# Thermodynamic Properties of Inorganic Salts in Nonaqeous Solvents. IV. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Bromides and Chlorides in Acetonitrile

## Joanna Krakowiak,\* Dorota Warmińska, and Wacław Grzybkowski

Chemical Faculty, Gdańsk University of Technology, 80-952 Gdańsk, Poland

The densities of divalent transition-metal bromides and chlorides in acetonitrile at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K and sound velocities at 298.15 K have been measured. From these data, apparent molar volumes  $V_{\Phi}$  at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K and the apparent molar isentropic compressibility  $K_{S,\Phi}$  at T = 298.15 K of transition-metal bromides and chloride in acetonitrile have been determined.

#### Introduction

This study is a part of an investigation of the volumetric properties of nonaqueous solutions.<sup>1-3</sup> Divalent first-row transition-metal cations are known to form well-defined coordination forms in acetonitrile (AN) and to exist as M(AN)<sub>6</sub><sup>2+</sup> solvates in the absence of coordinating anions.<sup>4</sup> It has been established that the volumetric properties of such solvates exhibit variation, which can be interpreted in terms of ligand field theory.<sup>5,6</sup> Unlike perchlorates, the divalent transition-metal bromides and chlorides dissolved in acetonitrile exhibit a variety of electrolytic behaviors due to a more complicated system of complex formation equilibria. Acetonitrile solutions of CoBr2 have been investigated spectrophotometrically,<sup>7-9</sup> and these studies have yielded good evidence for the existence of two pseudotetrahedral species, [CoBr<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] and [CoBr<sub>3</sub>(CH<sub>3</sub>CN)]<sup>-</sup>. In the case of MnBr<sub>2</sub> acetonitrile solutions, ions form the  $[Mn(CH_3CN)_6]^{2+} \cdot 2[MnBr_3]$ (CH<sub>3</sub>CN)]<sup>-</sup> (disproportionation) cation and anion complex. The most characteristic feature of the acetonitrile solutions of ZnBr<sub>2</sub> is the existence of electrically neutral tetrahedral complexes of ZnBr<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>.

The dissolution of anhydrous cobalt(II) chloride in acetonitrile is accompanied by two reactions<sup>10</sup>

$$CoCl_2 + 2CH_3CN = [CoCl_2(CH_3CN)_2]$$

and

$$3C_{0}C_{1}^{2} + 8C_{3}CN = [C_{0}(C_{3}C_{3}N_{6})^{2} + 2[C_{0}C_{3}(C_{3}C_{3}N_{6})^{2}]^{2}$$

Consequently, in the solution, the following equilibrium establishes (with an equilibrium constant of ca.  $5 \cdot 10^{-3}$ )

$$3[CoCl_2(CH_3CN)_2] + 2CH_3CN =$$
  
 $[Co(CH_3CN)_6]^{2+} + 2[CoCl_3(CH_3CN)]^{-}$ 

Coordination properties of cobalt(II) and zinc(II) are known to be rather similar, and the equilibrium

\* Corresponding author. E-mail: joannak@chem.pg.gda.pl.

 $3[ZnCl_2(CH_3CN)_2] + 2CH_3CN =$  $[Zn(CH_3CN)_6]^{2+} + 2[ZnCl_3(CH_3CN)]^{-}$ 

was found to be responsible for the electrical conductivity of  $ZnCl_2$  in acetonitrile. However, the extreme stability of tetrahedral complexes of zinc(II) appears to be amenable for the existence of the neutral  $[ZnCl_2(CH_3CN)_2]$  complexes in solution in the presence of a small amount of the  $[Zn(CH_3CN)_6]^{2+}$  and  $[ZnCl_3(CH_3CN)]^-$  complex electrolyte.

The apparent molar volume  $V_{\Phi}$  of a solute is defined as the difference between the volume of the solution and the volume of the pure solvent per mole of solute and is given by

$$V_{\Phi} = (V - n_0 V_0^{\ 0}) / n_{\rm S} \tag{1}$$

where *V* denotes the volume of the solution;  $n_0$  and  $n_s$  are the number of moles of the solvent and salt, respectively; and  $V_0^0$  is the molar volume of pure solvent. The adiabatic compressibility, defined by the thermodynamic relation

$$\kappa_{S} = -(1/V)(\partial V/\partial P)_{S} \tag{2}$$

where V is volume, P is pressure, and S is entropy, is related to the density d and the sound velocity u, by Laplace's equation

$$\kappa_s = 1/(u^2 d) \tag{3}$$

providing the link between thermodynamics and acoustics.

In this paper, experimental data at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K for density of MnBr<sub>2</sub>, CoBr<sub>2</sub>, ZnBr<sub>2</sub>, CoCl<sub>2</sub>, and ZnCl<sub>2</sub> and data at 298.15 K for sound velocity of studied bromides and cobalt(II) chloride in acetonitrile solutions are reported. The apparent molar volume,  $V_{\Phi}$ , adiabatic compressibility,  $\kappa_S$ , and apparent molar adiabatic compressibility,  $K_{S,\Phi}$ , are obtained from the measured properties.

## **Experimental Section**

The anhydrous CoBr<sub>2</sub>, MnBr<sub>2</sub>, ZnBr<sub>2</sub>, CoCl<sub>2</sub>, and ZnCl<sub>2</sub> were prepared from the corresponding hydrates by drying under a vacuum initially at 353 K and then at 423 K. These were recrystallized at least twice from anhydrous acetonitrile. The stock solutions were obtained by dissolution of the solids in

| Table 1 | Dens | sities o | f the | Pure | Acetonitrile. | $d_0$ | and th | e Soluti | ions. d. | of th | e Meta | ıl Halide | s in | Acetonitri | le at | Different | Tem | peratures |
|---------|------|----------|-------|------|---------------|-------|--------|----------|----------|-------|--------|-----------|------|------------|-------|-----------|-----|-----------|
|         |      |          |       |      |               |       |        |          |          |       |        |           |      |            |       |           |     |           |

|                                         |                        |                         |           | $d/\text{kg}\cdot\text{m}^{-3}$ |            |           |           |
|-----------------------------------------|------------------------|-------------------------|-----------|---------------------------------|------------|-----------|-----------|
| $m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}$ | 288.15 K               | 293 15 K                | 298.15 K  | 303.15 K                        | 308.15 K   | 313 15 K  | 323.15 K  |
| mg mor ng                               | 200110 11              | 2,0110 11               | 2,0110 11 | 00011011                        | 2000112 11 | 010110 11 | 020110 11 |
| 0.041.50                                | <b>200</b> ( <b>20</b> | <b>2</b> 00 <b>2</b> 60 | MnB       | r <sub>2</sub>                  |            |           |           |
| 0.04150                                 | 793.652                | 788.260                 | 782.850   | 777.408                         | 771.942    | 766.441   | 755.330   |
| 0.05130                                 | 795.156                | 789.764                 | 784.353   | 778.907                         | 773.433    | 767.926   | 756.805   |
| 0.06115                                 | 796.676                | 791.280                 | 785.862   | 780.415                         | 774.941    | 769.432   | 758.311   |
| 0.07131                                 | 798.243                | 792.850                 | 787.428   | 781.978                         | 776.494    | 770.984   | 759.855   |
| 0.08138                                 | 799.819                | 794.414                 | 788.989   | 783.537                         | 778.054    | 772.539   | 761.403   |
| 0.09054                                 | 801.238                | 795.840                 | 790,408   | 784.953                         | 779.461    | 773.940   | 762.804   |
| 0.1006                                  | 802 824                | 797 413                 | 791 982   | 786 518                         | 781.030    | 775 513   | 764 368   |
| 0.1214                                  | 806.091                | 800.671                 | 795 230   | 789 765                         | 784 269    | 778744    | 767 585   |
| 0.1214                                  | 800.125                | 802.606                 | 708 240   | 702 776                         | 707.207    | 791 741   | 770 567   |
| 0.1400                                  | 009.123                | 805.090                 | 790.249   | 792.770                         | 707.272    | 701.741   | 770.307   |
| 0.1603                                  | 812.287                | 806.855                 | 801.398   | /95.910                         | 790.407    | /84.808   | //3.08/   |
| 0.1712                                  | 814.024                | 808.580                 | 803.121   | 797.634                         | 792.128    | 786.584   | 775.396   |
| 0.1804                                  | 815.501                | 810.054                 | 804.590   | 799.110                         | 793.589    | /88.041   | 776.847   |
| 0.1995                                  | 818.585                | 813.117                 | 807.642   | 802.149                         | 796.622    | 791.065   | 779.856   |
| AN                                      | 787.299                | 781.923                 | 776.525   | 771.097                         | 765.640    | 760.148   | 749.055   |
|                                         |                        |                         | Col       | 2ro                             |            |           |           |
| 0.06284                                 | 707 520                | 702 118                 | 786 677   | 701 210                         | 775 720    | 770 102   | 750 026   |
| 0.00364                                 | 191.329                | 792.110                 | 700.077   | 701.210                         | 779.459    | 770.192   | 759.020   |
| 0.08092                                 | 800.500                | /94.000                 | 769.452   | 785.900                         | 778.438    | 772.920   | /01./38   |
| 0.09698                                 | 802.926                | /9/.495                 | 792.044   | /86.563                         | /81.049    | //5.500   | /64.302   |
| 0.1125                                  | 805.465                | 800.033                 | 794.565   | 789.080                         | 783.570    | 778.020   | 766.801   |
| 0.1286                                  | 808.142                | 802.700                 | 797.232   | 791.742                         | 786.222    | 780.656   | 769.421   |
| 0.1428                                  | 810.505                | 805.061                 | 799.583   | 794.089                         | 788.550    | 782.985   | 771.734   |
| 0.1587                                  | 813.161                | 807.703                 | 802.224   | 796.713                         | 791.168    | 785.595   | 774.335   |
| 0.1900                                  | 818.466                | 812,988                 | 807.489   | 801.964                         | 796.411    | 790.822   | 779.533   |
| 0.2204                                  | 823.615                | 818,130                 | 812.623   | 807.083                         | 801.513    | 795,917   | 784.593   |
| 0.2527                                  | 829 214                | 823 715                 | 818 194   | 812 642                         | 807.057    | 801 450   | 790.088   |
| 0.2527                                  | 831 140                | 825.637                 | 820 113   | 814 557                         | 808.067    | 803 340   | 701.088   |
| 0.2030                                  | 822 501                | 825.057                 | 820.113   | 814.005                         | 811 404    | 805.540   | 791.900   |
| 0.2777                                  | 035.391                | 020.005                 | 822.337   | 810.995                         | 011.404    | 803.778   | 794.403   |
| 0.3089                                  | 839.134                | 833.612                 | 828.072   | 822.494                         | 816.889    | 811.253   | 799.854   |
| AN                                      | 787.315                | 781.939                 | 776.538   | 7/1.112                         | 765.653    | /60.164   | 749.073   |
|                                         |                        |                         | ZnF       | Br <sub>2</sub>                 |            |           |           |
| 0.03209                                 | 792 171                | 786 781                 | 781 365   | 775 922                         | 770 453    | 764 950   | 753 836   |
| 0.03207                                 | 703 /35                | 788.040                 | 782 622   | 777 170                         | 771 701    | 766 107   | 755.075   |
| 0.04040                                 | 795.455                | 780.040                 | 782.022   | 777.179                         | 771.701    | 767.215   | 755.075   |
| 0.04/1/                                 | 794.407                | 789.072                 | 785.030   | 778.202                         | 774.000    | 707.213   | 750.090   |
| 0.05609                                 | 795.839                | 790.436                 | 785.044   | //9.559                         | //4.080    | /68.56/   | /5/.43/   |
| 0.06324                                 | 796.938                | 791.534                 | 786.108   | 780.651                         | 775.170    | 769.655   | 758.516   |
| 0.07124                                 | 798.167                | 792.766                 | 787.332   | 781.876                         | 776.393    | 770.874   | 759.730   |
| 0.07952                                 | 799.446                | 794.033                 | 788.597   | 783.143                         | 777.651    | 772.126   | 760.980   |
| 0.09524                                 | 801.876                | 796.466                 | 791.020   | 785.546                         | 780.047    | 774.520   | 763.359   |
| 0.1099                                  | 804.162                | 798.743                 | 793.295   | 787.860                         | 782.357    | 776.822   | 765.649   |
| 0.1252                                  | 806.567                | 801.138                 | 795.677   | 790.202                         | 784.687    | 779.149   | 767.969   |
| 0.1317                                  | 807 593                | 802,157                 | 796 698   | 791 221                         | 785,702    | 780 162   | 768 971   |
| 0.1402                                  | 808 922                | 803 487                 | 798.026   | 792 539                         | 787 024    | 781 476   | 770 273   |
| ΔN                                      | 787 313                | 781 935                 | 776 535   | 771 106                         | 765.650    | 760 159   | 749.070   |
|                                         | 707.515                | 701.755                 | 110.555   | //1.100                         | 705.050    | 700.157   | 747.070   |
|                                         |                        |                         | CoC       | $Cl_2$                          |            |           |           |
| 0.08764                                 | 795.418                | 790.014                 | 784.590   | 779.137                         | 773.654    | 768.139   | 756.997   |
| 0.1171                                  | 798.185                | 792.779                 | 787.348   | 781.889                         | 776.401    | 770.881   | 759.736   |
| 0 1460                                  | 800.890                | 795 475                 | 790.038   | 784 571                         | 779.078    | 773,545   | 762,939   |
| 0 1743                                  | 803.599                | 798 184                 | 792.742   | 787.274                         | 781,773    | 776 240   | 765 073   |
| 0.2031                                  | 806 356                | 800.934                 | 795 / 87  | 790.011                         | 784 510    | 778 973   | 767 796   |
| 0.2031                                  | 800.330                | 802 607                 | 708 244   | 702 762                         | 707.310    | 791 714   | 707.790   |
| 0.2516                                  | 009.121                | 805.097                 | 790.244   | 792.703                         | 707.230    | 701./14   | 770.326   |
| 0.2600                                  | 811.850                | 806.407                 | 800.955   | /95.46/                         | /89.954    | /84.40/   | 775.206   |
| 0.2873                                  | 814.493                | 809.058                 | 803.595   | 798.109                         | 792.590    | 787.039   | 775.843   |
| AN                                      | 787.297                | 781.919                 | 776.518   | 771.090                         | 765.631    | 760.142   | 749.056   |
|                                         |                        |                         | 7n(       | <u>ا</u> ر                      |            |           |           |
| 0.05257                                 | 791 935                | 786 551                 | 781 150   | 775 724                         | 770 266    | 764 781   | 753 694   |
| 0.05257                                 | 703.005                | 787 717                 | 782 212   | 776 996                         | 771 421    | 765 040   | 75/ 950   |
| 0.003/1                                 | 793.093                | 700 (10                 | 702.313   | 770.000                         | 772 220    | 705.740   | 755 760   |
| 0.07576                                 | /94.000                | /88.018                 | /83.21/   | 111.190                         | 112.330    | /00.841   | /55./60   |
| 0.08438                                 | /94./64                | /89.380                 | /83.985   | 778.553                         | 7/3.096    | /67.607   | /56.526   |
| 0.1077                                  | 796.850                | 791.469                 | 786.068   | 780.640                         | 775.184    | 769.697   | 758.618   |
| 0.1280                                  | 798.676                | 793.289                 | 787.887   | 782.455                         | 777.003    | 771.516   | 760.435   |
| 0.1487                                  | 800.536                | 795.155                 | 789.746   | 784.317                         | 778.858    | 773.372   | 762.295   |
| 0.1684                                  | 802.335                | 796.955                 | 791.541   | 786.115                         | 780.661    | 775.165   | 764.103   |
| 0.1902                                  | 804.302                | 798.922                 | 793.519   | 788.091                         | 782.635    | 777.148   | 766.072   |
| 0.2114                                  | 806.244                | 800.862                 | 795.456   | 790.032                         | 784.575    | 779.089   | 768.014   |
| AN                                      | 787 303                | 781 922                 | 776 522   | 771.095                         | 765 637    | 760 151   | 749 071   |
|                                         | 101.505                | 101.722                 | 110.322   | ,,1.075                         | 100.001    | ,00.101   | / 12.0/1  |

anhydrous solvent. The stock solutions of the metal halides were prepared and analyzed for the respective metals by standard EDTA titration. At least ten determinations were performed in each case, and the relative standard deviations were smaller than  $\pm$  0.1 %. Solutions for the density measurements were prepared by weighed dilutions of the corresponding stock solutions, and the vacuum corrections were taken into account. All the preparations and manipulations involving anhydrous materials



**Figure 1.** Apparent molar volumes,  $V_{\Phi}$ , against the square root of molarity, *c*, in acetonitrile solutions at 298.15 K of:  $\blacklozenge$ , MnBr<sub>2</sub>;  $\blacktriangle$ , CoBr<sub>2</sub>;  $\blacksquare$ , ZnBr<sub>2</sub>;  $\triangle$ , CoCl<sub>2</sub>; and  $\Box$ , ZnCl<sub>2</sub>.



**Figure 2.** Values of the coefficient of eq 5,  $A_{\Phi}^{\infty}$ , against temperature from T = (288.15 to 323.15) K in acetonitrile solutions for:  $\blacklozenge$ , MnBr<sub>2</sub>;  $\blacktriangle$ , CoBr<sub>2</sub>;  $\blacksquare$ , ZnBr<sub>2</sub>;  $\triangle$ , CoCl<sub>2</sub>; and  $\Box$ , ZnCl<sub>2</sub>.

were performed in dryboxes. Acetonitrile (Aldrich,  $H_2O < 5 \cdot 10^{-3}$  %) was dried with 4A molecular sieves.

The densities of the solutions were measured using an Anton Paar DMA 5000 densimeter with a precision of  $1.0 \cdot 10^{-3} \text{ kg} \cdot \text{m}^{-3}$  and uncertainties of  $5.0 \cdot 10^{-3} \text{ kg} \cdot \text{m}^{-3}$  for a single measurement. The instrument was equipped with the Peltier-type thermostating unit, and the temperature was kept constant at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K with uncertainties  $\pm$  0.001 K. The uncertainties of the density measurements and purity of the solvents were verified by measurements of their densities at 298.15 K. The density value of (776.532  $\pm$  0.007) kg·m<sup>-3</sup> for acetonitrile was found, whereas the literature values<sup>11,12</sup> vary from 775.9 kg·m<sup>-3</sup> to 776.85 kg·m<sup>-3</sup>.

The sound velocities were measured using the sound analyzer OPTIME 1.0 from Optel (Poland) with a precision of 0.05 m·s<sup>-1</sup> by measuring the time it takes for a pulse of ultrasound to travel from one transducer to another (*pitch-catch*) or to return to the same transducer (*pulse-echo*). The cell was thermostated at (298.15  $\pm$  0.005) K and calibrated with double distilled water, and the value of 1496.69 m·s<sup>-1</sup> for the sound velocity in pure water has been used.<sup>13</sup> A value of 1278.28 m·s<sup>-1</sup> obtained for sound velocity in pure acetonitrile compares reasonably well with literature values,<sup>14</sup> 1277.03 m·s<sup>-1</sup> and 1280.80 m·s<sup>-1</sup>.

### **Results and Discussion**

The density data obtained for the solutions of the transitionmetal bromides and chlorides are given in Table 1. The

| Table 2.  | Parameters  | of Equation 5   | for Metal  | Bromides and |
|-----------|-------------|-----------------|------------|--------------|
| Chlorides | in Acetonit | rile at Differe | nt Tempera | atures       |

|                   |          | $A^{\infty}_{\Phi}$ •10 <sup>6</sup> | $A_{\Phi} \cdot 10^{6}$      | $\sigma \cdot 10^{6}$           |
|-------------------|----------|--------------------------------------|------------------------------|---------------------------------|
| salt              |          | $m^3 \cdot mol^{-1}$                 | $(m^9 \cdot mol^{-3})^{1/2}$ | $\overline{m^3 \cdot mol^{-1}}$ |
|                   | 288.15 K | $26.8 \pm 0.43$                      | $0.21 \pm 0.035$             | 0.12                            |
|                   | 293.15 K | $25.6\pm0.29$                        | $0.24\pm0.022$               | 0.072                           |
|                   | 298.15 K | $24.4 \pm 0.35$                      | $0.27\pm0.031$               | 0.088                           |
| MnBr <sub>2</sub> | 303.15 K | $23.3\pm0.33$                        | $0.27\pm0.029$               | 0.080                           |
|                   | 308.15 K | $22.1\pm0.44$                        | $0.29\pm0.037$               | 0.12                            |
|                   | 313.15 K | $20.7\pm0.52$                        | $0.31\pm0.045$               | 0.13                            |
|                   | 323.15 K | $17.8\pm0.60$                        | $0.36\pm0.051$               | 0.26                            |
|                   | 288.15 K | $22.3\pm0.20$                        | $0.10\pm0.016$               | 0.051                           |
|                   | 293.15 K | $21.7\pm0.27$                        | $0.09\pm0.018$               | 0.065                           |
|                   | 298.15 K | $21.1\pm0.32$                        | $0.07\pm0.021$               | 0.076                           |
| CoBr <sub>2</sub> | 303.15 K | $20.4\pm0.32$                        | $0.06\pm0.025$               | 0.082                           |
|                   | 308.15 K | $19.8\pm0.42$                        | $0.05\pm0.027$               | 0.10                            |
|                   | 313.15 K | $19.2\pm0.38$                        | $0.02\pm0.028$               | 0.11                            |
|                   | 323.15 K | $17.7\pm0.40$                        | $0.00\pm0.031$               | 0.11                            |
|                   | 288.15 K | $42.7\pm0.36$                        | $0.11\pm0.035$               | 0.081                           |
|                   | 293.15 K | $42.0\pm0.29$                        | $0.12\pm0.030$               | 0.068                           |
|                   | 298.15 K | $41.4 \pm 0.35$                      | $0.11\pm0.034$               | 0.084                           |
| ZnBr <sub>2</sub> | 303.15 K | $40.6\pm0.42$                        | $0.12\pm0.041$               | 0.095                           |
|                   | 308.15 K | $39.8\pm0.56$                        | $0.12\pm0.056$               | 0.14                            |
|                   | 313.15 K | $38.8\pm0.46$                        | $0.13\pm0.052$               | 0.12                            |
|                   | 323.15 K | $36.9\pm0.56$                        | $0.14\pm0.056$               | 0.14                            |
|                   | 288.15 K | $16.3\pm0.35$                        | $0.06\pm0.028$               | 0.069                           |
|                   | 293.15 K | $16.0\pm0.31$                        | $0.05\pm0.026$               | 0.062                           |
|                   | 298.15 K | $15.5\pm0.30$                        | $0.04\pm0.026$               | 0.062                           |
| CoCl <sub>2</sub> | 303.15 K | $15.15\pm0.25$                       | $0.025\pm0.021$              | 0.054                           |
|                   | 308.15 K | $14.7\pm0.31$                        | $0.01\pm0.024$               | 0.060                           |
|                   | 313.15 K | $14.3\pm0.25$                        | $0.00\pm0.019$               | 0.048                           |
|                   | 323.15 K | $13.4\pm0.27$                        | $-0.03\pm0.026$              | 0.058                           |
|                   | 288.15 K | $31.6\pm0.36$                        | $0.02\pm0.027$               | 0.080                           |
|                   | 293.15 K | $31.0\pm0.35$                        | $0.01\pm0.032$               | 0.086                           |
|                   | 298.15 K | $30.1\pm0.35$                        | $0.03\pm0.031$               | 0.090                           |
| $ZnCl_2$          | 303.15 K | $29.3\pm0.30$                        | $0.03\pm0.030$               | 0.079                           |
|                   | 308.15 K | $28.4\pm0.30$                        | $0.03\pm0.030$               | 0.073                           |
|                   | 313.15 K | $27.6\pm0.29$                        | $0.03\pm0.029$               | 0.074                           |
|                   | 323.15 K | $26.0\pm0.41$                        | $0.00\pm0.043$               | 0.11                            |

corresponding values of the apparent molar volumes,  $V_{\Phi}/\text{m}^3$ ·mol<sup>-1</sup>, were calculated using the equation

$$V_{\Phi} = M/d_0 - (d - d_0)/(m_s dd_0)$$
(4)

where  $m_S$ /mol·kg<sup>-1</sup> denotes the number of moles of the solute per kilogram of the solution (molonity ( $m_S$ ),  $m_S$ ·d is equal to the molarity, c/mol·m<sup>-3</sup>); d/kg·m<sup>-3</sup> and  $d_0$ /kg·m<sup>-3</sup> are the densities of the solution and the solvent, respectively; and M/kg· mol<sup>-1</sup> is the molar mass of the solute.

Figure 1 shows the apparent molar volume plotted against the square root of concentration for  $MnBr_2$ ,  $CoBr_2$ ,  $ZnBr_2$ ,  $CoCl_2$ , and  $ZnCl_2$  in acetonitrile solution at 298.15 K. As seen, the plots are linear and the equation

$$V_{\Phi} = A_{\Phi}^{\infty} + A_{\Phi}^{S} \cdot c^{1/2} \tag{5}$$

is valid. The same finding, i.e., linearity of the  $V_{\Phi}$  vs  $c^{1/2}$  plots, is observed for all bromides and chlorides irrespective of temperature. Moreover, the values of the apparent molar volume for ZnBr<sub>2</sub> are much higher than for other studied bromides, due to the ability of the Zn(II) ion to form the tetrahedral and neutral complexes, caused by the smallest effect of electrostriction in the solution of ZnBr<sub>2</sub>.

The respective coefficients of eq 5,  $A_{\Phi}^{\infty}$  and  $A_{\Phi}^{S}$ , obtained at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K for the studied solutions of the metal bromides and chlorides are listed in Table 2.

Inspection of the data listed in Table 2 reveals that an increase in temperature causes a distinct decrease in the values of coefficients of eq 5,  $A_{\Phi}^{\infty}$ , of the metal bromides and chlorides.

 
 Table 3. Parameters of Equation 6 for Metal Bromides and Chlorides in Acetonitrile

|                    | $10^6 \cdot A_T(A^{\infty}_{\Phi})$ | $10^{7} \cdot B_T$                | $10^{9} \cdot C_T$                           | $10^{6} \cdot \sigma$           |
|--------------------|-------------------------------------|-----------------------------------|----------------------------------------------|---------------------------------|
| salt               | m <sup>3</sup> ·mol <sup>-1</sup>   | $m^3 \cdot mol^{-1} \cdot K^{-1}$ | $\overline{m^3 \cdot mol^{-1} \cdot K^{-2}}$ | $\overline{m^3 \cdot mol^{-1}}$ |
| MnBr <sub>2</sub>  | $24.4 \pm 0.35$                     | $-2.37 \pm 0.070$                 | $-0.9 \pm 0.36$                              | 0.12                            |
| CoBr <sub>2</sub>  | $21.1\pm0.32$                       | $-1.28 \pm 0.062$                 | $-0.3 \pm 0.33$                              | 0.11                            |
| ZnBr <sub>2</sub>  | $41.4 \pm 0.35$                     | $-1.46 \pm 0.041$                 | $-1.4 \pm 0.22$                              | 0.064                           |
| CoClr <sub>2</sub> | $15.15\pm0.25$                      | $-0.08 \pm 0.013$                 | -                                            | 0.068                           |
| ZnCl <sub>2</sub>  | $30.1 \pm 0.35$                     | $-0.165 \pm 0.011$                | -                                            | 0.081                           |

Table 4. Ultrasonic Velocity, u (1278.28 m·s<sup>-1</sup> for Pure Acetonitrile), Adiabatic Compressibility,  $\kappa_s$  (7.881·10<sup>-10</sup> m<sup>2</sup>·N<sup>-1</sup> for Pure Acetonitrile), and Apparent Molar Compressibility,  $K_{S,\Phi}$ , for Metal Bromides and Chloride in Acetonitrile Solutions at 298.15 K

|                   | $m_S$                | и                | $10^{10} \cdot \kappa_S$      | $10^{13} \cdot K_{S,\Phi}$                                            |
|-------------------|----------------------|------------------|-------------------------------|-----------------------------------------------------------------------|
| salt              | mol·kg <sup>-1</sup> | $m \cdot s^{-1}$ | $\overline{m^2 \cdot N^{-1}}$ | $\overline{\mathrm{m}^{5}}\cdot\mathrm{N}^{-1}\cdot\mathrm{mol}^{-1}$ |
|                   | 0.06115              | 1277.23          | 7.800                         | -1.474                                                                |
|                   | 0.08138              | 1276.92          | 7.773                         | -1.472                                                                |
| MnBr <sub>2</sub> | 0.1006               | 1276.65          | 7.747                         | -1.471                                                                |
|                   | 0.1406               | 1276.11          | 7.693                         | -1.463                                                                |
|                   | 0.1712               | 1275.69          | 7.651                         | -1.455                                                                |
|                   | 0.1995               | 1275.31          | 7.613                         | -1.446                                                                |
|                   | 0.09698              | 1277.02          | 7.809                         | -1.491                                                                |
|                   | 0.1286               | 1276.04          | 7.754                         | -1.484                                                                |
|                   | 0.1587               | 1275.30          | 7.712                         | -1.477                                                                |
| CoBr <sub>2</sub> | 0.1900               | 1274.64          | 7.672                         | -1.467                                                                |
|                   | 0.2204               | 1273.90          | 7.631                         | -1.457                                                                |
|                   | 0.2636               | 1273.20          | 7.591                         | -1.443                                                                |
|                   | 0.3089               | 1272.10          | 7.535                         | -1.426                                                                |
|                   | 0.02964              | 1277.07          | 7.851                         | -9.813                                                                |
|                   | 0.04717              | 1276.38          | 7.833                         | -9.783                                                                |
| ZnBr <sub>2</sub> | 0.06324              | 1275.72          | 7.816                         | -9.740                                                                |
|                   | 0.07952              | 1275.06          | 7.800                         | -9.662                                                                |
|                   | 0.1099               | 1273.60          | 7.771                         | -9.359                                                                |
|                   | 0.1317               | 1272.55          | 7.751                         | -9.128                                                                |
|                   | 0.1554               | 1271.25          | 7.730                         | -8.876                                                                |
|                   | 0.08764              | 1279.85          | 7.781                         | -1.331                                                                |
|                   | 0.1171               | 1280.49          | 7.746                         | -1.340                                                                |
|                   | 0.1460               | 1281.10          | 7.712                         | -1.345                                                                |
| CoCl <sub>2</sub> | 0.1743               | 1281.80          | 7.678                         | -1.348                                                                |
|                   | 0.2031               | 1282.50          | 7.643                         | -1.349                                                                |
|                   | 0.2318               | 1283.23          | 7.608                         | -1.352                                                                |
|                   | 0.2600               | 1283.95          | 7.574                         | -1.351                                                                |
|                   | 0.2873               | 1284.75          | 7.539                         | -1.353                                                                |

This effect is presented in Figure 2 as the function  $A_{\Phi}^{\infty} = f(T)$ . The plots are linear for chlorides and not linear for bromides, where the best fit is obtained using the equation

$$A_{\Phi}^{\infty} = A_T + B_T (T/K - 298.15) + C_T (T/K - 298.15)^2 \quad (6)$$

The coefficients of eq 6 are listed in Table 3 along with the respective values of the residual variance, and in the case of the coefficients of chlorides, only  $A_T$  and  $B_T$  are presented, due to the linear correlation. It is evident that the first of the coefficients in eq 6 is identical to  $A_{\Phi}^{\infty}$  at 298.15 K. The observed changes are related to the fact that the structure of the solvent is weakened by an elevation of temperature, making an electrostriction effect higher.

The experimental data for the sound velocity obtained at 298.15 K are presented in Table 4. The apparent molar isentropic compressibility,  $K_{S,\Phi}/\text{m}^5 \cdot (\text{mol} \cdot \text{N})^{-1}$ , for the metal bromides and cobalt(II) chloride in acetonitrile solution were calculated according to

$$K_{S,\Phi} = (\kappa_S d_0 - \kappa_{S,0} d) / (m_S dd_0) + M \cdot \kappa_S / d \tag{7}$$

where  $M/\text{kg}\cdot\text{mol}^{-1}$  is the molecular mass of the salt;  $m_S/\text{mol}\cdot\text{kg}^{-1}$  denotes the number of moles of the solute per kilogram of the solution (molonity); and  $d/\text{kg}\cdot\text{m}^{-3}$  and  $d_0/\text{kg}\cdot\text{m}^{-3}$  are the densities of the solution and the solvent, respectively. The terms



**Figure 3.** Apparent molar compressibility,  $K_{S,\Phi}$ , against the square root of molarity, *c*, in acetonitrile solutions at 298.15 K of:  $\blacklozenge$ , MnBr<sub>2</sub>;  $\blacktriangle$ , CoBr<sub>2</sub>;  $\blacksquare$ , ZnBr<sub>2</sub>; and  $\triangle$ , CoCl<sub>2</sub>.

Table 5. Parameters of Equation 8 and the Mean Deviations for Metal Bromides and Cobalt(II) Chloride in Acetonitrile Solutions at 298.15 K

|                   | $10^{13} \cdot A_K^{\infty}$      | $10^{15} \cdot A_K^1$                        | $10^{17} \cdot A_K^2$                                                                    | $10^{16} \cdot \sigma$              |
|-------------------|-----------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|
| salt              | $m^5 \cdot N^{-1} \cdot mol^{-1}$ | $(m^{13} \cdot N^{-2} \cdot mol^{-3})^{1/2}$ | $\mathrm{m}^{8}{\boldsymbol{\cdot}}\mathrm{N}^{-1}{\boldsymbol{\cdot}}\mathrm{mol}^{-2}$ | $m^{5} \cdot N^{-1} \cdot mol^{-1}$ |
| MnBr <sub>2</sub> | $-1.44\pm0.030$                   | $-0.11 \pm 0.53$                             | $8 \pm 2.7$                                                                              | 0.65                                |
| CoBr <sub>2</sub> | $-1.47\pm0.022$                   | $-0.8\pm0.43$                                | $8 \pm 4.3$                                                                              | 1.6                                 |
| ZnBr <sub>2</sub> | $-0.90\pm0.035$                   | $-3.1 \pm 0.91$                              | $29 \pm 6.0$                                                                             | 2.1                                 |
| CoCl <sub>2</sub> | $-1.24\pm0.027$                   | $-1.5\pm0.42$                                | $5\pm1.9$                                                                                | 0.85                                |

Table 6. Parameters of Equation 9 for the Speed of Sound (and the Mean Deviations) for the Metal Bromides and Cobalt(II) Chloride in Acetonitrile Solutions at 298.15 K

|                   | $10^2 \cdot A_2$                            | $10^{3} \cdot A_{3}$                | σ                |
|-------------------|---------------------------------------------|-------------------------------------|------------------|
| salt              | $(m^{5} \cdot s^{-2} \cdot mol^{-1})^{1/2}$ | $m^{4} \cdot s^{-1} \cdot mol^{-1}$ | $m \cdot s^{-1}$ |
| MnBr <sub>2</sub> | $-5.65 \pm 0.57$                            | $-14.0 \pm 0.53$                    | 0.0088           |
| CoBr <sub>2</sub> | $-1.0 \pm 0.94$                             | $-27.8 \pm 0.70$                    | 0.025            |
| ZnBr <sub>2</sub> | $7 \pm 5.6$                                 | $-62 \pm 5.9$                       | 0.095            |
| CoCl <sub>2</sub> | $-10.5 \pm 2.6$                             | $35 \pm 2.3$                        | 0.056            |

 $\kappa_{S/}$ m<sup>2</sup>·N<sup>-1</sup> and  $\kappa_{S,0}$ /m<sup>2</sup>·N<sup>-1</sup> in eq 7 refer to the adiabatic compressibility of the solution and the solvent, respectively, calculated using eq 3. The obtained values of  $\kappa_S$  and  $K_{S,\Phi}$  are shown in Table 4. Inspection of the presented data shows that an increase in the concentration of the salt causes an increase in the apparent molar isentropic compressibility of the bromide solution and a decrease in the apparent molar isentropic compressibility of the chloride solution, as can be observed in Figure 3, and the equation

$$K_{S,\Phi} = A_K^{\infty} + A_K^{-1} c^{1/2} + A_K^{-2} c$$
(8)

satisfactorily describes the concentration dependence. The coefficients  $(A_{K}^{\infty}, A_{K}^{1}, \text{ and } A_{K}^{2})$  of eq 8, their standard deviations, and the respective values of the residual variance,  $\sigma$ , are given in Table 5. The negative values of  $K_{S,\Phi}$  are an indication of the more close-packed structure of the studied solutions than those of the pure solvent.

The concentration dependences of the speed of sound, the density, and the adiabatic compressibility of solution can be represented by polynomials using the molar concentration  $c/\text{mol} \cdot \text{m}^{-3}$ 

$$y = A_1 + A_2 c^{1/2} + A_3 c \tag{9}$$

|                   |          | $d_0$              | $A_2 \cdot 10^2$                                      | $A_3 \cdot 10^3$     | σ                  |
|-------------------|----------|--------------------|-------------------------------------------------------|----------------------|--------------------|
| salt              |          | kg•m <sup>-3</sup> | $\overline{(kg^2 \cdot m^{-3} \cdot mol^{-1})^{1/2}}$ | kg•mol <sup>-1</sup> | kg•m <sup>-3</sup> |
|                   | 288.15 K | 787.299            | $1.4 \pm 0.43$                                        | $190.6\pm0.37$       | 0.012              |
|                   | 293.15 K | 781.923            | $1.6 \pm 0.57$                                        | $191.2\pm0.55$       | 0.016              |
|                   | 298.15 K | 776.525            | $1.8 \pm 0.60$                                        | $191.9\pm0.56$       | 0.018              |
| $MnBr_2$          | 303.15 K | 771.097            | $1.8 \pm 0.57$                                        | $192.8\pm0.56$       | 0.018              |
|                   | 308.15 K | 765.640            | $1.9 \pm 0.66$                                        | $193.6\pm0.66$       | 0.019              |
|                   | 313.15 K | 760.148            | $2.0 \pm 0.71$                                        | $194.5\pm0.70$       | 0.022              |
|                   | 323.15 K | 749.055            | $2.2 \pm 0.81$                                        | $196.4\pm0.75$       | 0.023              |
|                   | 288.15 K | 787.315            | $1.2 \pm 0.57$                                        | $199.2\pm0.40$       | 0.020              |
|                   | 293.15 K | 781.939            | $1.0 \pm 0.52$                                        | $200.0\pm0.39$       | 0.019              |
|                   | 298.15 K | 776.525            | $0.8 \pm 0.45$                                        | $201.0\pm0.39$       | 0.018              |
| CoBr <sub>2</sub> | 303.15 K | 771.112            | $0.7 \pm 0.53$                                        | $201.8\pm0.40$       | 0.019              |
|                   | 308.15 K | 765.653            | $0.6 \pm 0.51$                                        | $202.7\pm0.42$       | 0.019              |
|                   | 313.15 K | 760.164            | $0.35 \pm 0.43$                                       | $203.6\pm0.36$       | 0.016              |
|                   | 323.15 K | 749.073            | $0.1 \pm 0.50$                                        | $205.5\pm0.41$       | 0.018              |
|                   | 288.15 K | 787.313            | $0.6 \pm 0.28$                                        | $190.0\pm0.35$       | 0.0065             |
|                   | 293.15 K | 781.935            | $0.65\pm0.28$                                         | $190.8\pm0.25$       | 0.0064             |
|                   | 298.15 K | 776.535            | $0.8 \pm 0.68$                                        | $191.3\pm0.74$       | 0.015              |
| $ZnBr_2$          | 303.15 K | 771.106            | $0.6 \pm 0.78$                                        | $192.5\pm0.91$       | 0.019              |
|                   | 308.15 K | 765.650            | $0.6 \pm 0.86$                                        | $193.2\pm0.96$       | 0.020              |
|                   | 313.15 K | 760.159            | $0.7 \pm 0.74$                                        | $194.0\pm0.97$       | 0.019              |
|                   | 323.15 K | 749.070            | $0.7 \pm 0.87$                                        | $196 \pm 1.2$        | 0.020              |
|                   | 288.15 K | 787.297            | $0.5 \pm 0.44$                                        | $115.9\pm0.37$       | 0.0097             |
|                   | 293.15 K | 781.919            | $0.3 \pm 0.60$                                        | $116.6\pm0.46$       | 0.013              |
|                   | 298.15 K | 776.528            | $0.2 \pm 0.60$                                        | $117.2\pm0.46$       | 0.014              |
| $CoCl_2$          | 303.15 K | 771.090            | $-0.4\pm0.65$                                         | $118.0\pm0.50$       | 0.014              |
|                   | 308.15 K | 765.631            | $-0.1 \pm 0.65$                                       | $118.5\pm0.51$       | 0.014              |
|                   | 313.15 K | 760.142            | $-0.3\pm0.75$                                         | $119.2\pm0.58$       | 0.016              |
|                   | 323.15 K | 749.056            | $3 \pm 9.6$                                           | $118\pm7.6$          | 0.21               |
|                   | 288.15 K | 787.297            | $0.2 \pm 0.28$                                        | $111.0\pm0.26$       | 0.0065             |
|                   | 293.15 K | 781.919            | $0.2 \pm 0.35$                                        | $111.8\pm0.33$       | 0.0082             |
|                   | 298.15 K | 776.528            | $0.3 \pm 0.28$                                        | $112.4\pm0.25$       | 0.0065             |
| $ZnCl_2$          | 303.15 K | 771.090            | $0.25\pm0.25$                                         | $113.2\pm0.24$       | 0.0063             |
|                   | 308.15 K | 765.631            | $0.0 \pm 0.25$                                        | $114.1\pm0.33$       | 0.0074             |
|                   | 313.15 K | 760.142            | $0.3 \pm 0.27$                                        | $114.8\pm0.24$       | 0.0058             |
|                   | 323.15 K | 749.056            | $0.15 \pm 0.37$                                       | $116.6 \pm 0.37$     | 0.0091             |

Table 7. Parameters of Equation 9 for the Density (and the Mean Deviations) for the Metal Bromides and Chlorides in Acetonitrile Solutions at 298.15 K

Table 8. Parameters of Equation 9 for the Adiabatic Compressibility (and the Mean Deviations) for the Metal Bromides and Cobalt(II) Chloride in Acetonitrile Solutions at 298.15 K

| 14                 | $\frac{10^{14} \cdot A_2}{(m^7, N^{-2}, m + 1)^{1/2}}$                                    | $10^{14} \cdot A_3$                               | $\frac{10^{13} \cdot \sigma}{m^2 N^{-1}}$ |
|--------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|
| salt               | $(\mathbf{m}^{*}\cdot\mathbf{N}^{*}\cdot\mathbf{m}\mathbf{n}^{*}\cdot\mathbf{n}^{*})^{n}$ | m <sup>3</sup> ·IN <sup>1</sup> ·mol <sup>1</sup> | m <sup>2</sup> ·N                         |
| MnBr <sub>2</sub>  | $-2.9\pm0.28$                                                                             | $-16.4 \pm 0.29$                                  | 0.4                                       |
| CoBr <sub>2</sub>  | $-14 \pm 6.8$                                                                             | $-15.0 \pm 0.57$                                  | 1.8                                       |
| ZnBr <sub>2</sub>  | $-12 \pm 8.2$                                                                             | $-11.2 \pm 0.88$                                  | 1.4                                       |
| Col <sub>2</sub> C | $4.5\pm0.78$                                                                              | $-15.09 \pm 0.060$                                | 0.17                                      |

where y denotes the speed of sound in the solution, u (then  $A_1$ is the speed of sound in the pure solvent independently measured,  $A_1 = u_0$ ; or the density of the solution, d (then  $A_1$  is the density of the pure solvent independently measured,  $A_1 =$  $d_0$ ; or the adiabatic compressibility,  $\kappa_S$  (then  $A_1$  is the adiabatic compressibility of the pure solvent independently calculated,  $A_1 = \kappa_{S,0}$ ).

The coefficients of the polynomials, their standard deviations, and the respective values of the residual variance,  $\sigma$ , are given in Tables 6, 7, and 8. The different acoustic properties of the studied solutions are observed. The presence of the salt causes a decrease in the sound velocity for the metal bromides. The opposite effect is observed for cobalt(II) chloride. The difference is obviously related to the changes in solvent structure induced by the electrolytes. The studied salts exhibit different electrolytic behavior and exist as the complex electrolytes or electrically neutral species. Thus, their influence on compressibility and sound velocity is different.

#### Literature Cited

- (1) Warmińska, D.; Krakowiak, J.; Grzybkowski, W. Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. I. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in N,N-Dimethylformamide. J. Chem. Eng. Data 2005, 50. 221-225.
- (2) Krakowiak, J.; Warmińska, D.; Grzybkowski, W. Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. II. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Perchlorates in Acetonitrile. J. Chem. Eng. Data 2005, 50, 832-837.
- (3) Warmińska, D.; Krakowiak, J.; Grzybkowski, W. Thermodynamic Properties of Inorganic Salts in Nonaqueous Solvents. III. Apparent Molar Volumes and Compressibilities of Divalent Transition-Metal Chlorides in N,N-Dimethylformamide. J. Chem. Eng. Data, 52, 2099-2104
- (4) Libuś, W.; Chachulski, B.; Grzybkowski, W.; Pilarczyk, M.; Puchalska, D. Mobilities of Complex Forming Cations in Non-Aqueos Donor Solvents. J. Solution Chem. 1981, 10, 631-648.
- (5) Grzybkowski, W. Variation in Stability of Monohalide Complexes and Some Properties of the Solvated Cations within the Mn<sup>2+</sup>-Zn<sup>2+</sup> Series. Polyhedron 1990, 18, 2257-2261.
- Krakowiak, J.; Strzelecki, H.; Grzybkowski, W. Solvation and Partial Molar Volumes of Some Transition Metal Cations in N,N-dimethylacetamide. Triethylphosphate and Acetonitrile. J. Mol. Liq. 2004, 112, 171 - 178
- (7) Janz, G. J.; Marcinkowsky, A. E.; Venkatasetty, H. V. Cobalt(II) Halides as Electrolytes in Acetonitrile. Electrochim. Acta 1963, 8, 867-875
- (8) Setili, L.; Furlani, C. Formation Equilibria of Pseudotetrahedral Co-(II) Halogeno complexes in Acetonitrile. J. Inorg. Nucl. Chem. 1970, 32, 1997-2008.
- (9) Libuś, W.; Grzybkowski, W. Spectrophotometric study on coordination states of cobaltous bromide in acetonitrile solution. Bull. Acad. Pol. Sci. Ser. Sci. Chim. 1970, 18, 501-511
- (10) Libuś, W. On the Formation of Tetrahedral Cobalt(II) Complexes in Solutions. V. Chloro complexes in Acetonitrile Solutions. Rocz. Chem. **1962**, 36, 999-1010.
- (11) Moumouzias, G.; Panopoulos, D. K.; Ritzoulis, G. Excess Properties of the Binary Liquid System Propylene Carbonate + Acetonitrile. J. Chem. Eng. Data 1991, 36, 20-23
- (12) Gill, D. S.; Singh, P.; Singh, J.; Singh, P.; Senanayake, G.; Hefter, G. Ultrasonic Velocity, Conductivity, Viscosity and Calorimetric studies of copper(I) and Sodium Perchlorates in Cyanobenzene, Pyridine and Cyanomethane. J. Chem. Soc., Faraday Trans. **1995**, 90, 2789–2795. (13) Del Grosso, V. A.; Mader, C. W. Speed of Sound in Pure Water. J.
- Acoust. Soc. Am. 1972, 52, 1442-1446.
- (14) Davidson, I.; Perron, G.; Desnoyers, J. E. Isentropic Compressibilities of Electrolytes in Acetonitrile at 25 °C. Can. J. Chem. 1981, 59, 2212-2217.

Received for review April 12, 2007. Accepted July 21, 2007. Support from the State Committee for Scientific Research (KBN) within the grant 7 T09A 016 021 is acknowledged.

JE7001946