  |
| $k_s^{\rm E}/{\rm TPa^{-1}}$ 27.031 -22.967 30.157 -27.637 0.0005 30.024 -21.505 33.477 -38.421 0.0003 $\mu^{\rm D}/{\rm m^{s-1}}$ -26.288 20.912 -30.530 28.417 0.0006 -29.065 17.749 -33.175 41.166 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Lambda n/mPa \cdot s$                                        | -7 867            | -2426             | -0.611                  | 0 343        | 0.0009         | -6227     | -1 830             | -0.451                  | 0.128                 | 0.0005  |
| $\mu^{\rm D}/{\rm m}^{\rm s-1}$ -26.288 20.912 -30.530 28.417 0.0006 -29.065 17.749 -33.175 41.166 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k^{E}/TPa^{-1}$                                               | 27.031            | -22.967           | 30,157                  | -27.637      | 0.0005         | 30.024    | -21.505            | 33 477                  | -38.421               | 0.0003  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $u^{D}/m \cdot s^{-1}$                                         | -26288            | 20.912            | -30.530                 | 28.417       | 0.0006         | -29.065   | 17.749             | -33,175                 | 41.166                | 0.0005  |

of an alcohol and electronegative Cl atom on the benzene ring through hydrogen bonding. The positive excess molar volumes change in chlorobenzene-rich region suggest that may be due to the effect of rupture hydrogen bonded between unlike molecules, and the dominant effect will be physical interaction consisting mainly of dispersion forces. The increase in excess molar volume with increasing chain length of 1-alkanols implies that dipole-dipole interactions are weak in higher 1-alkanols

Table 7. Values of Molar Volume  $V_m$ , Molar Volume at Absolute Zero  $V_0$ , Free Length  $L_f$ , Surface Area Y, Collision Factor S, and Space Filling Factor  $r_f$  of the Pure Components at 298.15 K

|               | $V_{ m m}$                                     | $V_0$                                            | $L_{\mathrm{f}}$ | Y                                       |       |            |
|---------------|------------------------------------------------|--------------------------------------------------|------------------|-----------------------------------------|-------|------------|
| component     | $\overline{\text{cm}^{3}\cdot\text{mol}^{-1}}$ | $\overline{\text{cm}^{3} \cdot \text{mol}^{-1}}$ | Å                | $\overline{\text{cm}^2\text{mol}^{-1}}$ | S     | $r_{ m f}$ |
| chlorobenzene | 102.26                                         | 84.45                                            | 0.4626           | 87.605                                  | 3.100 | 2.667      |
| 1-hexanol     | 125.34                                         | 102.50                                           | 0.5113           | 77.002                                  | 3.191 | 2.546      |
| 1-heptanol    | 141.93                                         | 117.23                                           | 0.5250           | 95.790                                  | 3.521 | 2.461      |
| 1-octanol     | 158.46                                         | 131.94                                           | 0.5370           | 103.647                                 | 3.416 | 2.319      |
| 1-nonanol     | 174.97                                         | 143.53                                           | 0.5735           | 109.625                                 | 3.890 | 2.301      |
| 1-decanol     | 191.46                                         | 157.00                                           | 0.5921           | 116.373                                 | 4.021 | 2.010      |

Table 8. Comparison of Equimolar Experimental Speeds of Sound in Binary Mixtures with Those Estimated from the CFT and FLT at T = 298.15 K

|                                         | u <sub>exp</sub> | $u_{\rm CFT}$    |            | $u_{ m FLT}$     |            |
|-----------------------------------------|------------------|------------------|------------|------------------|------------|
|                                         | $m \cdot s^{-1}$ | $m \cdot s^{-1}$ | $\sigma$ % | $m \cdot s^{-1}$ | $\sigma$ % |
| chlorobenzene $(1) + 1$ -hexanol $(2)$  | 1272.60          | 1275.09          | 0.1950     | 1289.40          | 1.3200     |
| chlorobenzene $(1) + 1$ -heptanol $(2)$ | 1283.53          | 1286.94          | 0.2650     | 1312.50          | 2.2570     |
| chlorobenzene $(1) + 1$ -octanol $(2)$  | 1293.73          | 1296.40          | 0.2060     | 1321.60          | 2.1540     |
| chlorobenzene $(1) + 1$ -nonanol $(2)$  | 1308.23          | 1306.77          | 0.1120     | 1332.60          | 1.8628     |
| chlorobenzene $(1) + 1$ -decanol $(2)$  | 1318.56          | 1323.10          | 0.2310     | 1342.60          | 1.8200     |



**Figure 5.** Deviation of the speeds of sound  $u^{D}$  from their ideal values for the binary mixtures:  $\diamond$ , chlorobenzene + 1-hexanol;  $\Box$ , + 1-heptanol;  $\Delta$ , + 1-octanol;  $\bigcirc$ , + 1-nonanol; +, + 1-decanol} at 298.15 K. Solid line (Redlich-Kister.<sup>8</sup>

owing to the decrease in their polarizability as suggested by Mecke,<sup>29</sup> which is quite evident in the behavior of the {chlorobenzene (1) + 1-decanol (2)} binary mixture.

Figure 2 presents the equimolar excess molar volume  $V_{(x=0.5)}^{\rm E}$  of {chlorobenzene (1) + 1-alkanol (2)} against a number of carbon atoms of 1-alkanol. As the chain length of 1-alkanol increases, the excess molar volume values increase with the same dependency and systematic variation and so does it with the increase in temperature.

The comparison of equimolar excess molar volumes  $V_{(x=0.5)}^{\rm E}$  values (0.0438, 0.0377, 0.035) cm<sup>3</sup>·mol<sup>-1</sup> of binary liquid mixtures, composed of haloalkane {1-chlorobutane + 1-hexanol-, or 1-heptanol, or 1-octanol},<sup>30</sup> with  $V_{(x=0.5)}^{\rm E}$  values (0.058, 0.0825, 0.1107) cm<sup>3</sup>·mol<sup>-1</sup> of halobenzene {chlorobenzene + 1-hexanol, or 1-heptanol, or 1-octanol} binary mixtures of the systems under studies at temperature 298.15 K, shows opposite behavior for dependency of excess molar volumes on the chain length of alcohol, suggesting that the shape, type, and molecular size of the solvent molecule will effect the behavior of haloalkane or halobenzene + 1-alkanol binary liquid mixtures. The author<sup>30</sup> suggests that this opposite behavior may be due to a lower steric interaction among the long alcohol carbon chains in order to admit the molecules of CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>Cl into their environment.

To estimate the viscosity of liquid mixtures in terms of pure component values, the experimental viscosity data of the binary mixtures were fitted to semiempirical relations proposed by Grunberg and Nissan,<sup>9</sup> McAllister's three- and four-body models,<sup>10</sup> and the equation of Heric and Brewer.<sup>11</sup> Our analysis shows the suitability of all four relations for representing the viscosities of the systems with an average of absolute values of deviations ( $3 \times 10^{-2}$ ,  $7 \times 10^{-3}$ ,  $4 \times 10^{-3}$ ,  $5.5 \times 10^{-3}$ ), respectively. The best correlation method gives relatively low standard deviation is found to be the McAllister four-body model.

The deviations in viscosity  $\Delta \eta$  at 298.15 K throughout over whole the mixtures compositions are negative as shown in Figure 3, a systematic dependence of  $\Delta \eta$  on the chain length could be seen. The negative values of viscosity deviation decrease in the following sequence: 1-hexanol >1-heptanol >1octanol >1-nonanol >1-decanol.

The speed of sound for the five binary mixtures at 298.15 K were evaluated from both free length theory (FLT) and collision factor theory (CFT) formulations. The pertinent relations in these calculations and their theoretical basis were described by Schaaffs,<sup>12</sup> Jacobson,<sup>13</sup> and Nutsch-Kuhnkies.<sup>31</sup> Values of molar volume  $V_{\rm m}$ , molar volume at absolute zero  $V_0$ , free Length  $L_{\rm f}$ , surface area *Y*, collision factor *S*, and space filling factor  $r_{\rm f}$  of the pure components at 298.15 K are given in Table 7.

The experimental speeds of sound *u* data at equimolar compositions ( $x_1 = 0.5$ ) of the binary mixtures under studies at 298.15 K are compared with calculated values using aforementioned theories (Table 8). The values of standard percentage deviations  $\sigma$  of *u* estimating from CFT are in the range from 0.195 to 0.231 for the five binary mixtures investigated while the corresponding values for FLT are from 2.25 to 1.32, with an average absolute value of deviation of 0.20 and 1.88, respectively This indicates that Schaaffs' collision factor theory is suitable for predication of speed sound data.

Figure 4 shows the behavior and dependence of excess isentropic compressibilities  $k_s^E$  on the mole fraction of chlorobenzene at 298.15 K. While the {chlorobenzene (1) + 1-decanol (2)}binary mixture reveals a positive deviation in its behavior, the remaining binary mixtures exhibit a sigmoidal kind of behavior, and the values vary from negative to positive. The negative values of  $k_s^E$  for all the aforementioned system indicate that each mixture is less compressible than the corresponding ideal mixture, and the positive values indicate the mixture is more compressible and that excess isentropic compressibilities vary as follows: 1-decanol >1-nonanol >1-octanol >1-heptanol >1-hexanol. As temperature increases, the

absolute values of  $k_s^E$  decrease with the same dependencies and systematic variation, but these results are not presented to avoid overcrowding the curves.

The opposite behavior could be seen for the deviation of the speed of sound from there ideal values at 298.15 K throughout the whole mixtures compositions as shown in Figure 5. The  $u^{D}$  exhibits a negative deviation for {chlorobenzene + 1-decanol} and a sigmoidal behavior of {chlorobenzene + 1-hexanol, or 1-heptanol, or 1-octanol, or 1-nonanol}, with values varying from positive to negative and decreasing as follows: 1-hexanol > 1-heptanol > 1-octanol > 1-nonanol}. As the temperature increases, the  $u^{D}$  values decrease with the same dependencies and systematic variation.

#### Conclusions

In this study we report experimental data of density  $\rho$ , viscosity  $\eta$ , and speed of sound u of {chlorobenzene + 1-alkanol) binary mixtures at (298.15 to 313.15) K and atmospheric pressure as well as the calculated excess and deviation functions. The excess molar volumes of {chlorobenzene + 1-hexanol or 1-heptanol} as well as the excess isentropic compressibilities of {chlorobenzene + 1-hexanol, or 1-heptanol, or 1-octanol, or 1-nonanol} showed a sigmoidal trend behavior. These values vary from negative to positive with the increase of chlorobenzene mole fraction. The remaining binary mixtures exhibit positive deviation for the entire mole fraction, respectively. While the equimolar excess molar volumes increase, the  $u^{\rm D}$  values decrease as the chain length of 1-alkanol increases. The viscosity deviation decrease in the following sequence: 1-hexanol > 1-heptanol > 1-octanol > 1-nonanol > 1-decanol. The best correlation method to represent the viscosity for the systems of our study is found to be the McAllister four-body model.

#### Literature Cited

- Tanaka, R.; Nakamichi, T. Excess molar volumes and excess molar heat capacities of (benzonitrial + chlorobenzene, or benzene, or toluene) at the temperature of 298.15 K and 303.15 K. J. Chem. Thermodyn. 1997, 29, 221–227.
- (2) Touriño, A.; Hervello, M.; Gayol, A.; Marino, G.; Iglesias, M. Excess molar volumes of the ternary mixtures chlorobenzene + *n*-hexane + linear aliphatic alkane (C<sub>11</sub>-C<sub>12</sub>) at 298.15 K. J. Mol. Liq. 2005, 122, 87–94.
- (3) Prasad, D. H. L.; Viswanathan, S.; Anand, R. M. Densities and viscosities of binary liquid mixtures of anisole or methyl *tert*-butyl ether with benzene, chlorobezene, benzonitrial, and nitrobenzene. *J. Chem. Eng. Data* **2000**, *45*, 764–770.
- (4) Oswal, S. L.; Patel, B. M.; Patel, A. M.; Ghael, N. Y. Densities, speeds of sound, isentropic compressibilities, and refractive indices of binary mixtures of methyl methacrylate with hydrocarbons, haloalkanes and alkyl amins. *Fluid Phase Equilib.* **2003**, *206*, 313–329.
- (5) Oswal, S. L.; Patel, I. N. Speed of sound, isentropic compressibility and refractive index of binary mixtures of alkyl ehanoates with chloroalkanes at 303.15 K. J. Mol. Liq. 2005, 116,99–107.
- (6) Nayak, J. N.; Araloguppi, M. I.; Aminabhavi, T. M. Density, viscosity, refractive index and speed of sound in the binary mixtuyes of ethyl chloroacetate with aromatic liquids at 298.15, 303.15, and 303.15 K. J. Chem. Eng. Data 2002, 47, 964–969.
- (7) Tejraj, M.; Aminabhavi, T. M.; Banerjee, K. Density, viscosity, refractive index in binary mixtures of 1-chloronaphalene with benzene methylbenzene, 1,4-dimethylbenzene, 1,3,5-trimethylbenzene, and methoxybenzene at 298.15, 303.15, and 308.15 K. J. Chem. Eng. Data 1999, 44, 547–552.
- (8) Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* 1948, 40, 345–348.
- (9) Grunberg, L.; Nissan, A. H. Mixture law for viscosity. *Nature* 1949, 164, 799–800.
- (10) McAllister, R. A. The viscosity of liquid mixtures. *AIChE J.* **1960**, *6*, 427–431.
- (11) Heric, E.L.; Brewer, J. G. Viscosity of some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data **1967**, 12 (4), 574–583.

- (12) Schaffs, W. Molekularakustich; Springer-Verlag: Berlin, 1963; Chapters XI and XII.
- (13) Jacobson, B. Intermolecular free length in the liquid state. I. Adiabatic and isothermal compressibilities. *Acta Chem. Scand. A* 1952, 8, 1485– 1498.
- (14) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purifications, Techniques in Chemistry; John Wiley; New York, 1986; Vol. II.
- (15) Al-Jimaz, A. S.; Al-Kandary, J. A.; Abdu-Latif, A. M. Viscosities and densities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. *Fluid Phase Equilib.* **2004**, *218*, 247–260.
- (16) Shan, Z.; Asfour, A. A. Viscosities and densities of nine binary 1-alkanol systems at 293.15 K and 298.15 K. J. Chem. Eng. Data 1999, 44, 118–123.
- (17) Dewan, R. K.; Mehta, S. K.; Paraqshar, R.; Bala, K. Topological investigations on the association of alkanols: excess volume of pyridine–alkanol (C1–C10) mixtures. *J. Chem. Soc. Faraday Trans.* **1991**, 87 (10), 1561–1568.
- (18) DIPPR Project 801. Evaluated Thermophysical Properties of Pure Chemical Database. T. P. Laboratory Brigham Young University, February 2003.
- (19) Ŝerbanović, S. P.; Kijevčanin., M. L.; Radović, I. R.; Djordjević, B. D. Effect of temperature on the excess molar volumes of some alcohol + aromatic mixtures and modeling by cubic EOS mixing rules. *Fluid Phase Equilib.* 2006, 239, 69–82.
- (20) Oswal, S. L.; Prajapati, K. D.; Ghael, N. Y.; Ijardar, S. P. Speeds of sound, isentropic compressibilities, and excess molar volumes of alkanol + cycloalkane at 303.15 K. II. Results for alkan-2-ols + cyclohexane and alkane-1-ol, + methylcyclohexane and theoretical interpretation. *Fluid Phase Equilib.* 2004, 218, 131–140.
- (21) Kinart, C. M.; Kinart, W. J.; Ćwiklińska, A. 2-Methoxyethanol + tetrahydrofuran binary liquid system. viscosities, densities, excess molar volumes and excess Gibbs activation energies of viscous flow at various temperatures. J. Therm. Anal. Calorim. 2002, 68, 307– 317.
- (22) George, J.; Sastry, N. V. Partial excess molar volumes, partial excess isentropic compressibilities and relative permittivities of water + 1,2diol derivative and water + 1,2-dimethoxyethane at different temperatures. *Fluid Phase Equilib.* 2004, *216*, 307–321.
- (23) Aminabhavi, T. M.; Aralaguppi, M. I.; Bindu, G.; Khinnavar, R. S. Densities, shear viscosities, refractive indices, and speeds of sound of bis(2-methoxyethyl) ether with hexane, heptane, octane, and 2,2,4-trimethylpentane in the temperature interval 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 522–528.
- (24) Benson, G. C.; Kiyohara, O. Evaluation of excess isentropic compressibities and isochoric heat capacities. J. Chem. Thermodyn. 1979, 11, 1061–1064.
- (25) Pal, A.; Singh, Y. P. The speed of sound and isentropic functions of  ${xH(CH_2)_{\nu}(OC_2H_4)_2OH + (1 x)(C_4H_9)_2O}$ , (v = 1, 2, and 4) at the temperature 298.15 K. J. Chem. Thermodyn. **1996**, 28, 1197–1205.
- (26) Aminabhavi, T. M.; Phyada, H. T. S.; Khinnaaver, R. S.; Bindu, G.; Hansen, K. C. Densities, refractive indices, speed of sound, and shear viscosities of diethylene glycol dimethyl ether with ethyl acetate, methyl benzoate, ethyl benzoate and diethyl succinate in the temperature range from 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 251–260.
- (27) Bevington, P. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, 1969
- (28) Tresczanowicz, A. J.; Benson, G. C. Excess volumes of alkanol + alkane binary systems in terms of an association model with a Flory contribution term. *Fluid Phase Equilib.* **1985**, *23*, 117–135.
- (29) Mecke, R. Infra-red spectra of hydroxylic compounds. *Discuss. Faraday Soc.* **1950**, *9*, 161–177.
- (30) Santana, P.; Balseiro, J.; Jiménez, E.; Franjo, C.; Legido, J. L.; Romaní, L.; Paz, Andrade, M. I. Measurments and analysis of excess molar enthalpies and excess molar volumes of the binary systems {*x*CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>-Cl + (1 *x*)CH<sub>3</sub>(CH<sub>2</sub>)<sub>n-1</sub>OH} (*n* = 4 to 8) at *T* = 298.15 K. *J. Chem. Thermodyn.* **1999**, *31*, 547–554.
- (31) Nutsch-Kuhnkies, R. Sound velocities of binary mixtures and solutions. J. Chem. Thermodyn. 1979, 11, 861–873.

Received for review August 9, 2006. Accepted September 30, 2006. JE060353Z