Solubility of Phenacetinum in Methanol, Ethanol, 1-Propanol, 1-Butanol, 1-Pentanol, Tetrahydrofuran, Ethyl Acetate, and Benzene between 282.65 K and 333.70 K

Qiu-Lian Chang, Qun-Sheng Li, Shui Wang,* and Yuan-Ming Tian

College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

The solubility of phenacetinum in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, tetrahydrofuran, ethyl acetate, and benzene was measured using a laser technique with a temperature range from 282.65 K to 333.70 K. The results of these measurements were correlated with a semiempirical equation.

Introduction

Phenacetinum (C₂H₅ONHCOCH₃, molecular weight 179.218, CAS Registry No. 62-44-2) is a kind of white crystalline powder. As an intermediate, phenacetinum has been widely used in synthesis of medicament for antifebrile anodyne and other antibiotics for combination drugs. In the present study, the solubility of phenacetinum was meaned in the temperature range from 282.65 K to 333.70 K in various organic solvents using a laser monitoring observation technique. The method employed in this work was classed as a synthetic method, which was much faster and more readily available than the analytical method.^{1,2}

Experimental Sections

Materials. A white crystalline powder of phenacetinum was purified by recrystallization from methanol solution. Its mass fraction purity determined by HPLC was higher than 99.4 %. All solvents used for experiments were analytical research grade reagents from Beijing Chemical Reagent Co.

Methods and Apparatus

The apparatus for the solubility measurement is the same as that described in the literature^{1,2} and described briefly here. A 250 mL jacketed vessel was used to determine the solubility; the temperature was controlled to \pm 0.05 K through a thermostat water bath. The dissolution of the solute was examined by a laser beam penetrating the vessel. To prevent evaporation of the solvent, a condenser vessel was introduced. The masses of the samples and solvents were measured using an analytical balance (Sartorius CP124S, Germany) with an uncertainty of \pm 0.0001 g.

The solubility of phenacetinum was measured by the laser technique.^{3–8} During the experiments, a known mass of phenacetinum was added to a known mass of solvent. Continuous stirring was achieved with a magnetic stir bar. A mercury-inglass thermometer was inserted into the inner chambers of the vessel for the measurement of the temperature. During the dissolution of the particles of the solute, the intensity of the laser beam increased gradually. When the solute dissolved completely, the solution was clear; the laser intensity reached its maximum; and an additional amount of solute of known mass

(about 1 mg to 5 mg) was introduced into the vessel. This procedure was repeated until the laser intensity did not return to maximum or, in other words, the last addition of solute was not dissolved completely. The interval of the addition was 60 min. The same solubility experiment was conducted three times, and the mole fraction solubility x_1 in different pure solvents

$$x_1 = \frac{m_1/M_1}{m_1/M_1 + m_2/M_2} \tag{1}$$

where m_1 , m_2 , and m_3 represent the mass of the solute, methanol, and isopropanol, respectively, and M_1 , M_2 , and M_3 are the molecular weight of the solute, methanol, and isopropanol, respectively. The uncertainty in the solubility was estimated to be 0.5 %, whereas the uncertainty in temperature was estimated to be 0.05 K.

Results and Discussion

was obtained as follows

The measured solubilities of phenacetinum in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, tetrahydrofuran, ethyl acetate, and benzene are presented in Table 1 and more visually given in Figure 1.

The solubility of a solid in a liquid may be expressed in a very general manner by eq 2

$$\ln x_1 = a + \frac{b}{(T/K)} + c \ln(T/K)$$
(2)

where *T* is the absolute temperature, and *a*, *b*, and *c* are empirical constants. The difference between experimental and calculated results is also presented in Table 1. The values of the three parameters *a*, *b*, and *c* together with the root-mean-square deviations (rmsd) are listed in Table 2. The rmsd is defined as follows⁴

rmsd =
$$\left[\frac{\sum_{i=1}^{N} (x_{1,i} - x_{1,i}^{\text{calcd}})^2}{N-1}\right]^{1/2}$$
 (3)

* To whom correspondence should be addressed. E-mail: cqlky2004@ sina.com. Fax: +0086-10-64413151.

where N is the number of experimental points; $x_{1,i}^{\text{calcd}}$ is the

Table 1. N	Iole Fraction	Solubility x_1	of Pl	henacetinum	in	Different	Pure	Solvents	from	282.65	Κ	to	333.7	0 K	ĺ.
------------	----------------------	------------------	-------	-------------	----	-----------	------	----------	------	--------	---	----	-------	-----	----

T/K	$10^{3}x_{1}$	$10^3(x_1 - x_1^{\text{calcd}})$	T/K	$10x_1$	$10^3(x_1 - x_1^{calcd})$	T/K	$10x_1$	$10^3(x_1 - x_1^{\text{calcd}})$		
Methanol										
283.74	10.460 ± 0.0012	0.078	303.18	25.574 ± 0.0012	-0.197	323.25	63.176 ± 0.0012	0.386		
288.15	12.790 ± 0.0020	-0.025	308.05	32.072 ± 0.0016	-0.053	328.15	77.480 ± 0.0011	-0.025		
293.83	16.571 ± 0.0010	-0.172	313.25	40.701 ± 0.0020	0.179	333.45	95.735 ± 0.0015	-1.309		
298.18	20.259 ± 0.0021	-0.232	318.10	50.556 ± 0.0012	0.373					
				Etherral						
282 65	0.6408 ± 0.0020	-0.0627	202 21	22580 ± 0.0000	-0.126	222.25	52.061 ± 0.0012	0.275		
282.03	9.0408 ± 0.0039 12.861 ± 0.0020	-0.0037	207.85	22.380 ± 0.0009 27.324 ± 0.0020	-0.120	323.23	55.001 ± 0.0012	0.373		
209.23	12.801 ± 0.0030 15.170 ± 0.0020	0.171	307.85	27.324 ± 0.0030 24.522 ± 0.0028	-0.141	328.05	00.030 ± 0.0013 82.226 \pm 0.0015	-0.022		
293.41	13.170 ± 0.0039 18 276 ± 0.0026	-0.015	218.25	34.332 ± 0.0028 42.780 ± 0.0025	-0.022	555.70	62.230 ± 0.0013	-0.032		
290.23	18.370 ± 0.0020	-0.015	316.23	42.769 ± 0.0023	0.165					
	0.0510 + 0.0005	0.4.40.4	202.24	1-Propanol	0.100		54.040 + 0.0005	0.005		
282.65	8.9512 ± 0.0005	-0.1406	303.31	22.224 ± 0.0005	-0.132	323.25	54.049 ± 0.0005	0.337		
289.25	12.371 ± 0.0006	0.272	307.85	27.068 ± 0.0006	-0.216	328.45	67.999 ± 0.0006	0.476		
293.45	14.756 ± 0.0005	0.230	313.30	34.520 ± 0.0049	-0.148	333.70	85.175 ± 0.0006	0.114		
298.25	17.969 ± 0.0005	0.056	318.15	42.973 ± 0.0045	0.059					
				1-Butanol						
283.37	16.433 ± 0.0027	0.119	303.18	35.331 ± 0.0020	-0.211	323.25	80.964 ± 0.0027	0.686		
288.15	19.652 ± 0.0030	0.026	308.05	43.203 ± 0.0022	-0.027	328.15	98.408 ± 0.0013	0.212		
293.73	24.265 ± 0.0009	-0.151	313.23	53.612 ± 0.0018	0.294	333.27	119.91 ± 0.0027	-1.385		
298.20	28.897 ± 0.0015	-0.241	318.43	66.512 ± 0.0020	0.612					
				1-Pentanol						
282.95	11.414 ± 0.0030	-0.111	303.15	24.323 ± 0.0036	-0.132	323.17	55.923 ± 0.0032	0.620		
288.23	13.629 ± 0.0049	0.016	307.95	29.741 ± 0.0031	0.021	328.30	68.482 ± 0.0035	0.699		
293.27	16.382 ± 0.0037	-0.551	312.95	36.708 ± 0.0039	0.026	333.27	82.759 ± 0.0049	-1.836		
298.20	19.863 ± 0.0049	-0.205	317.87	45.061 ± 0.0032	0.336					
				Tetrahydrofura	n					
283.03	$18,830 \pm 0.0022$	-0.064	303.15	39.546 ± 0.0031	-0.161	323 45	84863 ± 0.0031	0.274		
288.35	23.073 ± 0.0036	0.106	307.95	47.304 ± 0.0028	-0.163	328.33	101.65 ± 0.0034	0.176		
293.88	27.588 ± 0.0030	0.054	313.15	57.561 ± 0.0035	-0.050	333.55	122.77 ± 0.0032	-0.500		
298.17	32.940 ± 0.0031	-0.067	318.15	69.547 ± 0.0027	0.131	000100		01000		
				Ethvil Acototo						
282 65	5.9313 ± 0.0017	-0.4994	303 17	13683 ± 0.0022	-0.110	373 75	30.650 ± 0.0018	-0.170		
282.05	3.9513 ± 0.0017 8 2669 ± 0.0020	0.4994	308.03	15.085 ± 0.0022 16.438 ± 0.0019	-0.308	323.25	30.030 ± 0.0013 37.683 ± 0.0021	0.170		
203.45	0.2009 ± 0.0020 0.5830 ± 0.0010	0.0535	313.05	10.438 ± 0.0019 20.055 ± 0.0023	-0.563	323.15	37.083 ± 0.0021 46.424 ± 0.0028	-0.006		
293.30	11.494 ± 0.0019	0.0528	318 25	20.033 ± 0.0023 24.842 ± 0.0025	-0.208	555.15	40.424 ± 0.0028	0.090		
270.55	11.474 ± 0.0022	0.100	510.25	24.042 ± 0.0025	0.200					
202.10	0.7004 + 0.0024	0 1000	202.25	Benzene	0.0407	202.95	7.0152 + 0.0025	1 (7)		
283.10	0.7884 ± 0.0024	-0.1233	303.25	2.4537 ± 0.0029	-0.048/	322.85	1.2153 ± 0.0035	-1.6/6		
288.15	1.2485 ± 0.0039	0.10/1	308.23	3.1283 ± 0.0032	-0.1158	328.33	9.9350 ± 0.0031	0.2809		
295.10	1.0052 ± 0.0030	0.0751	515.15	4.0896 ± 0.0031	-2.003	355.15	13.028 ± 0.0036	0.108		
297.90	1.9537 ± 0.0033	0.0320	318.15	5.4662 ± 0.0028	-1.113					

_

solubility calculated from eq 2; and $x_{1,j}$ is the experimental value of solubility.

Conclusions

From Table 1, it can be seen that tetrahydrofuran is a better solvent than other solvents for phenacetinum. The solubility of

Figure 1. Mole fraction solubility x_1 of phenacetinum in different solvents: \bullet , methanol; \blacktriangle , ethanol; \blacksquare , 1-propanol; \checkmark , 1-butanol; \blacklozenge , ethyl acetate; \bigstar , benzene; +, 1-pentanol; -, tetrahydrofuran.

 Table 2. Parameters of Equation 5 for Phenacetinum in Different

 Pure Solvents

solvent	а	b	С	10 ⁴ rmsd
methanol	-100.528	810.8610	16.484	4.438
ethanol	-192.953	5272.242	30.060	1.841
1-propanol	-180.920	4567.938	28.358	2.320
1-butanol	-193.722	5462.699	30.164	5.252
1-pentanol	-214.371	6398.446	33.172	6.561
tetrahydrofuran	-153.333	3871.533	24.034	2.022
ethyl acetate	-178.853	4773.699	27.794	3.318
benzene	-266.820	7626.045	41.243	1.415

the title compound depends on the polarity of the solvents to some degree. The solubility in strongly polar tetrahydrofuran is obviously higher than in weakly polar solvents. In fact, a carbonyl and an amido are in the molecule of phenacetinum, which bring it some polarity. The solubility behavior just reflected the empirical rule that "like dissolves like".

From Table 1, Table 2, and Figure 1, we can elicit the following conclusions: (1) For all selected pure solvent systems, solubility is a function of temperature, and it increases with temperature. (2) The solubility of phenacetinum in these eight organic solvents decreases in the order tetrahydrofuran > 1-butanol > methanol > 1-pentanol > 1-propanol > ethanol > ethyl acetate > benzene. (3) Results were regressed by eq 2 for each solvent. The experimental solubility and correlation equation in this work can be used as essential data and models in the purification process of phenacetinum.

Literature Cited

- Hao, H. X.; Wang, J. K.; Wang, Y. L. Solubility of dexamethasone dodium phosphate in different solvents. J. Chem. Eng. Data 2004, 49, 1697–1698.
- (2) Li, D. Q.; Liu, D. Z.; Wang, F. A. Solubility of 4-methylbenzoic acid between 288 K and 370 K. J. Chem. Eng. Data 2001, 46, 234–236.
- (3) Liu, B.-S.; Wang, J.-K.; Sun, H. Solubility of Potassium Clavulanate in Aqueous 2-Propanol Mixtures. J. Chem. Eng. Data 2006, 51, 291– 293.
- (4) Li, Q. S.; Liu, Y. M.; Wang, S.; Wu, H. L. Solubility of D-(-)-*p*-Hydroxyphenylglycine Dane Salt in Mixtures of Methanol and Ethanol. *J. Chem. Eng. Data* **2006**, *51*, 2182–2184.
 (5) Ren, G. B.; Wang, J. K.; Yin, Q. X.; Zhang, M. J. Solubilities of
- (5) Ren, G. B.; Wang, J. K.; Yin, Q. X.; Zhang, M. J. Solubilities of proxetine hydrochloride hemihydrate between 286 K and 363 K. J. *Chem. Eng. Data* **2004**, *49*, 1671–1674.

- (6) Wang, L. H.; Cheng, Y. Y. Solubility of Puerarin in Water, Ethanol, and Acetone from (288.2 to 328.2) K. J. Chem. Eng. Data 2005, 50, 1375–1376.
- (7) Wang, S.; Wang, J. K.; Yin, Q. X.; Wang, Y. L. Light extinction method for solubility measurement. *Chin. Opt. Lett.* 2005, *3*, 149– 151.
- (8) Wang, S.; Wang, J. K.; Yin, Q. X. Measurement and correlation of solubility of 7-aminocephalosporanic acid in aqueous acetone mixtures. *Ind. Eng. Chem. Res.* 2005, 44, 3783–3787.

Received for review April 23, 2007. Accepted June 6, 2007.

JE700209V