Densities and Excess Molar Volumes for Binary Mixtures of 1,4-Butanediol + 1,2-Propanediol, + 1,3-Propanediol, and + Ethane-1,2-diol from (293.15 to 328.15) K

Qun-Sheng Li, Yuan-Ming Tian, and Shui Wang*

College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

Densities for binary mixtures of three alkanols (1,2-propanediol, 1,3-propanediol, and ethane-1,2-diol) with 1,4-butanediol over the whole composition range have been measured at temperatures from (293.15 to 328.15) K in 5 K intervals. From these data, the excess molar volumes (V^E) and their standard deviations $\sigma(V^E)$ were calculated. The experimental results were fitted to the Redlich–Kister equation using a multiparametric nonlinear regression analysis.

Introduction

Glycols are generally accepted as compounds having two hydroxyl groups attached to different carbon atoms in an aliphatic carbon chain. Glycols find widespread application in automotive, aviation, explosive, textile, surface coating, food, cosmetic, pharmaceutical, tobacco, petroleum, and other industries.¹ 1,4-Butanediol is one of these glycols, which is the most widely used of all the four carbon-based diols in industry today. 1,4-Butanediol is used predominately as a polymer feedstock. For example, it is used in the production of both polyurethanes and polybutylene terephthalate. 1,4-Butanediol may also be converted to γ -butyrolactone and tetrahydrofuran, which can be employed as an intermediate for materials such as pyrrolidones and as a solvent, respectively.²

Knowledge of the elementary physicochemical properties such as density of these mixtures is essential in the modeling and design of chemical processes. We have measured the density and excess volumes of the binary mixture 1,4-butanediol + 1,2propanediol, 1,3-propanediol, and ethane-1,2-diol at temperatures from (293.15 to 328.15) K over the whole composition range. The extensive experimental data reported in this work have been correlated with the Redlich–Kister model. The parameters of the model and deviations between experimental and calculated data are given.

Experimental Sections

Materials. Chemicals of high purity obtained from different suppliers were purified by simple vacuum fractionation. The purity was checked by gas chromatography (GC). In Table 1, the specifications of the experimental chemicals (molecular weight, CASRN, purity) are summarized, and literature data (if available) for comparison are also presented.

Apparatus and Procedure. We used an apparatus similar to that described in the literature³ and described briefly here. The densities of the pure components and binary mixtures were measured using an approximately 50 cm³ Gay-Lussac pycnometer which was calibrated by using pure water. The pycnometer containing the solutions was immersed in a constant-temperature bath. The temperature was controlled within ± 0.05 K of the

* To whom correspondence should be addressed. E-mail: wangshui2000@ sohu.com. Fax: +0086-10-64413151.

Table 1.	Pure Compound Specification: Molecular Weight	ht, CAS
Registry	Number (CASRN), Purity, Densities at Different	t
Tempera	tures and Comparison with Literature Data	

					ρ/g•	cm^{-3}
compound	mol wt.	CASRN	purity	T/K	this work	lit.
1,4-butanediol	90.122	110-63-4	>99.9 %	293.15	1.01637	1.01622 ^a
				298.15	1.01304	1.0127 ^b
				303.15	1.00996	1.01011 ^a
				308.15	1.00675	1.00643 ^c
				313.15	1.00355	1.0034^{b}
				318.15	1.00072	1.00076^{d}
				323.15	0.99780	0.9972^{b}
				328.15	0.99441	0.99402^{c}
ethane-1,2-diol	62.068	107-21-1	>99.5 %	293.15	1.11355	1.1135 ^e
				298.15	1.10986	1.1099 ^f
				303.15	1.10682	1.1066 ^g
				308.15	1.10320	1.103084 ^h
				313.15	1.09980	
				318.15	1.09623	1.096301 ^h
				323.15	1.09259	
				328.15	1.08866	1.088314 ^h
1,2-propanediol	76.095	5-55-6	>99.6 %	293.15	1.03657	
				298.15	1.03286	1.0328^{i}
				303.15	1.02915	1.0292^{j}
				308.15	1.02557	1.02540^{d}
				313.15	1.02144	1.0215^{j}
				318.15	1.01759	1.01732^{d}
				323.15	1.01374	1.014 ^j
				328.15	1.00971	1.00956 ^d
1,3-propanediol	76.095	504-63-2	>99.4 %	293.15	1.05366	
				298.15	1.05029	1.04999^{d}
				303.15	1.04709	1.0470 ^{<i>j</i>}
				308.15	1.04392	1.04371 ^d
				313.15	1.04061	1.0408 ^j
				318.15	1.03760	1.03737 ^d
				323.15	1.03451	1.0348 ^j
				328.15	1.03100	1.03096 ^d

 a Ref 5. b Ref 6. c Ref 1. d Ref 7. e Ref 8. f Ref 9. g Ref 10. h Ref 11. i Ref 12. j Ref 3.

desired temperature through a thermostat water bath. Once the solutions reached the desired temperature, they were weighed to within \pm 0.0001 g with an analytical balance (Sartorius CP124S, Germany). Each reported value was the average of at

Table 2. Densities and Molar Excess Volumes (V^E) for the 1,4-Butanediol (1) + 1,3-Propanediol (2) Binary Mixtures at Different Temperatures

Table 3. Densities and Molar Excess Volumes (V^E) for the 1,4-Butanediol (1) + 1,2-Propanediol (2) Binary Mixtures at Different Temperatures

	ρ	$V^{\rm E}$		ρ	$V^{\rm E}$
x_1	$\overline{g \cdot cm^{-3}}$	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	$\overline{g \cdot cm^{-3}}$	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$
1	8	T = 20	3 15 K	0	
0.0000	1.05366	0.000	0.5588	1.03127	-0.024
0.0858	1.04989	-0.006	0.6633	1.02752	-0.020
0.1743	1.04621	-0.016	0.7716	1.02377	-0.013
0.2657	1 04249	-0.022	0.8837	1.02005	-0.006
0.3602	1.03878	-0.022	1.0000	1.01637	0.000
0.4578	1.03505	-0.029	1.0000	1101007	01000
		T = 20	19 15 V		
0.0000	1.05029	1 - 29	0.15 K	1 02708	-0.029
0.0858	1.03025	-0.008	0.6633	1.02423	-0.029
0.00000	1.04030	-0.018	0.0000	1.02423	-0.017
0.2657	1.03920	-0.026	0.8837	1.02040	-0.008
0.2607	1.03548	-0.020	1.0000	1.01304	0.000
0.3002	1.03177	-0.034	1.0000	1.01504	0.000
0.4570	1.05177	0.054 T - 20	2 15 V		
0.0000	1.04700	I = 30	0.5522	1 02/20	-0.022
0.0000	1.04709	-0.010	0.5525	1.02409	-0.032
0.0050	1.04339	-0.021	0.0374	1.02110	-0.020
0.1745	1.03974	-0.021	0.7009	1.01/41	-0.020
0.2037	1.03007	-0.030	1.0000	1.01308	-0.011
0.3002	1.03239	-0.030	1.0000	1.00990	0.000
0.4378	1.02809	0.039	0 15 17		
0.0000	1.04202	T = 30	0.5500	1 00177	0.020
0.0000	1.04392	0.000	0.5588	1.021//	-0.038
0.0858	1.04026	-0.013	0.0033	1.01803	-0.034
0.1/43	1.03061	-0.025	0.//10	1.01427	-0.025
0.2037	1.03295	-0.035	0.8837	1.01051	-0.014
0.3002	1.02920	-0.041	1.0000	1.00075	0.000
0.4378	1.02337	-0.043			
	1.01071	T = 31	3.15 K	1.010/1	0.045
0.0000	1.04061	0.000	0.5588	1.01861	-0.045
0.0858	1.03699	-0.015	0.6633	1.01487	-0.040
0.1743	1.03339	-0.030	0.7716	1.01108	-0.028
0.2657	1.02975	-0.041	0.8837	1.00/33	-0.017
0.3602	1.02607	-0.047	1.0000	1.00355	0.000
0.4578	1.02239	-0.051			
		T = 31	8.15 K		
0.0000	1.03760	0.000	0.5588	1.01578	-0.051
0.0858	1.03404	-0.018	0.6633	1.01206	-0.046
0.1743	1.03048	-0.035	0.7716	1.00827	-0.033
0.2657	1.02688	-0.047	0.8837	1.00452	-0.020
0.3602	1.02321	-0.053	1.0000	1.00072	0.000
0.4578	1.01953	-0.056			
		T = 32	23.15 K		
0.0000	1.03451	0.000	0.5588	1.01286	-0.057
0.0858	1.03099	-0.020	0.6633	1.00917	-0.053
0.1743	1.02750	-0.041	0.7716	1.00536	-0.037
0.2657	1.02390	-0.052	0.8837	1.00161	-0.023
0.3602	1.02026	-0.059	1.0000	0.99780	0.000
0.4578	1.01660	-0.062			
		T = 32	28.15 K		_
0.0000	1.03100	0.000	0.5588	1.00951	-0.064
0.0858	1.02753	-0.023	0.6633	1.00580	-0.058
0.1743	1.02408	-0.046	0.7716	1.00199	-0.041
0.2657	1.02050	-0.058	0.8837	0.99824	-0.026
0.3602	1.01686	-0.064	1.0000	0.99441	0.000
0.4578	1.01322	-0.068			

least three measurements. The uncertainties of the density were about ± 0.00003 g·cm⁻³.

Experimental values of density are used to calculate $V^{\rm E}$ of the mixtures as

$$V^{\rm E} = \frac{(x_1 M_1 + x_2 M_2)}{\rho} - (x_1 M_1 / \rho_1 + x_2 M_2 / \rho_2)$$
(1)

where M_1 and M_2 are the molecular weights of components 1 and 2; ρ_1 and ρ_2 are the densities; and x_1 an x_2 are the mole fractions of the respective components. The symbol ρ stands for the mixture density.

	ρ	VE		ρ	$V^{\rm E}$
x_1	g•cm ⁻³	$cm^3 \cdot mol^{-1}$	x_1	g·cm ⁻³	$cm^3 \cdot mol^{-1}$
T = 293.15 K					
0.0000	1.03657	0.000	0.5588	1.02552	-0.093
0.0858	1.03490	-0.028	0.6633	1.02319	-0.069
0.1743	1.03319	-0.053	0.7716	1.02085	-0.042
0.2657	1.03146	-0.078	0.8837	1.01855	-0.017
0.3602	1.02977	-0.105	1.0000	1.01637	0.000
0.4578	1.02785	-0.116			
		T = 29	98.15 K		
0.0000	1.03286	0.000	0.5588	1.02217	-0.104
0.0858	1.03131	-0.034	0.6633	1.01988	-0.080
0.1743	1.02967	-0.062	0.7716	1.01757	-0.053
0.2657	1.02800	-0.088	0.8837	1.01525	-0.023
0.3602	1.02634	-0.116	1.0000	1.01304	0.000
0.4578	1.02448	-0.128			
		T = 30)3.15 K		
0.0000	1.02915	0.000	0.5588	1.01894	-0.113
0.0858	1.02773	-0.039	0.6633	1.01679	-0.095
0.1743	1.02621	-0.071	0.7716	1.01447	-0.062
0.2657	1.02462	-0.099	0.8837	1.01217	-0.028
0.3602	1.02301	-0.126	1.0000	1.00996	0.000
0.4578	1.02119	-0.137			
		T = 30)8.15 K		
0.0000	1.02557	0.000	0.5588	1.01576	-0.128
0.0858	1.02425	-0.044	0.6633	1.01364	-0.110
0.1743	1.02283	-0.081	0.7716	1.01133	-0.074
0.2657	1.02131	-0.112	0.8837	1.00903	-0.035
0.3602	1.01974	-0.139	1.0000	1.00675	0.000
0.4578	1.01800	-0.154			
		T = 31	3.15 K		
0.0000	1.02144	0.000	0.5588	1.01235	-0.141
0.0858	1.02028	-0.049	0.6633	1.01033	-0.124
0.1743	1.01900	-0.090	0.7716	1.00806	-0.084
0.2657	1.01764	-0.126	0.8837	1.00578	-0.041
0.3602	1.01612	-0.151	1.0000	1.00355	0.000
0.4578	1.01443	-0.162			
		T = 31	8.15 K		
0.0000	1.01759	0.000	0.5588	1.00928	-0.155
0.0858	1.01658	-0.053	0.6633	1.00733	-0.136
0.1743	1.01549	-0.101	0.7716	1.00516	-0.096
0.2657	1.01421	-0.135	0.8837	1.00294	-0.049
0.3602	1.01283	-0.163	1.0000	1.00072	0.000
0.4578	1.01122	-0.173			
		T = 32	23.15 K		
0.0000	1.01374	0.000	0.5588	1.00613	-0.167
0.0858	1.01291	-0.059	0.6633	1.00430	-0.150
0.1743	1.01197	-0.112	0.7716	1.00218	-0.107
0.2657	1.01078	-0.147	0.8837	1.00003	-0.058
0.3602	1.00947	-0.173	1.0000	0.997/80	0.000
0.4578	1.00797	-0.184			
0.0000	1.00071	T = 32	28.15 K	1.002.52	0.100
0.0000	1.00971	0.000	0.5588	1.00263	-0.180
0.1742	1.00900	-0.064	0.6633	1.00083	-0.160
0.1743	1.00820	-0.123	0.7/10	0.99881	-0.120
0.2037	1.00/11	-0.101	1 0000	0.99009	0.009
0.4578	1.00439	-0.105	1.0000	0.77441	0.000
J. 1J/0	1.00707	0.170			

Results and Discussion

The densities and excess molar volumes at temperatures between (293.15 and 328.15) K for the 1,4-butanediol + ethane-1,2-diol, 1,2-propanediol, and 1,3-propanediol binary mixtures

Table 4. Densities and Molar Excess Volumes (V^E) for the 1,4-Butanediol (1) + Ethane-1,2-diol (2) Binary Mixtures at Different Temperatures

	ρ	$V^{\rm E}$		ρ	$V^{\rm E}$	
x_1	g·cm ⁻³	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	x_1	g·cm ⁻³	$cm^3 \cdot mol^{-1}$	
	T = 293.15 K					
0.0000	1.11355	0.000	0.5081	1.05191	0.084	
0.0711	1.10271	0.015	0.6164	1.04267	0.075	
0.1469	1.09213	0.029	0.7337	1.03374	0.053	
0.2279	1.08171	0.046	0.8611	1.02496	0.029	
0.3147	1.07148	0.065	1.0000	1.01637	0.000	
0.4078	1.06152	0.080				
		T = 29	8.15 K			
0.0000	1.10986	0.000	0.5081	1.04856	0.077	
0.0711	1.09909	0.014	0.6164	1.03934	0.068	
0.1469	1.08858	0.026	0.7337	1.03040	0.049	
0.2279	1.07821	0.042	0.8611	1.02164	0.026	
0.3147	1.06802	0.060	1.0000	1.01304	0.000	
0.4078	1.05812	0.074				
		T = 30	3.15 K			
0.0000	1.10682	0.000	0.5081	1.04558	0.071	
0.0711	1.09606	0.013	0.6164	1.03635	0.062	
0.1469	1.08557	0.023	0.7337	1.02739	0.044	
0.2279	1.07522	0.038	0.8611	1.01861	0.022	
0.3147	1.06504	0.055	1.0000	1.00996	0.000	
0.4078	1.05516	0.067				
		T = 30	8.15 K			
0.0000	1.10320	0.000	0.5081	1.04233	0.064	
0.0711	1.09251	0.012	0.6164	1.03312	0.056	
0.1469	1.08210	0.020	0.7337	1.02417	0.039	
0.2279	1.07184	0.033	0.8611	1.01541	0.018	
0.3147	1.06170	0.049	1.0000	1.00675	0.000	
0.4078	1.05185	0.061				
		T = 31	3.15 K			
0.0000	1.09980	0.000	0.5081	1.03915	0.057	
0.0711	1.08915	0.011	0.6164	1.02995	0.049	
0.1469	1.07880	0.017	0.7337	1.02099	0.035	
0.2279	1.06856	0.029	0.8611	1.01222	0.016	
0.3147	1.05850	0.042	1.0000	1.00355	0.000	
0.4078	1.04865	0.055				
		T = 31	8.15 K			
0.0000	1.09623	0.000	0.5081	1.03615	0.050	
0.0711	1.08569	0.009	0.6164	1.02701	0.043	
0.1469	1.07544	0.015	0.7337	1.01810	0.029	
0.2279	1.06532	0.024	0.8611	1.00936	0.013	
0.3147	1.05533	0.037	1.0000	1.00072	0.000	
0.4078	1.04562	0.046				
		T = 32	3.15 K			
0.0000	1.09259	0.000	0.5081	1.03305	0.045	
0.0711	1.08218	0.007	0.6164	1.02396	0.038	
0.1469	1.07203	0.011	0.7337	1.01511	0.026	
0.2279	1.06197	0.021	0.8611	1.00640	0.011	
0.3147	1.05209	0.032	1.0000	0.99780	0.000	
0.4078	1.04243	0.042				
		T = 32	8.15 K			
0.0000	1.08866	0.000	0.5081	1.02953	0.040	
0.0711	1.07833	0.006	0.6164	1.02051	0.032	
0.1469	1.06825	0.009	0.7337	1.01166	0.022	
0.2279	1.05828	0.017	0.8611	1.00299	0.009	
0.3147	1.04846	0.028	1.0000	0.99441	0.000	
0.4078	1.03886	0.037				

are presented in Tables 2 to 4, respectively. The experimental excess molar volumes have been correlated by means of the well-known Redlich–Kister⁴ polynomial equation

$$V^{E}/cm^{3} \cdot mol^{-1} = x_{1}x_{2}\sum_{i=0}^{n} b_{i}(x_{1} - x_{2})$$
 (2)

The regression was performed by means of the maximum likelihood method using a program with the possibility to select

Table 5. Redlich–Kister Parameters, b_i , and Standard Deviations of Molar Excess Volumes, $\sigma(V^E)$, for the Investigated Systems at Different Temperatures

-						
			$\sigma(V^{\rm E})$			
b_0	b_1	b_2	$cm^3 \cdot mol^{-1}$			
1,4-Butanediol $(1) + 1,3$ -Propanediol (2)						
-0.1082	-0.0336	0.0526	0.001			
-0.1278	-0.0349	0.0515	0.001			
-0.1463	-0.0354	0.0454	0.002			
-0.1685	-0.0358	0.0299	0.002			
-0.1939	-0.0387	0.0259	0.001			
-0.2187	-0.0429	0.0078	0.001			
-0.2443	-0.0452	-0.0008	0.002			
-0.2675	-0.0489	-0.0143	0.002			
1,4-Butane	diol(1) + 1,2	Propanediol (2)			
-0.4201	-0.1575	0.3145	0.005			
-0.4661	-0.1577	0.2864	0.005			
-0.5086	-0.1586	0.2434	0.004			
-0.5713	-0.1556	0.2329	0.005			
-0.6208	-0.1553	0.1985	0.003			
-0.6695	-0.1470	0.1546	0.003			
-0.7151	-0.1386	0.0899	0.003			
-0.7643	-0.1353	0.0214	0.002			
1,4-Butanediol (1) + Ethane-1,2-diol (2)						
0.3303	0.0030	-0.1957	0.002			
0.3035	0.0082	-0.1867	0.002			
0.2774	0.0102	-0.1826	0.002			
0.2509	0.0126	-0.1825	0.002			
0.2229	0.0073	-0.1723	0.002			
0.1937	0.0056	-0.1575	0.002			
0.1726	0.0034	-0.1572	0.002			
0.1528	0.0028	-0.1569	0.002			
	$\begin{array}{c} b_0 \\ \hline 1,4\text{-Butane} \\ -0.1082 \\ -0.1278 \\ -0.1463 \\ -0.1685 \\ -0.1939 \\ -0.2187 \\ -0.2443 \\ -0.2675 \\ \hline 1,4\text{-Butane} \\ -0.4201 \\ -0.4661 \\ -0.5086 \\ -0.5713 \\ -0.6208 \\ -0.6695 \\ -0.7151 \\ -0.7643 \\ \hline 1,4\text{-Butane} \\ 0.3303 \\ 0.3035 \\ 0.2774 \\ 0.2209 \\ 0.2229 \\ 0.1937 \\ 0.1726 \\ 0.1528 \end{array}$	$\begin{array}{c ccccc} b_0 & b_1 \\ \hline 1,4\text{-Butanediol} & (1) + 1,3 \\ -0.1082 & -0.0336 \\ -0.1278 & -0.0349 \\ -0.1463 & -0.0354 \\ -0.1685 & -0.0358 \\ -0.1939 & -0.0387 \\ -0.2187 & -0.0429 \\ -0.2443 & -0.0452 \\ -0.2675 & -0.0489 \\ \hline 1,4\text{-Butanediol} & (1) + 1,2 \\ -0.4201 & -0.1575 \\ -0.4661 & -0.1577 \\ -0.5086 & -0.1586 \\ -0.5713 & -0.1556 \\ -0.6208 & -0.1553 \\ -0.6695 & -0.1470 \\ -0.7151 & -0.1386 \\ -0.7643 & -0.1353 \\ \hline 1,4\text{-Butanediol} & (1) + \text{Eth} \\ 0.3303 & 0.0030 \\ 0.3035 & 0.0082 \\ 0.2774 & 0.0102 \\ 0.229 & 0.0073 \\ 0.1937 & 0.0056 \\ 0.1726 & 0.0028 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

the number of adjustable parameters and to input estimated standard deviations for the measured properties. The conclusion was to use just three parameters for the Redlich–Kister equation and to find the source of possible errors. Therefore, the input estimated standard deviation for the composition determinations (in more fractions) was set to 0.001 for all mixtures under investigation.

The Redlich–Kister parameters obtained from the correlation of V^{E} –composition data are summarized in Table 5 together with the resulting standard deviations in excess molar volume $\sigma(V^{\text{E}})$. The standard deviation was calculated by

$$\sigma(V^{\rm E}) = \left[\frac{\Sigma(V^{\rm E}_{\rm exptl} - V^{\rm E}_{\rm calcd})^2}{N - n}\right]^{0.5}$$
(3)

where N and n are the number of experimental points and parameters, respectively. It was shown that the experimental data

Figure 1. Excess molar volumes (V^{E}) for the 1,4-butanediol (1) + 1,3propanediol (2) mixture at different temperatures: \Box , 293.15 K; \times , 298.15 K; \triangle , 303.15 K; \bigtriangledown , 308.15 K; \diamondsuit , 313.15 K; \doteqdot , 318.15 K; +, 323.15 K; \bigcirc , 328.15 K.

Figure 2. Excess molar volumes (V^{E}) for the 1,4-butanediol (1) + 1,2propanediol (2) mixture at different temperatures: \Box , 293.15 K; \times , 298.15 K; \triangle , 303.15 K; \bigtriangledown , 308.15 K; \diamondsuit , 313.15 K; \doteqdot , 318.15 K; +, 323.15 K; \bigcirc , 328.15 K.

Figure 3. Excess molar volumes (V^{E}) for the 1,4-butanediol (1) + ethane-1,2-diol (2) mixture at different temperatures: \Box , 293.15 K; ×, 298.15 K; \triangle , 303.15 K; \bigtriangledown , 308.15 K; \diamondsuit , 313.15 K; \doteqdot , 318.15 K; +, 323.15 K; \bigcirc , 328.15 K.

provided previously were reliable. From the inspection of Table 1, one may conclude that the pure compound densities at different temperatures are in good agreement with the available literature values.

The results presented in Tables 2 to 4 and Figures 1 to 3 indicate that V^{E} values are negative for (1,4-butanediol + 1,2-

propanediol, 1,3-propanediol) and are positive for (1,4-butanediol + ethane-1,2-diol) mixtures over the entire mole fraction range and at all temperatures investigated for each binary system under study.

Conclusions

Densities of the three binary mixtures of glycols (1,4butanediol + 1,2-propanediol, 1,3-propanediol, and ethane-1,2diol) have been measured at different temperatures under atmospheric pressure over the whole concentration range. The values of excess molar volumes are calculated by the densities and have been correlated well using the Redlich–Kister polynomial equation.

Literature Cited

- Yang, C.-S.; Ma, P.-S.; Zhou, Q. Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures. J. Chem. Eng. Data 2004, 49, 582–587.
- (2) Haasa, T.; Jaegera, B.; Webera, R.; Mitchellb, S. F.; King, C. F. New diol processes: 1,3-propanediol and 1,4-butanediol. *Appl. Catal. A: General* 2005, 280, 83–88.
- (3) Li, Q.-S.; Su, M.-G.; Wang, S. Densities and Excess Molar Volumes for Binary Glycerol + 1-Propanol, + 2-Propanol, + 1,2-Propanediol, and + 1,3-Propanediol Mixtures at DifferentTemperatures. J. Chem. Eng. Data 2007, 52, 1141–1145.
- (4) Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem. Res.* 1948, 40, 345–348.
- (5) Grineva, O. V.; Zhuravlev, V. I. Densities and Dielectric Permittivities of Three Butanediols and Their Solution with 10 mol % Water. *J. Chem. Eng. Data* **1996**, *41*, 604–607.
- (6) Czechowski, G.; Zywucki, B.; Jadzyn, J. Excess Molar Volumes of Binary Mixtures of Diols and Water. J. Chem. Eng. Data 1988, 33, 55–57.
- (7) George, J.; Sastry, N. V. Densities, Dynamic Viscosities, Speeds of Sound and Relative Permittivities for Water + Alkanediols (Propane-1,2- and -1, 3-diol and Butane-1, 2-, -1,3-, -1,4-, and -2,3-Diol) at Different Temperatures. J. Chem. Eng. Data 2003, 48, 1529–1539.
- (8) Osborne, N. S.; Sitmson, H. F.; Ginnings, D. C. Measurements of Heat Capacity and Heat of Vaporization of Water in the Range 0 °C to 100 °C. J. Res. Natl. Bur. Stand. 1939, 23, 197–249.
- (9) Wolfgang, G. Ullman's Encyclopedia of Industrial Chemistry, 15th ed.; Graphischer Betrieb Konrad Triltsch: Germany, 1987.
- (10) Pal, A.; Singh, W. Speed of Sound and Viscosities in Aqueous Poly (ethylene glycol) Solution at 303.15 and 308.15 K. J. Chem. Eng. Data 1997, 42, 234–237.
- (11) George, J.; Sastry, N. V. Partial excess molar volumes, partial excess isentropic compressibilities and relative permittivities of water + ethane-1,2-diol derivative and water + 1,2-dimethoxyethane at different temperatures. *Fluid Phase Equilib.* 2004, 216, 307–321.
- (12) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Wiley-Interscience: NY, 1986; Vol. II.

Received for review May 25, 2007. Accepted October 16, 2007. JE700499D