Solubility Pattern of $CaSO_4 \cdot 2H_2O$ in the System $NaCl + CaCl_2 + H_2O$ and Solution Densities at 35 °C: Non-ideality and Ion Pairing

Arvind Kumar,* Rahul Sanghavi, and V. P. Mohandas

Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, India

The solubility of CaSO₄•2H₂O was determined in aqueous NaCl solutions up to very high salinities and constant CaCl₂ concentrations at 35 °C. Addition of CaCl₂ into the aqueous NaCl system reduces the solubility of CaSO₄•2H₂O quite dramatically while maintaining the basic pattern of the solubility curve. Mean ionic activity coefficients γ_{\pm} of CaSO₄•2H₂O derived using the extended Debye–Hückel law with quadratic terms decrease with an increase in ionic strength. A comparison of the value of the thermodynamic solubility product constant, $K_{sp(th)}$ of CaSO₄•2H₂O to the solubility product K_{sp} obtained from the observed solubility data indicate sizable differences. This has been explained through a combination of the extended Debye–Hückel law and ion association theory. We also measured accurate densities for the quaternary system CaSO₄•2H₂O + NaCl + CaCl₂ + H₂O at 35 °C. The density of the solution increases linearly with an increase in concentration. Solutions containing higher amounts of CaCl₂ were found to be less dense when compared at the same ionic strengths. Solubility and density data as a function of concentration have been correlated using polynomial and linear fits by the method of least squares. These studies are of relevance in the production of salt with low impurities of Ca²⁺ and SO₄²⁻ ions.

Introduction

Physicochemical properties of multicomponent electrolyte mixtures in water are important in understanding ionic equilibrium, ion-solvent and ion-ion interactions in natural waters. Accurate and reliable data on physicochemical properties of aqueous salt systems are necessary for many industrial processes where these systems are used as feed. We are continuing our research program on aqueous electrolyte solutions saturated with CaSO₄·2H₂O, which is a predominantly sparingly soluble electrolyte present in seawater and industrial water systems. It precipitates and can form scale once its saturation limit exceeds a certain threshold limit. Therefore, it is quite important to have accurate data on solubility and other physical properties of the systems where CaSO₄·2H₂O is an important constituent. In earlier reports,¹⁻³ we studied a number of physicochemical properties for the ternary systems $CaSO_4 \cdot 2H_2O + NaCl + H_2O$ and CaSO₄·2H₂O + CaCl₂ + H₂O. Addition of NaCl increases the solubility of CaSO4·2H2O initially and then decreases after reaching a maximum value, whereas addition of CaCl2 decreases the solubility of CaSO4·2H2O sharply at lower concentrations and decreases further with an increase in concentration. Therefore, we find it worth examining the counter effects of Ca²⁺ and Na⁺ ions on the solubility of CaSO₄·2H₂O in the quaternary system $CaSO_4 \cdot 2H_2O + NaCl + CaCl_2 + H_2O$ up to very high salinities. A research paper by Atkinson et al.⁴ provides a complete review of the solubilities of CaSO4·2H2O in water as well as in aqueous solutions of different electrolytes. Despite a number of investigations on the subject, a systematic study of the effect of added CaCl₂ on the solubility and other physicochemical properties of CaSO₄·2H₂O in saline water is lacking. In this paper, we determined the solubility behavior of $CaSO_4 \cdot 2H_2O$ in the quaternary system $CaSO_4 \cdot 2H_2O + NaCl +$

* Corresponding author. Tel.: +91-278-2567039. E-mail: mailme_arvind@ yahoo.com or arvind@csmcri.org.

 $CaCl_2 + H_2O$ using analytical methods and present accurate results of density measurements as a function of concentration at 35 °C.

While dealing electrolyte with solutions at high concentrations, departure from ideality and ion association become quite significant due to Coulombic interactions between ions. In addition, the ion–solvent and solvent–solvent interactions that are present even in dilute solution also become increasingly modified as the concentration increases, contributing further to the nonideality. The nonideality could be evaluated by activity coefficients, which can be based upon some theoretical models.^{5–7} The ion association contribution can be studied both theoretically and experimentally.^{8–13} From experimental results of solubility measurements we have evaluated deviations from ideality using a combination of the extended Debye–Hückel law and ion association theory.

Experimental Section

CaSO₄·2H₂O and NaCl (\geq 99.8 % mass fraction) obtained from S. D. Fine Chemicals, Bombay, India, were used after drying in an oven at 70 °C without further purification. Fused CaCl₂ obtained from E. Merck (India) Limited, Mumbai (\geq 98 % mass fraction), was recrystallized using Millipore grade water and was dried at 120 °C under vacuum. All solutions were prepared by weight, using an analytical balance with a precision of \pm 0.0001 g (Denver Instrument APX-200) in Millipore grade water. Four aqueous CaCl₂ solutions with different concentrations were prepared by dissolving known amounts of CaCl₂ in Millipore grade water. Stock solutions were prepared by adding oven-dried NaCl to the solutions containing fixed amounts of CaCl₂. A range of solutions with different concentrations of NaCl saturated with CaSO₄·2H₂O were then made by diluting stock solutions with initially prepared aqueous CaCl₂ solutions and adding excess CaSO₄·2H₂O. The resulting solutions were stirred in a thermostatically controlled water bath. After the

Table 1. Molal Solubilities and Mean Ionic Activity Coefficients of CaSO₄·2H₂O in Aqueous NaCl Solutions of Fixed CaCl₂ Concentrations at 35 $^\circ C$

NaCl	CaSO ₄			NaCl	CaSO ₄		
m_1	m_2	Ι	γ_{\pm}	m_1	m_2	Ι	γ_{\pm}
$0 m \operatorname{CaCl}_2$				0.1072 m CaCl ₂			
0	0.0151	0.0604	0.4256	0	0.0102	0.3625	0.2239
0.1796	0.0250	0.2796	0.2477	1.0078	0.0195	1.4075	0.1401
0.3184	0.0295	0.4364	0.209	1.4003	0.0227	1.8128	0.1319
0.4777	0.0350	0.6177	0.1836	1.8413	0.0248	2.2622	0.1274
0.7754	0.0410	0.9394	0.1584	2.3786	0.0252	2.8011	0.1258
1.1295	0.0460	1.3135	0.1428	2.7680	0.0250	3.1897	0.1266
1.4890	0.0490	1.6850	0.134	3.1576	0.0245	3.5773	0.1289
2.0024	0.0520	2.2104	0.1277	3.5513	0.0231	3.9654	0.1325
2.5153	0.0529	2.7269	0.1258	3.9921	0.0217	4.4006	0.1381
3.0303	0.0529	3.2419	0.1269	4.3834	0.0200	4.7851	0.1445
3.4906	0.0510	3.6946	0.1299		0.3676 m CaCl2		
3.8350	0.0493	4.0322	0.1333	0	0.0080	1.1348	0.1491
4.2002	0.0471	4.3886	0.1379	0.8494	0.0097	1.9910	0.1297
	0.0396 m CaCl ₂			1.2374	0.0100	2.3802	0.1267
0	0.0109	0.1624	0.3038	1.5797	0.0101	2.7229	0.1258
0.7960	0.0278	1.0260	0.1529	1.8811	0.0102	3.0247	0.1261
1.0378	0.0301	1.2770	0.1440	2.3294	0.0103	3.4734	0.1282
1.4765	0.0337	1.7301	0.1333	2.6792	0.0100	3.8220	0.1310
2.2545	0.0368	2.5205	0.1262	3.0296	0.0094	4.1700	0.1349
2.8867	0.0377	3.1563	0.1265	3.3195	0.0087	4.4571	0.1390
3.3263	0.0374	3.5947	0.1290	3.7567	0.0079	4.8911	0.1465
3.8598	0.0351	4.1190	0.1343	4.2999	0.0073	5.4319	0.1585
4.2968	0.0328	4.5468	0.1404				
4.4488	0.0317	4.6944	0.1428				
4.9943	0.0280	5.2251	0.1536				

solutions were stirred with an electrical paddle for about 24 h, liquid samples were withdrawn periodically and analyzed for different ions as described elsewhere.^{1,2}

The densities of the solutions were measured with an Anton Paar (model DMA 4500) vibrating-tube densimeter with a resolution of $5 \times 10^{-2} \text{ kg} \cdot \text{m}^{-3}$. The densimeter was calibrated with doubly distilled and degassed water, with dry air at atmospheric pressure, and also against the densities of NaCl-(aq),¹⁴ with an accuracy of 0.01 %. The temperature of the apparatus was controlled to within \pm 0.03 K by a built-in peltier device. Reproducibility of the results was confirmed by performing at least three measurements for each sample.

Results and Discussion

Solubility. Experimental results of the solubility of $CaSO_4$ · 2H₂O in the aqueous NaCl solutions with fixed $CaCl_2$ concentrations are given in Table 1 and are visualized in Figure 1. Uncertainty in the solubility measurements was estimated to be less than 0.02 %. The composition dependence of $CaSO_4$ · 2H₂O solubility in aqueous NaCl solutions of fixed concentration was correlated by means of a polynomial type equation:

$$F(Q) = A_0 + A_1 (m\text{NaCl}) + A_2 (m\text{NaCl})^2 + A_3 (m\text{NaCl})^3$$
(1)

where Q represents a general measured property (solubility and density) or derived function (mean ionic activity coefficient) and m is the concentration (mol·kg⁻¹) of NaCl in the solution. The values of the parameters A_i were evaluated by the method of least-squares with all points weighted equally. The parameters A_i and standard deviation σ are given in Table 2. The solubility of CaSO₄·2H₂O increases with an increase in the concentration of NaCl in solution and decreases with an increase in the concentration of CaCl₂, while retaining the basic pattern of the solubility curve intact. The solubility of the CaSO₄·2H₂O decreases with the additions of CaCl₂ in the solution significantly when compared to the ternary system.² The striking difference in solubility may be due to the addition of a common ion (Ca²⁺)

Figure 1. CaSO₄·2H₂O solubility at constant CaCl₂ concentration but varying NaCl concentration at 35 $^{\circ}$ C.

Table 2. Parameters A_i and Standard Deviations σ of Equation 1 for the System CaSO₄·2H₂O + NaCl + CaCl₂ + H₂O at 35 °C

CaCl ₂							
т	A_1	A_2	A_3	A_4	s		
Solubility/mol·kg ⁻¹							
0	0.0150	0.0365	-0.0109	0.0010	0.0010		
0.0396	0.0104	0.0179	-0.0028		0.0020		
0.1072	0.0062	0.0125	-0.0020		0.0006		
0.3676	0.0049	0.0035	-0.0006		0.0003		
Mean Ionic Activity Coefficients γ_+							
0	0.3447	-0.3320	0.1428	-0.0182	0.0447		
0.0396	0.2926	-0.1970	0.0665	-0.0066	0.0163		
0.1072	0.2119	-0.0669	0.0122		0.0113		
0.3676	0.1468	-0.0220	0.0058		0.0020		
Density, $\rho/10^{-3}$ kg·m ⁻³							
0	0.9945	0.0379			0.0039		
0.0396	1.0023	0.0369			0.0017		
0.1072	1.0063	0.0365			0.0011		
0.3676	1.0272	0.0357			0.0014		

in the solution. For the same ionic strength, the maximum in the solubility curves appears to shift toward higher concentration with an increase of the $CaCl_2$ concentration in solution. The solubility equilibrium under study is

$$CaSO_4 \cdot 2H_2O(s) \Leftrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq) + 2H_2O(l) \quad (2)$$

that can be expressed by the solubility product constant

$$K_{\rm sp} = a_{\rm Ca^{2+}} \cdot a_{\rm SO_4^{2-}} \cdot a_{\rm H_2O}^2$$

= $s^2 \cdot \gamma_{\pm}^2 \cdot a_{\rm H_2O}^2 <$ (3)

where *a* is the activity coefficient of various species, *s* is the solubility of CaSO₄·2H₂O in mol·kg⁻¹ of water, and γ_{\pm} is the mean ionic activity coefficient. The extended Debye–Hückel law with quadratic terms was used to calculate mean ionic activity γ_{\pm} of CaSO₄·2H₂O:

$$\log \gamma_{\pm} = -A[z_{+} \cdot z_{-}] \sqrt{I}/(1 + A_{\rm SP} \sqrt{I}) - BI/2 + CI^{2}/2 \quad (4)$$

where *A* is the Debye–Hückel limiting slope, *I* is the ionic strength, and $A_{SP} = ba^0$, *b* is a function of absolute temperature and dielectric constant, and a^0 is the "ion-size" parameter, and B and C are adjustable parameters that account for the variation of water activities with respect to ionic strength. Values of $A_{SP} = 1.52$, B = -0.014, and C = 0.154 at 35 °C were used from

Figure 2. γ_{\pm} of CaSO₄·2H₂O at constant CaCl₂ concentration but varying NaCl concentration at 35 °C.

Table 3. Thermodynamic Functions for the Equilibria $CaSO_4{\cdot}2H_2O(s) \hookrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq) + 2H_2O(l)$ at 35 $^\circ C^4$

$\Delta G^{\circ}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	$\Delta H^{\circ}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	$\Delta S^{\circ}/J \cdot K^{-1} \cdot mol^{-1}$
27.19	-3.84	-100.7

Marshall and Slusher.¹⁵ Contribution of *BI* and *CI*² terms to the calculated mean ionic activity coefficient shows an error of ± 1 %. Overall error in the estimation of γ_{\pm} is less than 1.5 % at higher concentrations. Estimated values of γ_{\pm} are presented in Table 1 and are depicted as a function of ionic strength in Figure 2. γ_{\pm} decreases with an increase in the NaCl concentration in solution. At lower concentration the decrease is sharp. Additions of CaCl₂ in the solution decrease the γ_{\pm} and reduce the sharpness of the curve at lower concentrations. On the other hand, the thermodynamic solubility product constant, $K_{\rm sp(th)}$, of the same salt can be calculated from ΔG° of equilibrium 2:

$$K_{\rm sp(th)} = e^{-\Delta G_{\rm diss}^{\circ}} / RT$$
 (5)

where $\Delta G^{\circ}_{\text{diss}} = \Delta H^{\circ}_{\text{diss}} - T\Delta S^{\circ}_{\text{diss}}$, and all symbols have their usual meaning.

Thermodynamic functions for the calculation of $K_{\rm sp(th)}$ are given in Table 3. $K_{sp(th)}$ calculated from eq 5 using thermodynamic functions given in Table 3 is equal to 2.46×10^{-5} . The average solubility product K_{sp} of CaSO₄·2H₂O derived from the experimental solubilities and mean ionic activity coefficients γ_{\pm} comes out to be 4.23 × 10⁻⁵, 2.18 × 10⁻⁵, 8.84 × 10⁻⁶, and 1.55×10^{-6} for (0, 0.0396, 0.1072, and 0.3676) m CaCl₂ concentrations in aqueous NaCl solutions, respectively. The K_{sp} values presented in Figure 3 as a function of CaCl₂ ionic strength in aqueous NaCl solutions decrease exponentially with an increase in the CaCl₂ concentration in the solution. We have compared K_{sp} and $K_{sp(th)}$ of CaSO₄·2H₂O in aqueous NaCl system with no CaCl₂ in the solution to check the nonideality. Comparison reveals that K_{sp} is almost double $K_{sp(th)}$. This large difference can be attributed to the formation of Ca²⁺SO₄²⁻ ion pairs. If x denotes the concentration of the $Ca^{2+}SO_4^{2-}$ ion pair in the saturated solution of CaSO₄•2H₂O at 35 °C, then (s - x)will represent the concentration of Ca^{2+} or SO_4^{2-} in the free state in the solution. So $K_{sp(th)}$ can be expressed as

$$K_{\rm sp(th)} = a_{\rm Ca^{2+}free} \cdot a_{\rm SO_4^{2-}free} = [{\rm Ca^{2+}}]_{\rm free} [{\rm SO_4^{2-}}]_{\rm free} \cdot \gamma_{\pm}^2 = (s-x)^2 \cdot \gamma_{\pm}^2$$
(6)

Figure 3. CaSO₄·2H₂O solubility product at different CaCl₂ ionic strength in aqueous NaCl solutions at 35 °C.

Table 4. Successive Calculations in Order To Achieve a Reasonable Value of $Ca^{2+}SO_4^{2-}$ Ion Pair at Three Arbitrary NaCl Concentrations

iteration	$I/mol\cdot kg^{-1}$	γ_{\pm}	$x = \operatorname{Ca}^{2+}\operatorname{SO}_4^{2-}/\operatorname{mol}\cdot\operatorname{kg}^{-1}$			
		0 m NaCl				
1	0.0151	0.4256	0.00347			
2	0.0116	0.4604	0.00435			
3	0.0108	0.471	0.0046			
4	0.0105	0.4741	0.0047			
5	0.0104	0.4754	0.0047			
2.7269 <i>m</i> NaCl						
1	0.0529	0.1258	0.0136			
2	0.0394	0.1258	0.0136			
4.2002 <i>m</i> NaCl						
1	0.0471	0.1379	0.0112			
2	0.0359	0.1372	0.0110			
3	0.0361	0.1373	0.0110			

The value of x can be obtained from eqs 4 and 6. We take I =s at the first approximation and calculate an approximate value of x and name it x_1 . Then, iterating the calculation, but taking $I = s - x_1$, we can obtain a more precise value of x and name it x_2 . We iterate the procedure until the difference between two successive x values becomes less than 1 %. So the final value of x will reasonably represent the concentration of $Ca^{2+}SO_4^{2-}$ ion pair in the saturated solution of CaSO₄•2H₂O at 35 °C.13 The values are given in Table 4. We have chosen three arbitrary concentrations of NaCl (0, 2.7269, and 4.2002 m) for estimating the $Ca^{2+}SO_4^2$ ion pairs in solution. From Table 4, we can see that the concentration of the $[Ca^{2+}SO_4^{2-}]$ ion pair increases with an increase in the NaCl concentration in the solution but decreases with a further increase in concentration. The association constant K_A for the reaction $Ca^{2+}(aq) + SO_4^{2-}(aq) \Leftrightarrow$ Ca²⁺SO₄²⁻(ion pair) is

$$K_{\rm A} = \frac{[{\rm Ca}^{2+}{\rm SO_4}^{2-}]\gamma}{[{\rm Ca}^{2+}][{\rm SO_4}^{2-}]\gamma_+^2}$$
(7)

 K_A at the three arbitrary NaCl concentrations (0, 2.7269, and 4.2002 *m*) comes to be 192, 554, and 448, respectively. Our values of K_A are comparable to the K_A values (178, 549, and 407, respectively) estimated from the solubility data of Marshall and Slusher¹⁵ at similar NaCl concentrations. At zero ionic strength, Smith and Martell¹⁶ report the K_A value of 200, whereas our value estimated from experimentally determined

Figure 4. Density of aqueous NaCl solutions saturated with CaSO₄·2H₂O at constant CaCl₂ concentrations at 35 °C.

Table 5. Densities of the Quaternary $CaSO_42H_2O$ + NaCl + $CaCl_2$ + H_2O System at 35 $^\circ C$ as a Function of Ionic Strength

$MaCl m_1$	density $\rho/\text{kg}\cdot\text{m}^{-3}$	$MaCl m_1$	density $\rho/kg\cdot m^{-3}$	NaCl m_1	$\substack{\text{density}\\\rho/\text{kg}\cdot\text{m}^{-3}}$	$MaCl m_1$	density $\rho/\text{kg}\cdot\text{m}^{-3}$
0 m	CaCl ₂	0.0396	m CaCl ₂	0.1072	m CaCl ₂	0.3676	m CaCl ₂
0	994.0	0	999.3	0	1004.9	0	1027.6
0.1796	1001.1	0.7960	1013.3	1.0078	1041.0	0.8494	1056.2
0.3184	1006.4	1.0378	1042.1	1.4003	1058.5	1.2374	1070.7
0.4777	1012.6	1.4765	1058.7	1.8413	1074.3	1.5797	1083.0
0.7754	1024.0	2.2545	1088.5	2.3786	1094.1	1.8811	1096.0
1.1295	1037.8	2.8867	1108.6	2.7680	1108.7	2.3294	1110.3
1.4890	1051.2	3.3263	1125.0	3.1576	1121.5	2.6792	1124.0
2.0024	1071.0	3.8598	1143.5	3.5513	1136.0	3.0296	1135.5
2.5153	1090.1	4.2968	1161.8	3.9921	1150.8	3.3195	1146.8
3.0303	1109.2	4.4488	1164.8	4.3834	1166.1	3.7567	1161.4
3.4906	1126.3	4.9943	1182.6			4.2999	1178.5
3.8350	1140.2						
4.2002	1153.7						

solubility is 192. Relative error in estimated K_A values from literature is within ± 1 %. Ionic association increases up to a certain concentration of NaCl in solution but decreases with a further increase in concentration. This behavior is consistent with the solubility behavior of CaSO₄•2H₂O in aqueous salt solutions. A very high value of K_A suggests a large association between Ca⁺² and SO₄²⁻ ions in the system.

Density. Density values for the system $CaSO_4 \cdot 2H_2O + NaCl$ + CaCl₂ + H₂O at 35 °C as a function of NaCl concentration and at fixed CaCl₂ concentrations are reported in Table 5 and are shown in Figure 4 as a function of NaCl concentration. The composition dependence of densities is fitted to eq 1. The parameters A_i and standard deviation σ are given in Table 2. Density values increase linearly with an increase in the concentration of electrolytes in solution. When compared at the same ionic strength, the densities are lower for the solutions having a higher concentration of CaCl₂. This may be due to the higher concentration of Ca²⁺ ions, which have a high structure making capacity when compared to other ions present in solution. Water becomes more structured in the presence of Ca²⁺ ions creating void space and hence less dense thereby resulting in lower density of solutions when compared at similar ionic strengths.

Conclusions

the solubility curve. The solubility maximum appears to shift toward higher concentrations for higher concentrations of CaCl₂ in the solution. Aqueous NaCl solutions saturated with CaSO₄• 2H₂O are far from ideal. The nonideality of the solution can be accounted partly to physical contribution (activity coefficients) and partly to chemical contribution (ion association). Furthermore, the addition of CaCl₂ in the system makes the solution less dense due to a water structure enhancement effect of the Ca⁺² ions.

Acknowledgment

The authors are thankful to Dr. P. K. Ghosh, Director of the Institute, for helpful discussions.

Literature Cited

- (1) Kumar, A.; Mohandas, V. P.; Susarla, V. R. K. S.; Ghosh, P. K. Ionic interactions of calcium sulfate dihydrate in aqueous sodium chloride solutions: solubilities, densities, viscosities, and electrical conductivities at 30 °C. J. Solution Chem. 2004, 33, 995–1003.
- (2) Kumar, A.; Mohandas, V. P.; Sanghavi, R.; Ghosh, P. K. Ionic interactions of calcium sulfate dihydrate in aqueous sodium chloride solutions: solubilities, densities, viscosities, and electrical conductivities, and surface tensions at 35 °C. J. Solution Chem. 2005, 34, 333– 342.
- (3) Kumar, A.; Sanghavi, R.; Mohandas, V. P. Experimental densities, speeds of sound, isentropic compressibility and shear relaxation time of CaSO₄·2H₂O + CaCl₂ + H₂O and CaSO₄·2H₂O + NaCl + H₂O systems at temperatures 30 and 35 °C. J. Solution Chem. (in press).
- (4) Raju, K. U. G.; Atkinson, G. The thermodynamics of "scale" mineral solubilities. 3. Calcium sulfate in aqueous NaCl. J. Chem. Eng. Data 1991, 35, 361–367 and references therein.
- (5) Debye, P.; Hückel, E. The theory of electrolytes. I. Lowering of freezing point and related phenomena. *Phys. Z.* **1923**, *24*, 185–206.
- (6) Davies, C. W. The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. *J. Chem. Soc.* **1938**, 2093–2098.
- (7) Harned, H. S.; Owen, B. B. Physical Chemistry of Electrolytic Solutions, 3rd ed.; Reinhold Publishing: New York, 1958; p 697.
- (8) Fouss, R. M. Ionic Association. III. The equilibrium between ion pairs and free ions. J. Am. Chem. Soc. 1958, 80, 5059–5061.
- (9) Yokoyama, H.; Yamatera, H. A theory of ion association as a complement of the Debye–Hückel theory. *Bull. Chem. Soc. Jpn.* 1975, 48, 1770–1776.
- (10) Fialkov, Yu. Ya.; Gorbachev, V. Yu.; Kamenskaya, T. V. Thermodynamic characteristics of the ionic association process of acids in aqueous solutions. J. Mol. Liq. 2003, 102, 277–284.
- (11) (a) Fouss, R. M.; Onsager, L. Conductance of unassociated electrolytes. J. Phys. Chem. 1957, 61, 668–682. (b) Fouss, R. M.; Onsager, L. The kinetic term in electrolyte conductance. J. Phys. Chem. 1958, 62, 1339–40.
- (12) Atkinson, G.; Petrucci, S. Ion association in polyvalent symmetrical electrolytes. V. The conductance of some alkaline earth *m*-benzenedisulfonates in water at 25 °C. J. Phys. Chem. **1963**, 67, 337–339.
- (13) Aghaie, M.; Samaie, E.: Non-ideality and ion-pairing in saturated aqueous solution of sodium fluoride at 25 °C. J. Mol. Liq. 2006, 126, 72-74.
- (14) Surdo, A. L.; Alzola, E. M.; Millero, F. J. The P.V.T. properties of concentrated aqueous electrolytes. I. Densities and apparent molar volumes of NaCl, Na₂SO₄, MgCl₂ and MgSO₄ solutions from 0.1 mol·kg⁻¹ to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. **1982**, 14, 649–662.
- (15) Marshall, W. L.; Slusher, R. Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 1–110°. J. Phys. Chem. 1966, 70, 4015–4027.
- (16) Smith, R. M.; Martell, A. E. Critical Stability Constants, Vol. 4, Inorganic Complexes; Plenum: New York, 1976.

Received for review November 6, 2006. Accepted February 2, 2007. JE0604941

CaSO₄•2H₂O solubility decreases with the additions of CaCl₂ in aqueous NaCl solutions without altering the basic pattern of