Determination of Standard Molar Enthalpies of Formation for the Two Barium Borates BaB₂O₄·xH₂O (x = 4, 0) by Microcalorimetry

Zhi-Hong Liu,* Yan Wang, and Hong-Sheng Huang

School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China

Two pure barium borates, $BaB_2O_4 \cdot 4H_2O$ and β - BaB_2O_4 , have been prepared and identified by X-ray diffraction, infrared spectral and thermogravimetric analysis, and chemical analysis. The molar enthalpies of solution of $BaB_2O_4 \cdot 4H_2O$ and β - BaB_2O_4 in 1 mol·dm⁻³ HCl(aq) were measured to be $-(7.63 \pm 0.10)$ kJ·mol⁻¹ and $-(93.06 \pm 0.24)$ kJ·mol⁻¹, respectively. The molar enthalpy of solution of $Ba(OH)_2 \cdot 8H_2O$ in (HCl + H₃BO₃)(aq) was determined to be $-(55.42 \pm 0.36)$ kJ·mol⁻¹. With the incorporation of the enthalpy of solution of H₃BO₃ in 1 mol·dm⁻³ HCl(aq) and the standard molar enthalpies of formation of Ba(OH)_2 \cdot 8H_2O(s), H₃BO₃(s), and H₂O(l), the standard molar enthalpies of formation of Ba(OH)_2 \cdot 8H_2O(s), H₃BO₃(s), and H₂O(l), the standard molar enthalpies of formation of Ba(OH)_2 \cdot 8H_2O(s), H₃BO₃(s), and H₂O(l), the standard molar enthalpies of formation of BaB₂O₄ were found to be $-(3249.1 \pm 1.7)$ kJ·mol⁻¹ and $-(2020.3 \pm 1.7)$ kJ·mol⁻¹, respectively.

Introduction

Borates are a resource for functional materials, particularly for nonlinear optical (NLO) materials. Some barium borates have appropriate properties for these materials, such as β -BaB₂O₄ (BBO), which is an important NLO material because it has a variety of favorable properties,¹ and Ba₂Be₂B₂O₇ (TBO).²

Thermodynamic properties play very important roles in scientific research and industrial applications. As to the thermochemistry of alkaline—earth metal borates, the standard molar enthalpies of formation of many magnesium and calcium borates have been measured.^{3–7} However, studies of the thermochemistry of the barium borates are not reported in the literature. This paper reports the determination of the standard molar enthalpies of formation of two barium borates, β -BaB₂O₄ and its precursor BaB₂O₄·4H₂O, using a heat conduction microcalorimeter.

Experimental Section

Preparation of $BaB_2O_4 \cdot 4H_2O$ and β -BaB₂O₄ Samples. All reagents used in the synthesis were of analytic grade. A few drops of barium chloride solution was added to a solution of 1.85 g of NaOH in 10 cm³ of water, and the formed carbonate was filtered off under reduced pressure. A solution of 65 cm³ water containing 7.61 g of Na₂B₄O₇·10H₂O was added. A solution of 5.01 g of BaCl₂·2H₂O in 15 cm³ of water was added, and the solution was left in a closed beaker. The mixture was stirred for 1 h at room temperature. After 2 days, the resulting white suspended precipitate was filtered, then washed with absolute alcohol and absolute ether, and finally, dried at 303 K to constant mass. β -BaB₂O₄ was prepared by a literature¹ method by dehydration of BaB₂O₄·4H₂O in air for 3 h at 973 K. These two synthetic samples were identified by X-ray powder diffraction (Rigaku D/MAX- IIIC with Cu target at 8° min⁻¹), FT-IR spectroscopy (Nicolet NEXUS 670 FT-IR spectrometer with KBr pellets at room temperature), and TG-DTA (TA-SDT Q600 simultaneous thermal analyzer at a heating rate of 10 K·min⁻¹ in flowing N₂). The chemical compositions of the samples were

* Corresponding author. Tel.: +86 29 8530 7765. Fax: +86 29 8530 7774. E-mail: liuzh@snnu.edu.cn. determined by EDTA titration for Ba^{2+} , by NaOH standard solution in the presence of mannitol for B_2O_3 , and by difference for H_2O .

Thermochemical Cycles. $BaB_2O_4 \cdot 4H_2O$ and β - BaB_2O_4 can be regarded as the products of the following reactions I and II, respectively:

$$Ba(OH)_2 \cdot 8H_2O(s) + 2H_3BO_3(s) \rightarrow BaB_2O_4 \cdot 4H_2O(s) + 8H_2O$$
(I)

 $Ba(OH)_2 \cdot 8H_2O(s) + 2H_3BO_3(s) \rightarrow BaB_2O_4(s) + 12H_2O$ (II)

The 1 mol·dm⁻³ HCl(aq) solvent can rapidly dissolve all components of reactions I and II, which was prepared from analytical grade hydrochloric acid and deionized water. Its concentration, 0.9996 mol·dm⁻³, was determined by titration with standard sodium carbonate.

The designed thermochemical cycles are given in Tables 3 and 4. The molar enthalpies of solution of $H_3BO_3(s)$, BaB_2O_4 · $4H_2O(s)$, and β - $BaB_2O_4(s)$ in 1 mol·dm⁻³ HCl(aq) were measured, namely, $\Delta_r H_m^{\circ}(1)$ and $\Delta_r H_m^{\circ}(4)$, respectively. The calculated amount of $Ba(OH)_2$ · $8H_2O(s)$ was dissolved in (hydrochloric acid + boric acid) aqueous solution which consisted of 1 mol dm⁻³ HCl(aq) and the calculated amount of $H_3BO_3(s)$ ($\Delta_r H_m^{\circ}(2)$). In all these determinations, strict control of the stoichiometries in each step of the calorimetric cycle must be maintained, with the objective that the dissolution of the reactants gives the same composition as those of the products. Applying Hess's law, the enthalpy of reaction 5 ($\Delta_r H_m^{\circ}(5)$) can be calculated according to the following expression:

$$\Delta_{\mathbf{r}}H_{\mathbf{m}}^{\circ}(5) = \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\circ}(1) + \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\circ}(2) - \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\circ}(3) - \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\circ}(4)$$

where $\Delta_r H_m^{\circ}$ (3) is the enthalpy of dilution of HCl(aq).

The standard molar enthalpies of formation of BaB₂O₄·4H₂O and β -BaB₂O₄ can be obtained from the values of $\Delta_r H_m^{\circ}$ (5) in combination with the molar enthalpies of formation of H₃BO₃(s), Ba(OH)₂·8H₂O(s), and H₂O(l).

Calorimetric Experiments. All the enthalpies of solution were measured using a RD496- III heat conduction microcalorimeter (Southwest Institute of Electron Engineering, China), which is

Table 1. Molar Enthalpies of Solution of $Ba(OH)_2\cdot 8H_2O$ in the Mixed Solvent Consisting of 1 mol dm^{-3} HCl(aq) and Calculated Amount of H_3BO_3 at 298.15 K^{α}

	0 0		
no.	<i>m</i> /mg	$\Delta_{ m sol}H/ m mJ$	$\Delta_{\rm sol}H_{\rm m}/{\rm kJ}{\cdot}{\rm mol}^{-1}$
1	13.26	-2340.270	-55.68
2	13.37	-2367.120	-55.85
3	13.39	-2348.214	-55.32
4	13.57	-2356.591	-54.79
5	13.52	-2376.197	-55.45
mean			-55.42 ± 0.36^{b}

^{*a*} In each experiment, 2.00 cm³ of HCl(aq) was used. ^{*b*} Uncertainty is twice the standard deviation of the mean, namely, $\delta = 2 \sqrt{\sum(x_i - \bar{x}^2)/n(n-1)}$, in which *n* is the number of experimentals (*n* = 5); *x_i* is the experimental value of each repeated measurement; and \bar{x} is the mean value.

Table 2. Molar Enthalpies of Solution of BaB₂O₄·4H₂O and β -BaB₂O₄ in 1 mol dm⁻³ HCl(aq) at 298.15 K^a

no.	<i>m</i> /mg	$\Delta_{\rm r} H/{\rm mJ}$	$\Delta_{\rm sol}H_{\rm m}/{\rm kJ}\cdot{\rm mol}^{-1}$
		BaB ₂ O ₄ •4H ₂ O	
1	12.69	-331.372	-7.70
2	12.64	-332.724	-7.77
3	12.76	-330.992	-7.65
4	12.69	-323.671	-7.52
5	12.42	-316.286	-7.51
mean			-7.63 ± 0.10^{b}
		β -BaB ₂ O ₄	
1	9.49	-3955.312	-92.92
2	9.40	-3937.310	-93.38
3	9.54	-3969.588	-92.77
4	9.40	-3933.975	-93.31
5	9.57	-3989.011	-92.93
mean			-93.06 ± 0.24^{b}

^{*a*} In each experiment, 2.00 cm³ of HCl(aq) was used. ^{*b*} Uncertainty $\delta = 2\sqrt{\sum(x_i - \bar{x}^2/n(n-1))}$, in which *n* is the number of experimentals (n = 5); x_i is the experimental value of each repeated measurement; and \bar{x} is the mean value.

a totally automatic instrument utilizing computer control and has been described in detail previously.⁸ The temperature of the calorimetric experiment was 298.15 K. Additional doublelayer glass tubes were put in the 15 cm³ stainless steel sample cell and reference cell of the calorimeter. This was done to prevent corrosion of the stainless steel sample and reference cell by HCl(aq). The lining in the double-layer glass tube containing HCl(aq) was broken by a rod after thermal equilibration for at least 2 h, and the HCl(aq) was mixed with solid sample in the outer glass tube. The thermal effect was then recorded automatically on a computer. The total time required for the complete reaction was about 0.5 h. There were no solid residues observed after the reactions in each calorimetric experiment.

To check the performance of the RD496-III heat conduction microcalorimeter, the calorimetric constant at 298.15 K was determined by the Joule effect before the experiments. The Joule cell was supplied with 100 mW electric power for 100 s. The

calorimetric constant obtained in this way was (63.99 ± 0.03) μ V·mW⁻¹. The reliability of the calorimeter was verified by measuring the enthalpy of solution of KCl (mass fraction \geq 0.9999) in deionized water. The average experimental value of $\Delta_{sol}H_m$ (KCl) was determined to be (17.31 ± 0.20) kJ mol⁻¹, which is in excellent agreement with that of 17.234 kJ mol⁻¹ reported in the literature.⁹ This shows that the device used for measuring the enthalpy of solution in this work is reliable.

Results and Discussion

Identification of Synthetic Samples. Anal. Calcd for BaB₂O₄· 4H₂O: BaO, 51.97 %; B₂O₃, 23.60 %; H₂O, 24.43 %. Found: BaO, 51.92 %; B₂O₃, 23.92 %; H₂O, 24.16 %. The chemical analytical results are consistent with the theoretical values. The uncertainties in the measurement of the mass fraction of each species were estimated to be \pm 0.2 %.

The XRD pattern of a synthetic sample of BaB₂O₄·4H₂O is shown in Figure 1. The characteristic *d* values are 0.5779, 0.5507, 0.4924, 0.4191, 0.4005, 0.3821, 0.3657, 0.3409, 0.3169, 0.2741, 0.2635, 0.2583, 0.2563, 0.2447, 0.2284, 0.2140, 0.2112, 0.2071, 0.2026, 0.1961, and 0.1852 nm, which correspond with those of the relevant JCPDS card (File No. 48-941) and show an absence of other crystalline forms in the synthetic sample. The XRD pattern of a synthetic sample of β -BaB₂O₄ is also shown in Figure 1. The characteristic *d* values are 0.6330, 0.3636, 0.3534, 0.3149, 0.3066, 0.2531, 0.2376, 0.2073, and 0.1834 nm. All the diffraction peaks can be exactly indexed with those of β -BaB₂O₄ (JCPDS File No. 38-772), and no other crystalline forms in this synthetic sample were observed.

The FT-IR spectra of these two samples exhibit the following absorption bands, and they have been assigned by referring to literature.¹⁰ In BaB₂O₄•4H₂O, the bands at (3416 and 3238) cm⁻¹ are the stretching vibration of the O–H group. The band at 1641 cm^{-1} is assigned to the H–O–H bending mode, which shows this compound contains crystal water. The band at 1199 cm^{-1} might be the in plane bending of B(3)–O. The bands at (1282 and 934) cm^{-1} are the asymmetric and symmetric stretching modes of B(3)-O, respectively. The bands at (732 and 674) cm^{-1} are assigned to out-of-plane bending of B(3)-O. The band at 518 cm⁻¹ is assigned to the bending mode of B(3)-O. In β -BaB₂O₄, the bands at (1416 and 955) cm⁻¹ are the asymmetric and symmetric stretching vibration modes of B(3)–O, respectively. The band at 1247 cm⁻¹ is assigned to the in plane bending of B(3)–O. The bands at 702 cm⁻¹ is the out-of-plane bending mode of B(3)-O. These assignments are consistent with the structure containing the $[B_3O_6]^{3-}$ rings. The β -BaB₂O₄ crystal is built up by the Ba²⁺ cations and the $[B_3O_6]^{3-}$ anion rings by turns. The anionic group contains three coplanar BO₃³⁻ groups joined by three common oxygen atoms.¹¹

The simultaneous TG-DTA curves of a synthetic sample of $BaB_2O_4 \cdot 4H_2O$ are shown in Figure 2. The TG curve indicates that the total mass loss is 25.01 % from (373 to 773) K, which corresponds to the loss of four water molecules and can be

Table 3. Thermochemical Cycle and Results for the Derivation of $\Delta_f H_m^{\circ}(BaB_2O_4 \cdot 4H_2O, 298.15 \text{ K})$

no.	reaction	$\Delta_{\rm r} H^{\rm o}/{\rm kJ}~{\rm mol}^{-1}$
1	$2H_3BO_3(s) + 46.660(HCl \cdot 54.506H_2O) = 2H_3BO_3(aq) + 46.660(HCl \cdot 54.506H_2O)$	43.68 ± 0.10
2	$Ba(OH)_{2} \cdot 8H_{2}O(s) + 2H_{3}BO_{3}(aq) + 46.660(HCl \cdot 54.506H_{2}O) = BaCl_{2}(aq) + 2H_{3}BO_{3}(aq) $	-55.42 ± 0.36
	44.660(HCl•55.171H ₂ O)	
3	$46.660(\text{HCl}\cdot54.506\text{H}_2\text{O}) + 8\text{H}_2\text{O}(\text{l}) = 46.660(\text{HCl}\cdot54.677\text{H}_2\text{O})$	-0.16 ± 0.04
4	$BaB_2O4 \cdot 4H_2O(s) + 46.660(HCl \cdot 54.677H_2O) = BaCl_2(aq) + 2H_3BO_3(aq) +$	-7.63 ± 0.10
	44.660(HCl•57.171H ₂ O)	
5	$Ba(OH)_{2} \cdot 2H_{2}O(s) + 2H_{3}BO_{3}(s) = BaB_{2}O_{4} \cdot 4H_{2}O(s) + 8H_{2}O(l)$	-3.95 ± 0.39^{a}
5	$Ba(OH)_{2} \cdot 2H_{2}O(s) + 2H_{3}BO_{3}(s) = BaB_{2}O_{4} \cdot 4H_{2}O(s) + 8H_{2}O(l)$	-3.95 ± 0.39^{a}

^a Uncertainty of the combined reaction is estimated as the square root of the sum of the squares of uncertainty of each individual reaction.

Table 4. Thermochemical Cycle and Results for the Derivation of $\Delta_f H_m^{\circ}(\beta-BaB_2O_4, 298.15 \text{ K})$

no.	reaction	$\Delta_{\rm r} H^{\rm o}/{\rm kJ} \cdot {\rm mol}^{-1}$
1	$2H_3BO_3(s) + 47.016(HCl \cdot 54.506H_2O) = 2H_3BO_3(aq) + 47.016(HCl \cdot 54.506H_2O)$	43.68 ± 0.10
2	$Ba(OH)_{2} \cdot 8H_{2}O(s) + 2H_{3}BO_{3}(aq) + 47.016(HCl \cdot 54.506H_{2}O) = BaCl_{2}(aq) + 2H_{3}BO_{3}(aq) + 45.016(HCl \cdot 57.150H_{2}O)$	-55.42 ± 0.36
3	47.016(HCl·54.506H ₂ O) + 12H ₂ O(l) = 47.016 (HCl·54.761H ₂ O)	-0.24 ± 0.06
4	$BaB_{2}O_{4}(s) + 47.016(HCl \cdot 54.761H_{2}O) = BaCl_{2}(aq) + 2H_{3}BO_{3}(aq) + 45.016(HCl \cdot 57.150H_{2}O)$	-93.06 ± 0.24
5	$Ba (OH)_{2} \cdot 8H_{2}O(s) + 2H_{3}BO_{3}(s) = BaB_{2}O_{4}(s) + 12H_{2}O(1)$	$81.56\pm0.45^{\rm a}$

^a Uncertainty of the combined reaction is estimated as the square root of the sum of the squares of uncertainty of each individual reaction.

Figure 1. X-ray powder diffraction patterns of synthetic samples.

Figure 2. Simultaneous TG-DTA curves of BaB₂O₄·4H₂O.

compared with the calculated value of 24.43 %. In the DTA curve, there are two peaks. The first endothermic peak appearing at 403.5 K is related to the dehydration of crystal water. The forming amorphous phase recrystallizes as shown by the exothermic peak at 816.4 K. The simultaneous TG-DTA curves of a synthetic sample of β -BaB₂O₄ (Figure 3) indicate that there is no mass loss from (323 to 1073) K. All of above results indicate that the two synthetic samples are pure and suitable for the calorimetric experiments.

Results of Calorimetric Experiments. The molar enthalpies of solution of Ba(OH)₂•8H₂O in (HCl + H₃BO₃)(aq) and of BaB₂O₄•4H₂O and β -BaB₂O₄ in HCl(aq) at 298.15 K are listed in Tables 1 and 2, respectively, in which *m* is the mass of sample; $\Delta_{sol}H_m$ is the molar enthalpy of solution of the solute; and the uncertainty is estimated as twice the standard deviation of the mean.

Tables 3 and 4 give the thermochemical cycles for the derivation of the standard molar enthalpies of formation of BaB₂O₄•4H₂O and β -BaB₂O₄. The molar enthalpy of solution of H₃BO₃(s) of (21.84 ± 0.05) kJ·mol⁻¹ in 1 mol·dm⁻³ HCl-

Figure 3. Simultaneous TG-DTA curves of β -BaB₂O₄.

(aq) was taken from our previous work.⁷ The enthalpy of dilution of HCl(aq) was calculated from the NBS tables.¹² The enthalpy change in the formation of BaB₂O₄•4H₂O and β -BaB₂O₄ from the reaction of reagents in the solid phase, $-(3.95 \pm 0.39)$ kJ·mol⁻¹ and (81.56 \pm 0.45) kJ·mol⁻¹ were calculated on the basis of the thermochemical cycles. The standard molar enthalpies of formation of H₃BO₃(s) and H₂O(1) were taken from the CODATA Key Values,¹³ namely, $-(1094.8 \pm 0.8)$ kJ·mol⁻¹ and $-(285.830 \pm 0.040)$ kJ·mol⁻¹, respectively. The standard molar enthalpy of formation of Ba(OH)₂·8H₂O(s) of -3342.2kJ·mol⁻¹ was taken from the NBS tables.¹² From these data, the standard molar enthalpies of formation of BaB₂O₄·4H₂O and β -BaB₂O₄ were calculated to be $-(3249.1 \pm 1.7)$ kJ·mol⁻¹ and $-(2020.3 \pm 1.7)$ kJ·mol⁻¹, respectively.

Conclusions

Through an appropriate thermochemical cycle, the standard molar enthalpies of formation of $BaB_2O_4 \cdot 4H_2O$ and $\beta \cdot BaB_2O_4$ have been obtained from measured enthalpies of solution, together with the standard molar enthalpies of formation of $H_3BO_3(s)$, $Ba(OH)_2 \cdot 8H_2O(s)$, and $H_2O(l)$.

Literature Cited

- Zhou, Y. F.; Hong, M. C.; Xu, Y. Q.; Chen, B. Q.; Chen, C. Z.; Wang, Y. S. Preparation and characterization of β-BaB₂O₄ nanoparticles via coprecipitation. J. Cryst. Growth 2005, 276, 478-484.
- Qi, H.; Chen, C. T. A new UV-nonlinear optical material Ba₂Be₂B₂O₇. J. Synth. Cryst. 2001, 30, 63–66.
- (3) Li, J.; Gao, S. Y.; Xia, S. P.; Li, B. Thermochemistry of hydrated magnesium borates. J. Chem. Thermodyn. 1997, 29, 491–497.
- (4) Li, J.; Gao, S. Y.; Xia, S. P.; Li, B.; Hu, R. Z. Thermochemistry of hydrated calcium borates. J. Chem. Thermodyn. 1997, 29, 1071–1075.
- (5) Liu, Z. H.; Hu, M. C.; Gao, S. Y. Thermodynamic properties of chloropinnoite. J. Chem. Themodyn. 2003, 35, 1831–1836.
- (6) Liu, Z. H.; Hu, M. C. Synthesis, characterization and thermochemistry of a new form of 2MgO·3B₂O₃·17H₂O. *Thermochim. Acta* 2004, 414, 215–218.
- (7) Liu, Z. H.; Li, P.; Zuo, C. F. Standard molar enthalpies of formation for the two hydrated calcium borates *x*CaO·5B₂O₃·*y*H₂O (*x* = 2 and 4, *y* = 5 and 7). *J. Chem. Eng. Data* **2006**, *51*, 272–275.
- (8) Ji, M.; Liu, M. Y.; Gao, S. L.; Shi, Q. Z. The enthalpy of solution in water of complexes of zinc with methionine. *Instrum. Sci. Technol.* 2001, 29, 53-57.

- (9) Weast, R. C. CRC Handbook of Chemistry and Physics, 70th ed.; CRC Press: Boca Raton, FL, 1989.
- (10) Li, J.; Xia, S. P.; Gao, S. Y. FT-IR and Raman spectroscopic study of
- (10) L. J., R. B. T., Sab, D. T. F. H. Market and relation spectrospheric study of hydrated borates. Spectrochim. Acta 1995, 51A, 519–532.
 (11) Moryc, U.; Ptak, W. S. Infrared spectra of β-BaB₂O₄ and LiB₃O₅: new nonlinear optical materials. J. Mol. Struct. 1999, 511–512, 241– 249.
- (12) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Chumey, K. L.; Nuttall, R. L. The NBS tables of

chemical thermodynamic properties. J. Phys. Chem. Data 1982, 11 (Suppl. 2).

(13) Cox, J. D.; Wagman, D. D.; Medvedev, V. A. CODATA Key Values for Thermodynamics; Hemisphere: New York, 1989.

Received for review September 27, 2006. Accepted January 20, 2007. JE060422+