Vapor-Liquid Equilibrium Data for the Binary Methyl Esters (Butyrate, Pentanoate, and Hexanoate) (1) + Propanenitrile (2) Systems at 93.32 kPa

Alberto G. Camacho,* Juan M. Moll, Salvador Canzonieri, and Miguel A. Postigo[†]

Cátedra de Fisicoquímica, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400 (8300), Neuquén, Argentina

Isobaric vapor—liquid equilibria were measured for the three binary systems of methyl butyrate, methyl pentanoate, and methyl hexanoate with propannenitrile at a constant pressure of 93.32 kPa. The measurements were carried out with in small recirculating still. The composition of condensed vapor and liquid phases was calculated indirectly from density measurements made with a vibrating tube densimeter. The thermodynamic consistency of the data was verified with two point-to-point tests. Activity coefficients calculated from experimental data have been correlated by several models and compared with predictions of group-contribution models. These systems exhibit positive deviations from ideality. The methyl butyrate + propannenitrile system formed a minimum boiling azeotrope.

Introduction

In previous work,^{1,2} the isobaric vapor—liquid equilibria (VLE) were measured at 93.32 kPa as part of a wider working project on binary systems of alkyl esters and nitriles formed by the first six methyl esters (methanoate to hexanoate) with nitriles. As a follow up to this work, with the aim of studying in depth the behavior of isobaric VLE in binary mixtures, data are presented here for the VLE of three binary mixtures of propanenitrile with three methyl esters (butanoate to hexanoate).

Properties directly measured, such as temperature and mole fractions for the liquid and vapor phases, were correlated by the Redlich–Kister³ equation, while calculated properties, such as activity coefficients, were correlated by Margules,⁴ van Laar,⁵ Wilson,⁶ and NRTL⁷ models. Furthermore, experimental VLE compositions were predicted by two group-contribution methods, ASOG^{8,9} and the three versions of UNIFAC (UNIFAC-1,¹⁰ UNIFAC-2,¹¹ and UNIFAC-3^{12,13}).

Experimental Section

Apparatus and Procedure. The experimental equipment used to determine the isobaric VLE consisted of a small device, of around 60 cm³, that works dynamically with recirculation of both phases. The details of the equipment and support systems have been described previously.¹⁴ The uncertainties in the measured temperatures and pressures were \pm 0.02 K and \pm 0.2 kPa, respectively. The composition of the liquid and vapor phases was determined by densimetry using standard curves for the mixtures considered, prepared earlier, $\rho = \rho(x)$. These relationships were validated by confirming the quality of the results of $V^{\rm E}$ versus x_1 .

The density measurements were made using a Mettler model DA 310 thermostated digital densimeter with a precision of \pm 0.01 kg·m⁻³. The correlations of the density and concentrations

[†] CONICET member.

Table 1. Densities (ρ) and Refractive Index (n_D) of Pur	е
Compounds Compared with Literature Data at 298.15	Κ

	ρ/kg	g•m ⁻³	n	D
components	exp	lit	exp	lit
methyl butyrate methyl pentanoate methyl hexanoate propanenitrile	892.16 884.80 879.47 776.85	892.61 ^a 884.50 ^b 879.44 ^b 776.8 ^a	1.3847 1.3971 1.4048 1.36368	1.3847^{a} 1.397^{b} 1.405^{b} 1.3636^{a}

^a Ref 15. ^b Ref 16.

Fable 2.	Intrinsic	Properties	of the	Pure	Substances ^a
Labic 2.	Intrinsic	ropernes	or the	Iuit	Substances

	$T_{\rm c}$	$P_{\rm c}$	$V_{\rm c}$			
components	K	kPa	$m^{3} \cdot kg \cdot mol^{-1}$	$Z_{\rm c}$	ω	μ/D
methyl butyrate	554.54	3475.04	0.3402	0.257	0.3807	1.70
methyl pentanoate	579.48	3231.88	0.4555	0.293	0.4173	1.70
methyl hexanoate	602.26	2758.00	0.4912	0.270	0.4609	1.70
propanenitrile	564.44	4184.22	0.2291	0.205	0.3248	3.50

^a Ref 19.

Table 3. Antoine Equation Constants A, B, and C; $\log(P/kPa) = A - B/(T/K - C)$

components	Α	В	С	$\Delta T/\mathrm{K}$
methyl butyrate ^a	6.30360	1381.06	53.60	200-375
methyl pentanoateb	5.9644	1281.06	75.94	281 - 547
methyl hexanoate ^c	6.03039	1321.69	93.83	277 - 567
propanenitrile ^d	6.05500	1277.20	55.14	180 - 564

^a Ref 20. ^b Ref 21. ^c Ref 19. ^d Ref 22.

values for the mixtures were carried out using a polynomial equation of the type:

$$\rho = x_1 \rho_1 + x_2 \rho_2 + x_1 x_2 \Sigma A_i (2x_1 - 1)^i \tag{1}$$

and these were then used to calculate the concentration in each of the equilibrium states. The uncertainties of the calculation of the mole fractions for both the liquid phase and the vapor phase was better than ± 0.001 units.

Materials. The components used were the highest commercial grade (molar fraction, $x \ge 0.995$) available from the manufac-

^{*} Corresponding author. Fax: +54-299-4490340. E-mail: acamacho@uncoma.edu.ar.

Table 4. Isobaric Vapor–Liquid Equilibrium Data: Temperature T/K; Liquid-Phase and Vapor-Phase (x_1, y_1) Mole Fractions; Activity Coefficients γ_i ; and Dimensionless Excess Gibbs Energy $G^{E/RT}$ for the Binary Systems at 93.32 kPa

<i>T</i> /K	x_1	<i>y</i> 1	γ_1	γ_2	$G^{\rm E}/RT$	<i>T</i> /K	x_1	<i>y</i> 1	γ_1	γ_2	$G^{\rm E}/RT$	<i>T</i> /K	<i>x</i> ₁	<i>y</i> 1	γ_1	γ_2	$G^{\rm E}/RT$
						Me	thyl Buty	rate (1) -	- Propar	nenitrile	(2)						
367.78	0.0000	0.0000		1.000	0.000	365.90	0.3330	0.3180	1.192	1.080	0.110	368.21	0.6885	0.6039	1.020	1.256	0.085
367.25	0.0381	0.0487	1.531	1.004	0.020	366.01	0.3800	0.3614	1.183	1.084	0.114	368.72	0.7426	0.6594	1.017	1.288	0.077
366.90	0.0719	0.0888	1.495	1.007	0.035	366.23	0.4490	0.4080	1.123	1.124	0.116	369.00	0.7795	0.6845	0.997	1.381	0.069
366.53	0.1189	0.1387	1.428	1.014	0.054	366.33	0.4749	0.4269	1.108	1.138	0.117	369.94	0.8512	0.7685	0.996	1.462	0.053
366.38	0.1471	0.1612	1.348	1.024	0.064	366.64	0.5124	0.4639	1.105	1.136	0.113	371.08	0.9124	0.8461	0.989	1.598	0.031
366.11	0.2009	0.2125	1.312	1.034	0.082	367.02	0.5662	0.5091	1.084	1.157	0.109	372.22	0.9628	0.9276	0.993	1.715	0.013
365.94	0.2250	0.2344	1.299	1.042	0.091	367.34	0.6006	0.5313	1.056	1.188	0.102	372.31	1.0000	1.0000	1.000		0.000
365.86	0.2794	0.2713	1.214	1.069	0.102	367.86	0.6502	0.5751	1.040	1.212	0.092						
						Met	hyl Penta	noate (1)	+ Propa	anenitril	e (2)						
367.78	0.0000	0.0000		1.000	0.000	372.36	0.3866	0.2061	$1.09\hat{7}$	1.136	0.114	384.86	0.8096	0.5728	0.990	1.405	0.056
368.04	0.0461	0.0283	1.454	1.011	0.028	374.17	0.4571	0.2598	1.104	1.138	0.115	386.70	0.8548	0.6328	0.981	1.511	0.043
368.45	0.0878	0.0510	1.358	1.020	0.045	374.96	0.5039	0.2836	1.066	1.179	0.114	389.11	0.9002	0.7159	0.982	1.599	0.031
369.08	0.1349	0.0775	1.315	1.027	0.060	376.27	0.5568	0.3191	1.042	1.210	0.107	391.91	0.9426	0.8195	0.991	1.647	0.021
369.39	0.1689	0.0994	1.334	1.035	0.077	377.83	0.6138	0.3627	1.023	1.245	0.099	393.73	0.9712	0.8917	0.995	1.883	0.013
370.08	0.2359	0.1294	1.215	1.067	0.095	379.04	0.6643	0.3993	1.002	1.307	0.091	396.65	1.0000	1.0000	1.000		0.000
370.74	0.2825	0.1543	1.184	1.083	0.105	380.99	0.7267	0.4589	0.992	1.373	0.081						
371.66	0.3402	0.1836	1.136	1.108	0.111	382.46	0.7620	0.5026	0.991	1.394	0.072						
						Met	hyl Hexa	noate (1)	+ Propa	nenitrile	e (2)						
367.78	0.0000	0.0000		1.000	0.000	376.47	0.3402	0.0989	1.151	1.070	0.092	396.58	0.7680	0.3831	0.998	1.243	0.049
368.83	0.0461	0.0154	1.752	1.001	0.027	379.03	0.4152	0.1274	1.109	1.090	0.093	402.80	0.8450	0.5109	0.994	1.274	0.033
369.14	0.0620	0.0191	1.597	1.006	0.034	380.26	0.4571	0.1416	1.072	1.118	0.092	408.30	0.9002	0.6451	0.997	1.267	0.021
370.31	0.1112	0.0325	1.450	1.012	0.052	382.32	0.5080	0.1658	1.051	1.135	0.087	412.60	0.9426	0.7650	0.995	1.327	0.011
371.80	0.1689	0.0489	1.359	1.020	0.069	383.43	0.5446	0.1797	1.022	1.171	0.084	416.12	0.9712	0.8765	0.999	1.289	0.007
372.10	0.1835	0.0519	1.313	1.027	0.071	387.57	0.6240	0.2350	1.013	1.189	0.073	419.67	1.0000	1.0000	1.000		0.000
373.73	0.2359	0.0700	1.298	1.028	0.083	390.41	0.6764	0.2775	1.003	1.215	0.065						
374.77	0.2871	0.0801	1.175	1.059	0.087	393.95	0.7290	0.3353	1.001	1.223	0.055						

turer, Fluka. All of them were previously degassed with ultrasound for several hours and treated with 0.4 nm molecular sieves (Fluka) to eliminate any trace of moisture.

The physical properties, density ρ and refractive index n_D at 298.15 K, determined for all liquids are shown in Table 1 along with literature value for comparison.

Results and Discussion

The experimental values were obtained directly (p, T, x_1, y_1) in the isobaric VLE experiment at a pressure of $p = 93.32 \pm 0.02$ kPa for the binary systems of methyl esters (butyrate to hexanoate) with propanenitrile. From these values, considering the nonideal behavior of the vapor phase, the activity coefficients of the components of the liquid phase are calculated by

$$\gamma_{i} = \frac{y_{i}P}{x_{i}P_{i}^{0}} \exp \frac{(B_{ii} - V_{i}^{L})(P - P_{i}^{0})}{RT} \exp \frac{y_{j}^{2}P\delta_{ij}}{RT}$$
(2)

where

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{3}$$

The second virial coefficients were calculated using the Tsonopoulos¹⁷ empirical equation. The molar liquid volumes V_i^L of pure compounds were estimated using the modified Rackett¹⁸ equation. All the necessary parameters are listed in Table 2. The vapor pressures P_i^0 were calculated by the Antoine equation, using the respective constants listed in Table 3. The average deviation between the experimental vapor pressure and the values calculated with Antoine equation was 0.08 kPa. The experimental results (T, x_1 , y_1) and the calculated values (γ_1 , γ_2 , G^{E}/RT) are compiled in Table 4 and shown in Figures 1 to 6.

The thermodynamic consistency of the data was verified using the point-to-point tests proposed by Fredenslund et al.²³ and the one from Wisniak.²⁴ The tests proposed by Fredenslund et al.²³ was applied to all of the mixtures by evaluating the differences between the molar fractions of the vapor phase between the experimental value and that estimated by the method for each equilibrium point.

The results of these consistency tests are shown in Table 5. The studied systems proved to be consistent according to both methods just mentioned. In the last method the author defines a deviation *D* that should not be exceeded. The limit for this deviation is arbitrary. The criterion for passing the test of consistency proposed by Fredenslund is $\delta y_1 < 0.010$ absolute in mole fraction and the criterion for passing the one proposed by Wisniak²⁴ is D < 5 %.

Correlation

The data were correlated using the Margules,⁴ Van Laar,⁵ Wilson,⁶ and NRTL⁷ equations for the liquid-phase activity coefficients. Margules⁴ and Van Laar⁵ constants are calcu-

Figure 1. Temperature–composition diagram for the methyl butyrate (1) + propanenitrile (2) system: \blacktriangle , experimental liquid-phase mole fractions, x_1 ; \blacklozenge , experimental vapor-phase mole fractions, y_1 ; –, R–K equation.

Figure 2. Temperature-composition diagram for the methyl pentanoate (1) + propanenitrile (2) system: \blacktriangle , experimental liquid-phase mole fractions, x_1 ; \blacklozenge , experimental vapor-phase mole fractions, y_1 ; \neg , R-K equation.

0,5

 $x_1; y_1$

1

360

0

Figure 3. Temperature–composition diagram for the methyl hexanoate (1) + propanenitrile (2) system: \blacktriangle , experimental liquid-phase mole fractions, x_1 ; \blacklozenge , experimental vapor-phase mole fractions, y_1 ; –, R–K equation.

Figure 4. Experimental activity coefficients and dimensionless $G^{E/RT}$ against liquid composition x_1 for the methyl butyrate (1) + propanenitrile (2) system: \blacktriangle , $G^{E/RT}$; \blacklozenge , γ_1 ; \blacklozenge , γ_2 .

lated by linear regression of activity coefficient data using eqs 4 and 5:

$$\frac{x_1 \log \gamma_1 + x_2 \log \gamma_2}{x_1 x_2} = A + x_1 (B - A)$$
(4)

$$\frac{x_1}{x_1 \log \gamma_1 + x_2 \log \gamma_2} = \frac{1}{A} + \frac{1}{B} \frac{x_1}{x_2}$$
(5)

Figure 5. Experimental activity coefficients and dimensionless $G^{E/RT}$ against liquid composition x_1 for the methyl pentanoate (1) + propanenitrile (2) system: \blacktriangle , $G^{E/RT}$; \blacklozenge , γ_1 ; \blacklozenge , γ_2 .

Figure 6. Experimental activity coefficients and dimensionless $G^{E/RT}$ against liquid composition x_1 for the methyl hexanoate (1) + propanenitrile (2) system: \blacktriangle , $G^{E/RT}$; \blacklozenge , γ_1 ; \blacklozenge , γ_2 .

Table 5. Results of Thermodynamic Consistency Tests of VLE Data for Three Binary Systems at 93.32 kPa

	point-to-point tests			
hinary systems	ref 23	ref 24		
	$\delta y_1{}^a$	D/% ^b		
methyl butyrate (1) + propanenitrile (2)	0.0092	2.4		
methyl pentanoate (1) + propanenitrile (2)	0.0074	2.1		
methyl hexanoate (1) + propanenitrile (2)	0.0066	1.6		

^{*a*} The criterion for passing the test is $\delta y_1 < 0.010$ absolute in mole fraction. ^{*b*} The criterion for passing the test is D < 5 %.

The Wilson⁶ constants are calculated by nonlinear regression based in the method proposed by Apelblat and Wisniak.²⁵ The constants of the NRTL⁶ model are found by least-squares minimizing the objective function:

$$\sum ([(\ln \gamma_1)^2 + (\ln \gamma_2)^2]^{calc} - [(\ln \gamma_1)^2 + (\ln \gamma_2)^2]^{exp})^2 \quad (6)$$

These constants are reported in Table 6 with average deviations in activity coefficients between the experimental and the calculated values.

Prediction of VLE. The ASOG^{8,9} group-contribution method and the three versions of UNIFAC (UNIFAC-1,¹⁰ UNIFAC-2,¹¹ and UNIFAC-3^{12,13}) were used to estimate the VLE values for mixtures presented in this work. In Table 7 are reported the average deviations in vapor-phase compositions and bubble-

		average deviation/% 10	$0\Sigma \gamma_{ m exp} - \gamma_{ m calc} /(\gamma_{ m exp}n)^a$
models	constants	γ_1	γ2
	Methyl Butyrate $(1) + I$	Propanenitrile (2)	
Van Laar	A = 0.2720, B = 0.1563	3.7	2.8
Margules	A = 0.2394, B = 0.1566	2.1	2.7
Wilson (order 2)	$\Lambda_{12} = 0.6839, \Lambda_{21} = 0.8849$	0.0	2.3
NRTL ($\alpha = 0.3$)	$\tau_{12} = 0.8180, \tau_{21} = -0.2156$	3.5	1.7
	Methyl Pentanoate (1) +	Propanenitrile (2)	
Van Laar	A = 0.1464, B = 0.1959	3.5	7.7
Margules	A = 0.2514, B = 0.1541	4.9	5.4
Wilson (order 2)	$\Lambda_{12} = 0.6851, \Lambda_{21} = 0.8822$	4.9	5.3
NRTL ($\alpha = 0.3$)	$\tau_{12} = 1.2474, \tau_{21} = -0.4995$	5.9	4.7
	Methyl Hexanoate (1) +	Propanenitrile (2)	
Van Laar	A = 0.2271, B = 0.1128	2.4	1.1
Margules	A = 0.2487, B = 0.0919	1.1	1.3
Wilson (order 3)	$\Lambda_{12} = 0.3240, \Lambda_{21} = 1.5013$	1.3	0.9
NRTL ($\alpha = 0.3$)	$\tau_{12} = -0.7144, \tau_{21} = 1.5392$	1.1	1.1

^a n, number of experimental data points.

Table 7. Average Deviations between Calculated and Experimental Vapor-Phase Mole Fractions Δy_1 and Temperature $\Delta T/K$ for the Three Binary Systems Using UNIFAC^{10–13} and ASOG^{8,9} Models

	average deviations			
models	Δy_1	$\Delta T/\mathrm{K}$		
Methyl Butyrate	e(1) + Propanenitrile(2)			
ASOG	0.283	0.022		
UNIFAC-1	0.045	0.004		
UNIFAC-2	0.030	0.001		
UNIFAC-3	0.027	0.001		
Methyl Pentanoa	te (1) + Propanenitrile (2)		
ASOG	0.476	0.005		
UNIFAC-1	0.346	0.011		
UNIFAC-2	0.376	0.008		
UNIFAC-3	0.374	0.009		
Methyl Hexanoa	te (1) + Propanenitrile (2)		
ASOG	0.553	0.034		
UNIFAC-1	0.239	0.012		
UNIFAC-2	0.038	0.002		
UNIFAC-3	0.036	0.001		
^a $\Delta y_i = \frac{\sum \left \frac{y_i \exp - y_i \operatorname{cal}}{y_i \exp} \right }{n} \operatorname{ar}$	$\operatorname{hd} \Delta T_{i} = \frac{\sum \left \frac{T_{i \exp} - T_{i e}}{T_{i \exp}} - \frac{T_{i e}}{n} \right }{n}$	al		

where *n* is the number of experimental data points.

point temperatures between the experimental and the calculated values.

The predictions deviate from experimental data for more than 50 % for the ASOG^{8,9} method and around 5 % for the UNIFAC-3^{12,13} method for vapor-phase compositions and 5 % for the ASOG^{8,9} method and around 0.1 % for the UNIFAC-3^{12,13} method for bubble-point temperatures. For the other two models of UNIFAC,^{10,11} the values of the deviation of the vapor phase and the temperature of bubble point are between those of the methods of ASOG^{8,9} and UNIFAC-3,^{12,13}

Conclusions

VLE data at 93.32 kPa for the binary systems methyl butyrate (1) + propanenitrile (2), methyl pentanoate (1) + propanenitrile (2), and methyl hexanoate (1) + propanenitrile were determined. The experimental data for the system methyl butyrate (1) + propanenitrile evidence that this system present an azeotrope at other conditions of pressure. The activity coefficient data show that the studied systems deviate significantly from ideality. The experimental data were tested for thermodynamic consistency and found to be consistent. The experimental results were correlated using well-known various now classics equations for

the reduction the data of VLE, such as the van Laar,⁵ Margules,⁴ Wilson,⁶ and NRTL⁷ equations. According to standard deviations shown in Table 6, all equations appeared to be suitable for correlating the data for the mixtures considered here. The UNIFAC-3^{12,13} method produced good predictions of isobaric data, probably due to the kindness of its parameters, whereas the ASOG^{8,9} method poorly reproduces the results of the isobaric VLE. The results of other two methods, UNIFAC-1 and 2,^{10,11} are between the values of the UNIFAC-3^{12,13} and ASOG^{8,9} methods.

Literature Cited

- Camacho, A.; Postigo, M. Vapor-liquid equilibria for the systems methyl ester (methanoate, ethanoate and propanoate) (1) + acetonitrile (2) at 93.32 kPa. *Inf. Tecnol.* **1999**, *10* (5), 111–121.
- (2) Camacho, A.; Mariano, A.; Mussari, L.; Postigo, M. Vapor-liquid equilibrium data for the binary methyl esters (methanoate, ethanoate and propanoate) (1) + acetonitrile (2) systems at 93.32 kPa. J. Chem. Eng. Data 2006, 51, 1536–1540.
- (3) Redlich, O.; Kister, A. T. Thermodynamics of non electrolyte solutions. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
- (4) Margules, M. S. Akad. B. Wien. Math-Naturwiss. KI. II 1895, 104, 1234-1239.
- (5) van Laar, J. J. The vapor pressure of binary mixtures. Z. Phys. Chem. 1910, 72, 723–751.
- (6) Wilson, G. M. Vapor-liquid equilibrium. IX. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 1964, 86, 127– 135.
- (7) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 1968, 14, 135–142.
- (8) Kojima, K.; Tochigi, K. Prediction of Vapor-Liquid Equilibria by the ASOG Method; Kodansha Ltd.: Tokyo, 1979.
- (9) Tochigi, K.; Tiegs, D.; Gmehling, J.; Kojima, K. Determination of new ASOG parameters. J. Chem. Eng. Jpn. 1990, 23, 453–429.
- (10) Fredenslund, Aa.; Jones, R. L.; Prausnitz, J. M. Group contribution estimation of activity coefficients in nonideal liquid mixtures. *AIChE J.* **1975**, *21*, 1086–1092.
- (11) Larsen, B. L.; Rasmussen, P.; Fredenslund, Aa. A modified UNIFAC group contribution model for prediction of phase equilibria and heats of mixing. *Ind. Eng. Chem. Res.* **1987**, *26*, 2274–2280.
- (12) Weidlich, U.; Gmehling, J. A. Modified model. 1. Prediction of VLE, h^E, and γ. Ind. Eng. Chem. Res, **1987**, 26, 1372–1382.
- (13) Gmehling, J.; Li, J.; Schiller, M. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. *Ind. Eng. Chem. Res.* **1993**, *32*, 178–193.
- (14) Leonetti, J.; Camacho, A.; Postigo, M. Isobaric vapor-liquid equilibrium of benzene with dichloromethane at 86.65 and 99.99 kPa. *Latin Am. Appl. Res.* **1999**, *29* (2), 77–87.
- (15) TRC Thermodynamic Tables—Hydrocarbons; Thermodynamics Research Center, The Texas A&M University: College Station, TX, 1993.
- (16) Ortega, J.; Matos, J. S.; Peña, J. A. Enthalpies of mixing at 298.15 K of methylalkanoate (from acetate to pentanoate) with *n*-alkanes (*n*tridecane and pentadecane). *Thermochim. Acta* **1990**, *168*, 121–126.

- (17) Tsonopoulos, C. An empirical correlation of second virial coefficients. *AIChE J.* **1974**, 20, 263–272.
- (18) Spencer, C. F.; Danner, R. P. J. Improved equation for predicting saturated liquid density. J. Chem. Eng. Data 1972, 17, 236-241.
- (19) *Physprops for Windows 9x/NT/ME/2000/XP*, Version 1.6.1; Greg Rupert, G&P Engineering Software; 1999–2004.
- (20) Ortega, J.; Susial, P.; De Alfonso, C. J. Chem. Eng. Data 1990, 35, 216-219.
- (21) Camacho, A. Doctoral Thesis. Universidad Nacional de Tucuman, Tucuman, Argentina, 2006.
- (22) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. *The Properties of Gases and Liquids*, 4th ed.; McGraw-Hill: New York, 1987.
- (23) Fredenslund, Aa.; Gmehling, J.; Rasmussen, P. Vapour-Liquid Equilibria Using UNIFAC. A Group-Contribution Method; Elsevier: Amsterdam, 1977.
- (24) Wisniak, J. A new test for the thermodynamic consistency of vaporliquid equilibrium. *Ind. Eng. Chem. Res.* **1993**, *32*, 1531–1533.
- (25) Apelblat, A.; Wisniak, J. A simple method for evaluating the Wilson constants. *Ind. Eng. Chem. Res.* **1989**, 28, 324–328.

Received for review October 23, 2006. Accepted February 20, 2007. We are grateful to the Universidad Nacional del Comahue from Argentina for financial support for this project (I 0960).

JE060469V