Density and Viscosity Experimental Data of the Ternary Mixtures 1-Propanol or 2-Propanol + Water + 1-Ethyl-3-methylimidazolium Ethylsulfate. Correlation and Prediction of Physical Properties of the Ternary Systems

Begoña González, Noelia Calvar, Emilio González, and Ángeles Domínguez*

Chemical Engineering Department, Vigo University, 36310 Vigo, Spain

In this paper, we have determined densities, ρ , refractive indices, n_D , and dynamic viscosities, η , of two ternary mixtures, 1-propanol + water + 1-ethyl-3-methylimidazolium ethylsufate (EMISE) and 2-propanol + water + EMISE, at 298.15 K over the whole composition range and at atmospheric pressure. Excess molar volumes, V^E , refractive index deviations, Δn_D , viscosity deviations, $\Delta \eta$, and excess free energies of activation of viscous flow, ΔG^{*E} , have been calculated from experimental data and fitted to Cibulka and Singh et al. equations. The excess properties have been used to test several prediction models.

1. Introduction

From a combination of organic cations and various anions, room-temperature ionic liquids (RTILs) are obtained. These compounds are salts with a low melting point (below 100 °C). Nowadays, very few reliable data of liquid densities and excess molar volumes of multicomponent systems on ionic liquids are available in the literature. These properties are used for the design of industrial equipment and many industrial applications. Moreover, these properties can provide an important tool to extract information about the behavior of components in pure as well as in mixed states.

In this work, density, refractive index, and viscosity of the ternary systems 1-propanol + water + EMISE and 2-propanol + water + EMISE have been measured. The binary systems 1-propanol + water and 2-propanol + water were measured too because no literature data with all needed properties were available. From the physical properties, we have determined the excess molar volumes, $V^{\rm E}$, deviations of refractive index, viscosity deviations, $\Delta \eta$, and excess free energies of activation of viscous flow, $\Delta G^{*\rm E}$. Experimental data were correlated using empirical equations^{1,2} and predicted using geometrical models that assume that interactions in a ternary mixture depend on the interactions in binary systems.^{3–9}

2. Experimental

2.1. Chemicals. 1-Propanol was supplied by Sigma-Aldrich with a purity higher than 99.9 %, and 2-propanol was supplied by Merck with a purity higher than 99.7 %. They were degassed ultrasonically and dried over molecular sieves type 4Å, supplied by Aldrich. Water was bidistilled and deionized. The ionic liquid used in this work was synthesized in our laboratory.¹⁰ Table 1 shows a comparison between experimental and literature data of pure components at 298.15 K.

2.2. Apparatus and Procedure. Samples were prepared by syringing known amounts of the pure liquids into stoppered bottles, in an inert-atmosphere glovebox, using a Mettler AX-205 Delta Range balance with a precision of $\pm 10^{-5}$ g, covering

* To whom correspondence should be addressed. E-mail: admguez@uvigo.es. Fax: +34986812380. Tel.: +34986812422.

Table 1. Comparison of Measured Pure Component Property Data with Literature Values at T = 298.15 K

	ρ/g•	cm ⁻³	10 ³	η/Pa•s
component	exptl	lit.	exptl	lit.
1-propanol	0.7996	0.79960 ^a	2.017	1.951^{b} 2.0074^{c}
2-propanol EMISE	0.7807 1.23763	0.7809^d 1.23915^e 1.2296^f	2.082 97.580	2.081^d 100.77 ^e

^{*a*} From ref 11. ^{*b*} From ref 12. ^{*c*} From ref 13. ^{*d*} From ref 14. ^{*e*} From ref 15. ^{*f*} From ref 16.

Figure 1. Experimental excess molar volume, V^{E} , calculated from the Redlich–Kister equation (—) plotted against mole fraction at T = 298.15 K for the binary mixtures: O, 1-propanol (1) + water (2); \Box , 2-propanol (1) + water (2).

the whole composition range of the mixture. A glovebox was used because the ionic liquid is a sensitive moisture.

Kinematic viscosities were determined using an automatic viscosimeter Lauda PVS1 with four Ubbelhode capillary microviscosimeters of $0.4 \cdot 10^{-3}$ m, $0.53 \cdot 10^{-3}$ m, $0.70 \cdot 10^{-3}$ m, and $1.26 \cdot 10^{-3}$ m diameter (the uncertainty in experimental measurement is (± 0.0001 , ± 0.003 , ± 0.03 , and ± 0.2) mPa·s, respectively). The capillary is maintained in a D20KP LAUDA thermostat with a resolution of 0.01 K.

The densities of the pure liquids and mixtures were measured using an Anton Paar DSA-5000 digital vibrating-tube densi-

Table 2. Densities, ρ , Dynamic Viscosities, η , Refractive Index, $n_{\rm D}$, Excess Molar Volumes, $V^{\rm E}$, Deviations of Refractive Index, $\Delta n_{\rm D}$, Viscosity Deviations, $\Delta \eta$, and Excess Free Energies of Activation of Viscous Flow, $\Delta G^{*{\rm E}}$, for Studied Binary Systems at 298.15 K

	ρ		η	$V^{\rm E}$		$\Delta \eta$	$\Delta G^{*\mathrm{E}}$
x_1	$g \cdot cm^{-3}$	$n_{\rm D}$	mPa•s	$cm^3 \cdot mol^{-1}$	$\Delta n_{\rm D}$	mPa•s	$J \cdot mol^{-1}$
1-Propanol (1) + Water (2)							
0.0000	0.9972	1.33251	0.890	0.000	0.0000	0.000	0.0
0.0504	0.9751	1.34612	1.616	-0.294	0.0111	0.669	1683.1
0.0993	0.9533	1.35475	2.121	-0.454	0.0172	1.119	2452.7
0.1986	0.9149	1.36491	2.599	-0.580	0.0224	1.485	2981.6
0.2979	0.8872	1.37116	2.691	-0.639	0.0236	1.465	2953.3
0.3949	0.8669	1.37516	2.610	-0.659	0.0227	1.275	2682.2
0.4955	0.8503	1.37805	2.494	-0.644	0.0205	1.045	2309.4
0.5953	0.8369	1.38008	2.339	-0.596	0.0175	0.778	1846.4
0.6995	0.8256	1.38154	2.221	-0.525	0.0136	0.542	1369.4
0.7969	0.8163	1.38239	2.124	-0.409	0.0096	0.336	909.3
0.8983	0.8077	1.38299	2.026	-0.242	0.0050	0.124	405.8
0.9518	0.8035	1.38308	1.998	-0.142	0.0024	0.036	162.3
1.0000	0.7996	1.38309	2.017	0.000	0.0000	0.000	0.0
		2-Pı	opanol	(1) + Water	(2)		
0.0000	0.9972	1.3325	0.890	0.000	0.0000	0.000	0.0
0.0491	0.9746	1.3456	1.718	-0.353	0.0110	0.770	1844.5
0.1008	0.9536	1.3557	2.495	-0.664	0.0189	1.485	2878.1
0.2011	0.9126	1.3650	3.038	-0.898	0.0240	1.908	3379.0
0.2994	0.8816	1.3697	3.087	-0.980	0.0245	1.840	3296.2
0.3992	0.8577	1.3724	2.924	-0.991	0.0229	1.558	2948.0
0.4981	0.8388	1.3740	2.693	-0.946	0.0203	1.210	2472.5
0.5979	0.8235	1.3749	2.489	-0.863	0.0170	0.886	1960.6
0.6987	0.8106	1.3754	2.274	-0.732	0.0132	0.551	1380.7
0.7993	0.7994	1.3756	2.153	-0.541	0.0091	0.311	873.0
0.8998	0.7898	1.3754	2.073	-0.325	0.0047	0.110	386.3
0.9495	0.7854	1.3752	2.063	-0.189	0.0024	0.041	176.6
1.0000	0.7807	1.3750	2.082	0.000	0.0000	0.000	0.0

meter. The repeatability and the uncertainty in experimental measurement have been found to be lower than $(\pm 2 \cdot 10^{-6} \text{ and } \pm 2.6 \cdot 10^{-5}) \text{ g} \cdot \text{cm}^{-3}$.

To measure refractive indices, an automatic refractometer Abbemat-HP Dr. Kernchen with a resolution of $\pm 10^{-6}$ and an uncertainty in the experimental measurements of $\pm 4 \cdot 10^{-5}$ was used.

3. Results and Discussion

3.1. Experimental Results. Physical properties of binary mixtures of 1-propanol and 2-propanol with EMISE were previously published.¹⁷ The density, ρ , refractive index, n_D , and viscosity, η , of binary systems 1-propanol (1) + water (2) and 2-propanol (1) + water (2) together with their derived properties are presented in Table 2.

Figure 2. Experimental dynamic viscosity deviations, $\Delta \eta$, calculated from the Redlich–Kister equation (—) plotted against mole fraction at T = 298.15 K for the binary mixtures: \bigcirc , 1-propanol (1) + water (2); \Box , 2-propanol (1) + water (2).

Figure 3. Experimental deviations of refractive index, Δn_D , calculated from the Redlich–Kister equation (—) plotted against mole fraction at T = 298.15 K for the binary mixtures: \bigcirc , 1-propanol (1) + water (2); \square , 2-propanol (1) + water (2).

Figure 4. Isolines for excess molar volumes, V_{123}^{E} , in cm³·mol⁻¹, from Cibulka and Redlich–Kister equations for the ternary systems (a) 1-propanol (1) + water (2) + EMISE (3) and (b) 2-propanol (1) + water (2) + EMISE (3).

The measured densities, ρ , refractive indices, n_D , and dynamic viscosities, η , and their derived properties for the ternary mixtures 1-propanol (1) + water (2) + EMISE (3) and 2-propanol (1) + water (2) + EMISE (3) at 298.15 K and at atmospheric pressure are listed in Tables 3 and 4.

Table 3. Densities, ρ , Dynamic Viscosities, η , Refractive Index, n_D , Excess Molar Volumes, V^E , Deviations of Refractive Index, Δn_D , Viscosity Deviations, $\Delta \eta$, and Excess Free Energies of Activation of Viscous Flow, $\Delta G^{\circ E}$, for the Ternary System 1-Propanol (1) + Water (2) + EMISE (3) at 298.15 K

		ρ		η	$V^{\rm E}$		$\Delta \eta$	$\Delta G^{*\mathrm{E}}$
x_1	<i>x</i> ₂	g·cm ⁻³	n _D	mPa•s	$cm^3 \cdot mol^{-1}$	$\Delta n_{\rm D}$	mPa•s	$J \cdot mol^{-1}$
0.1280	0.6147	1.1486	1.44560	10.128	-0.580	0.069	-15.785	4563.0
0.2412	0.5349	1.1022	1.43789	8.497	-0.645	0.060	-14.315	4058.6
0.3498	0.4584	1.0575	1.43022	7.028	-0.643	0.052	-12.809	3518.8
0.4649	0.3772	1.0108	1.42206	5.826	-0.629	0.043	-10.855	2983.9
0.5725	0.3013	0.9678	1.41456	4.938	-0.599	0.035	-8.795	2511.3
0.6642	0.2367	0.9314	1.40804	3.908	-0.543	0.027	-7.312	1856.0
0.0826	0.7820	1.1180	1.42504	5.717	-0.530	0.068	-8.353	4490.2
0.1695	0.7080	1.0745	1.42032	5.451	-0.628	0.061	-7.478	4229.2
0.2588	0.6318	1.0332	1.41545	5.009	-0.665	0.054	-6.747	3858.4
0.3494	0.5546	0.9953	1.41067	4.634	-0.683	0.046	-5.931	3496.9
0.4500	0.4688	0.9573	1.40580	4.260	-0.682	0.039	-4.983	3093.6
0.6559	0.2933	0.8899	1.39678	3.103	-0.576	0.024	-3.435	1852.6
0.0662	0.8408	1.0970	1.41152	4.244	-0.454	0.062	-5.714	4054.3
0.1383	0.7759	1.0585	1.40610	4.326	-0.581	0.054	-5.019	3996.6
0.2141	0.7076	1.0216	1.40625	4.247	-0.642	0.051	-4.453	3821.3
0.2999	0.6304	0.9848	1.40315	4.063	-0.678	0.045	-3.907	3546.3
0.3963	0.5436	0.9487	1.39982	3.873	-0.683	0.038	-3.277	3226.9
0.5062	0.4446	0.9132	1.39642	3.283	-0.658	0.031	-2.933	2542.7
0.7206	0.2510	0.8509	1.39049	3.041	-0.517	0.017	-1.552	1834.5
0.0559	0.8764	1.0792	1.40006	3.394	-0.395	0.055	-4.104	3012.1
0.1139	0.8220	1.04/1	1.39909	2.915	-0.524	0.032	-3.248	3924.7
0.1645	0.7371	0.0758	1.39639	3.005	-0.661	0.048	-2 598	3505.7
0.2009	0.5981	0.9738	1 30/85	3 481	-0.680	0.038	-2.398	3183.5
0.5557	0.3781	0.8820	1 39098	2 887	-0.626	0.025	-1.650	2190.4
0.8287	0.1590	0.8281	1.38633	2.391	-0.398	0.010	-0.620	966.9
0.0474	0.9071	1.0577	1.38662	2.604	-0.330	0.045	-2.737	2986.7
0.1023	0.8549	1.0278	1.38842	3.042	-0.496	0.044	-2.108	3357.6
0.1670	0.7932	0.9949	1.38901	3.216	-0.579	0.042	-1.708	3432.0
0.2397	0.7240	0.9640	1.38906	3.406	-0.655	0.039	-1.264	3477.2
0.3161	0.6512	0.9356	1.38884	3.146	-0.667	0.036	-1.258	3121.7
0.4188	0.5534	0.9044	1.38834	3.184	-0.670	0.031	-0.862	2934.1
0.0422	0.9290	1.0361	1.37367	2.255	-0.283	0.035	-1.469	2627.4
0.0901	0.8825	1.0108	1.37757	2.506	-0.457	0.036	-1.133	2889.0
0.1467	0.8276	0.9815	1.37995	2.968	-0.525	0.036	-0.570	3307.8
0.2082	0.7680	0.9555	1.38151	2.933	-0.605	0.035	-0.495	3201.3
0.2888	0.6898	0.9268	1.38288	3.140	-0.663	0.033	-0.144	3257.7
0.4746	0.5095	0.8770	1.38445	2.712	-0.646	0.026	-0.241	2452.0
0.0384	0.9460	1.0140	1.36098	1.865	-0.241	0.024	-0.569	2106.6
0.0813	0.9039	0.9930	1.36670	2.179	-0.424	0.028	-0.236	2527.9
0.1286	0.8573	0.9697	1.37051	2.642	-0.515	0.029	0.248	3038.4
0.1909	0.7961	0.9435	1.3/393	2.701	-0.592	0.030	0.333	3047.6
0.2591	0.7289	0.9189	1.3/008	2.903	-0.615	0.029	0.625	3214.0
0.3408	0.0485	0.8958	1.37895	2.930	-0.650	0.028	0.034	3043.0
0.0373	0.9331	0.9973	1.35204	2 308	-0.220	0.017	0.629	2683.8
0.2472	0.8733	0.9110	1.30371	2.308	-0.599	0.024	1 125	3160.4
0.0961	0.1388	1 2153	1 47318	50.905	-0.242	0.023	-24.069	1598.4
0.1971	0.1233	1.1923	1 46844	38.682	-0.310	0.026	-28.139	1712.5
0.0981	0.2695	1.2078	1.46965	34.718	-0.354	0.039	-27.433	2660.1
0.2061	0.2372	1.1798	1.46404	26.738	-0.447	0.039	-28.206	2596.3
0.3040	0.2080	1.1513	1.45823	20.220	-0.499	0.039	-28.197	2415.1
0.3994	0.1795	1.1201	1.45178	15.510	-0.511	0.037	-26.550	2250.9
0.5003	0.1493	1.0830	1.44410	11.477	-0.503	0.035	-23.856	2013.2
0.6001	0.1195	1.0414	1.43535	8.367	-0.479	0.031	-20.313	1718.9
0.7013	0.0893	0.9937	1.42523	6.086	-0.472	0.026	-15.847	1414.7
0.8010	0.0595	0.9388	1.41352	4.291	-0.379	0.020	-10.995	1007.3
0.9011	0.0296	0.8753	1.39981	3.013	-0.300	0.012	-5.601	575.9
0.0962	0.4557	1.1924	1.46221	20.230	-0.483	0.059	-24.087	3990.4
0.2001	0.4034	1.1592	1.45593	16.021	-0.559	0.055	-23.433	3625.5
0.2998	0.3531	1.1247	1.44926	12.695	-0.581	0.051	-22.094	3250.2
0.4954	0.2544	1.0500	1.43456	8.001	-0.579	0.040	-17.631	2494.0
0.5960	0.2037	1.0076	1.42611	6.313	-0.558	0.034	-14.613	2102.7
0.6982	0.1522	0.9612	1.41674	4.821	-0.507	0.027	-11.319	1624.6
0.8022	0.0997	0.9101	1.40633	3.660	-0.407	0.019	-7.615	1132.9
0.8979	0.0515	0.8593	1.39383	2.770	-0.284	0.010	-4.026	609.6

Table 4. Densities, ρ , Dynamic Viscosities, η , Refractive Index, n_D , Excess Molar Volumes, V^E , Deviations of Refractive Index, Δn_D , Viscosity Deviations, $\Delta \eta$, and Excess Free Energies of Activation of Viscous Flow, ΔG^{*E} , for the Ternary System 2-Propanol (1) + Water (2) + EMISE (3) at 298.15 K

(5) at 270.15 Is					F			*E
		ρ		η	V^{E}		$\Delta \eta$	ΔG^{*E}
r.	r.	$\overline{q \cdot cm^{-3}}$	<i>n</i> _	mPa·s	$cm^3 \cdot mol^{-1}$	Δn_{-}	mPa•s	$I \cdot mol^{-1}$
			<u>B</u>		• • • •	<u>L</u> np		
0.0949	0.1426	1.2147	1.47289	50.594	-0.324	0.024	-24.138	1616.8
0.2002	0.1260	1.1896	1.46762	38.893	-0.472	0.028	-27.380	1778.5
0.2964	0.1109	1.1633	1.46203	29.818	-0.563	0.030	-28.735	1847.3
0.4843	0.0813	1.1005	1.44825	16.603	-0.633	0.031	-26.872	1771.8
0.6918	0.0486	1.0069	1.42737	8.040	-0.615	0.027	-18.775	1418.4
0.7943	0.0324	0.9467	1.41360	5.437	-0.524	0.022	-13.152	1127.1
0.0907	0.2737	1.2086	1.46971	36.644	-0.424	0.040	-25.814	2781.8
0.1902	0.2437	1,1818	1.46423	28,198	-0.556	0.041	-27.653	2649.3
0 2845	0.2154	1 1535	1 45842	22 538	-0.644	0.040	-27.050	2584.6
0.4830	0.1553	1.0821	1.13012	12 918	-0.600	0.037	-23.428	2202.4
0.5840	0.1240	1.0321	1 /33/0	0.527	-0.670	0.034	-20.117	1035.2
0.5849	0.1249	0.0997	1.43349	6.971	0.070	0.034	15 022	1600.0
0.0001	0.0939	0.9667	1.42245	0.871	-0.045	0.029	-13.922	1009.0
0.8921	0.0325	0.8051	1.39401	3.401	-0.405	0.013	-5.845	///.4
0.0834	0.4648	1.1950	1.46251	21.619	-0.540	0.060	-23.056	4165.0
0.1860	0.4128	1.1609	1.45589	17.075	-0.679	0.057	-22.830	3773.2
0.3755	0.3167	1.0907	1.44179	11.400	-0.791	0.048	-19.700	3134.3
0.4723	0.2676	1.0511	1.43361	9.141	-0.788	0.043	-17.461	2767.3
0.5715	0.2173	1.0082	1.42468	7.252	-0.795	0.037	-14.741	2374.3
0.6749	0.1649	0.9596	1.41446	5.595	-0.702	0.030	-11.596	1915.7
0.8849	0.0584	0.8500	1.39062	3.105	-0.431	0.012	-4.327	810.2
0.1126	0.6808	1,1365	1.43874	8.626	-0.713	0.071	-12.372	4772.9
0.2236	0 5957	1.0853	1 43083	7 597	-0.860	0.062	-11.035	4314.2
0.3310	0.5133	1.0372	1.42265	6.616	-0.916	0.053	-9.726	3829.7
0.4354	0.4332	0.0076	1.42203	5 704	-0.025	0.035	-8.413	3320.2
0.4334	0.4552	0.9920	1.41490	4 201	0.925	0.045	7 146	2801.8
0.3330	0.5565	0.9327	1.40764	4.691	-0.898	0.037	-7.140	2601.6
0.6305	0.2835	0.9144	1.40090	4.158	-0.826	0.029	-5.800	2259.7
0.0850	0.7786	1.1168	1.42522	6.055	-0.656	0.069	-8.132	4619.5
0.1722	0.7044	1.0719	1.41990	5.791	-0.840	0.062	-7.244	4356.9
0.2632	0.6269	1.0279	1.41416	5.431	-0.931	0.054	-6.398	4031.5
0.3595	0.5450	0.9855	1.40819	4.964	-0.966	0.046	-5.592	3620.4
0.4571	0.4619	0.9467	1.40248	4.409	-0.976	0.039	-4.856	3120.9
0.6619	0.2877	0.8755	1.39153	3.380	-0.809	0.024	-3.175	2008.5
0.7683	0.1972	0.8432	1.38623	2.878	-0.647	0.016	-2.270	1358.4
0.8792	0.1028	0.8124	1.38090	2.445	-0.421	0.008	-1.235	687.6
0.0688	0.8355	1.0977	1.41265	4.554	-0.583	0.063	-5.668	4212.8
0.1434	0.7686	1.0570	1 40970	4.720	-0.798	0.058	-4.850	4187.6
0.2231	0.6971	1.0370	1.40584	4 649	-0.910	0.052	-4 225	4006.8
0.2251	0.6205	0.0781	1.40180	4.049	-0.076	0.032	-3 700	3706.0
0.3084	0.0203	0.9781	1.40180	4.410	0.970	0.040	2 240	2200.2
0.4012	0.3375	0.9411	1.39732	4.070	-0.985	0.039	-3.240	3299.3
0.5022	0.4466	0.9059	1.39324	3.690	-0.952	0.032	-2.744	2807.7
0.0579	0.8/50	1.0776	1.39993	3.573	-0.504	0.055	-3.877	3/43.5
0.1209	0.8165	1.0427	1.39946	3.937	-0.744	0.053	-3.154	3916.4
0.1919	0.7505	1.0060	1.39761	4.048	-0.895	0.048	-2.639	3877.6
0.2695	0.6784	0.9699	1.39515	4.008	-0.957	0.044	-2.236	3712.1
0.3575	0.5968	0.9349	1.39241	3.843	-0.991	0.038	-1.900	3418.0
0.5641	0.4049	0.8705	1.38635	3.160	-0.915	0.025	-1.406	2393.6
0.0505	0.9031	1.0575	1.38754	2.901	-0.439	0.046	-2.532	3267.7
0.1066	0.8498	1.0270	1.38930	3.332	-0.706	0.046	-1.903	3580.2
0.1684	0.7910	0.9943	1.38931	3.601	-0.849	0.044	-1.416	3711.3
0.2400	0.7229	0.9612	1.38851	3 690	-0.944	0.040	-1.074	3663.6
0.3223	0.6446	0.9289	1 38722	3 614	-1.005	0.036	-0.859	3449.6
0.4151	0.5563	0.9209	1.38560	3 380	-0.008	0.031	-0.766	3062.4
0.0434	0.0286	1.0337	1.30300	2 306	-0.350	0.035	-1 330	2682.8
0.0434	0.9280	1.0007	1.37510	2.300	0.559	0.035	1.559	2062.6
0.0923	0.8810	1.0087	1.37730	2.003	-0.042	0.037	-0.080	3238.3
0.1486	0.8265	0.9798	1.37965	3.214	-0.809	0.037	-0.260	3502.2
0.2130	0.7640	0.9502	1.38069	3.393	-0.915	0.036	0.025	3569.3
0.2891	0.6901	0.9206	1.38109	3.412	-0.981	0.033	0.169	3459.1
0.4888	0.4963	0.8632	1.38037	2.979	-0.967	0.025	0.061	2633.7
0.0389	0.9432	1.0179	1.36330	1.977	-0.305	0.027	-0.691	2263.9
0.0834	0.8995	0.9967	1.36925	2.578	-0.596	0.031	-0.063	2970.9
0.1346	0.8492	0.9712	1.37292	2.994	-0.777	0.032	0.385	3349.6
0.1967	0.7884	0.9431	1.37527	3.248	-0.898	0.032	0.677	3511.8
0.3555	0.6325	0.8884	1.37773	3.179	-1.016	0.028	0.704	3183.7
0.5934	0.3990	0.8359	1.37794	2.643	-0.927	0.019	0.314	2057.9
0.0353	0.9565	0.9994	1.35229	1.663	-0.256	0.017	-0.069	1776.4
0.0754	0.9166	0.9823	1.35984	2.321	-0.546	0.023	0.575	2686.5
0.1225	0.8699	0.9602	1.36520	2.780	-0.742	0.026	1.017	3169.5
0.1220	0.0077	5.2002	1.00020	2.750	0.7 12	0.020	1.01/	2107.0

Journal of Chemical & Engineering Data, Vol. 53, No. 3, 2008 885

Table 5. Redlich-Kister Parameters for the Binary Systems and Root-Mean-Square Deviations

		00	1					
property	a_0	a_1	<i>a</i> ₂	a_3	a_4	σ		
1-Propanol (1) + EMISE (2)								
$V^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	-1.6090	-0.3029	-0.1465	-0.6409	-1.4859	0.007		
$\Delta n_{\rm D}$	0.0896	0.0393	0.0172	0.0118	0.0093	$2.9 \cdot 10^{-5}$		
$10^{3}\Delta\eta/\text{Pa}\cdot\text{s}$	-122.81	47.16	-11.25	-3.39	8.83	0.077		
$\Delta G^{*E}/J \cdot mol^{-1}$	4461.2	565.53	-370.19	817.80	1880.4	36.02		
		2-Pro	panol (1) + EMISE (2)	2)				
$V^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	-2.1355	-0.2885	-0.1942	-2.0258	-1.3439	0.012		
$\Delta n_{\rm D}$	0.0977	0.0407	0.0163	0.0169	0.0112	$5.3 \cdot 10^{-5}$		
$10^{3}\Delta\eta/\text{Pa}\cdot\text{s}$	-114.96	39.22	-22.07	3.19	18.26	0.238		
$\Delta G^{*E}/J \cdot mol^{-1}$	5303.3	1256.5	-1581.1	6.3960	2461.3	16.6		
		1-Pro	panol (1) + Water (2))				
$V^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	-2.5832	0.4464	-0.6835	1.5432	-2.1059	0.006		
$\Delta n_{\rm D}$	0.0817	-0.0495	0.0321	-0.0560	0.0516	$1.4 \cdot 10^{-4}$		
$10^{3}\Delta\eta/\text{Pa}\cdot\text{s}$	4.08	-5.00	4.46	-2.96	-0.20	0.007		
$\Delta G^{*E}/J \cdot mol^{-1}$	9164.4	-7491.2	5170.2	-10878	8679.6	35.4		
		2-Pro	panol (1) + Water (2))				
$V^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	-3.7862	1.3329	-1.5360	1.3259	-1.4134	0.011		
$\Delta n_{\rm D}$	0.0810	-0.0578	0.0481	-0.0586	0.0414	$1.7 \cdot 10^{-4}$		
$10^{3}\Delta\eta/\text{Pa}\cdot\text{s}$	4.80	-7.21	6.12	-2.98	-0.57	0.028		
$\Delta G^{*E}/J \cdot mol^{-1}$	9920.2	-9238.1	5542.1	-12232	10991	29.9		
Water (1) + EMISE (2)								
$V^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	-1.1585	-1.3068	-1.1589	0.8021	1.6604	0.013		
$\Delta n_{\rm D}$	0.2491	0.1774	0.1139	0.2931	0.2864	$8.8 \cdot 10^{-4}$		
$10^{3}\Delta\eta/\text{Pa}\cdot\text{s}$	-97.494	31.556	7.923	7.091	-17.981	0.203		
$\Delta G^{*E}/J \cdot mol^{-1}$	17064.5	10198.7	8018.4	17882.9	15108.6	49.1		

 Table 6. Fit Parameters and Root-Mean-Square Deviations for Empirical Equations

	$V^{\rm E}$		$10^{3}\Delta\eta$	$\Delta G^{*^{\mathrm{E}}}$
	$cm^3 \cdot mol^{-1}$	$\Delta n_{\rm D}$	Pa•s	$J \cdot mol^{-1}$
	1-Propanol (1) + Water (2)	+ EMISE (3)	
Cibulka				
Α	-1.636	-0.1682	59.30	-4200.8
В	4.012	0.3956	23.89	34626
С	0.346	0.3451	-13.77	-49261
σ	$1.4 \cdot 10^{-2}$	$7.3 \cdot 10^{-4}$	$1.8 \cdot 10^{-1}$	168.73
Singh et al.				
Α	-0.086	0.0776	63.98	-8525.7
В	-0.004	0.0045	-0.2541	-529.30
С	0.037	0.0160	-0.7957	635.15
σ	$1.6 \cdot 10^{-2}$	$8.2 \cdot 10^{-4}$	$1.9 \cdot 10^{-1}$	223.16
	2-Propanol (1) + Water (2)	+ EMISE (3)	
Cibulka	-			
Α	-3.2073	-0.1559	48.86	-5613.1
В	3.6773	0.4171	35.40	44383
С	4.0159	0.3254	-8.406	-62556
σ	$1.9 \cdot 10^{-2}$	$6.3 \cdot 10^{-4}$	$2.3 \cdot 10^{-1}$	182.30
Singh et al.				
A	-0.3477	0.0975	59.70	-10379
В	0.0058	0.0034	-0.1551	-641.85
С	-0.1588	0.0084	-0.9129	77.854
σ	$2.0 \cdot 10^{-2}$	$8.4 \cdot 10^{-4}$	$2.4 \cdot 10^{-1}$	256.90

The excess molar volumes, viscosity deviations, and deviations in the refractive index were calculated from experimental values as follows

$$V^{\rm E} = \sum_{i=1}^{N} x_i M_i (\rho^{-1} - \rho_i^{-1}) \tag{1}$$

$$\Delta \eta = \eta - \sum_{i}^{N} x_{i} \eta_{i} \tag{2}$$

$$\Delta n_{\rm D} = n_{\rm D} - \sum_{i}^{N} x_i n_{{\rm D},i} \tag{3}$$

where ρ and ρ_i are the density of the mixture and the density of the pure components, respectively; x_i represents the mole

Table 7. Root-Mean-Square Deviations of Predictions of Excess Molar Volumes, $V^{\rm E}$, Deviations of Refractive Index, $\Delta n_{\rm D}$, Viscosity Deviations $\Delta \eta$, and Excess Free Energies of Activation of Viscous Flow, $\Delta G^{*\rm E}$, for 1-Propanol (1) + Water (2) + EMISE (3) and 2-Propanol (1) + Water (2) + EMISE (3) at 298.15 K

	V ^E ₁₂₃		$\Delta \eta$	ΔG^{*E}_{123}			
	$cm^3 \cdot mol^{-1}$	$\Delta n_{\rm D}$	mPa•s ⁻¹	$J \cdot mol^{-1}$			
1-Propanol (1) + Water (2) + EMISE (3)							
Rastogi	0.203	0.0120	3.341	785.61			
Radojkovic	0.018	0.0019	0.991	316.69			
Jacob and Fitzner	0.055	0.0064	1.428	263.87			
Toop ^a	0.069	0.0065	2.267	841.28			
Toop ^b	0.085	0.0095	2.242	459.09			
Toop ^c	0.081	0.0138	3.410	1146.3			
Kohler	0.026	0.0053	0.978	698.61			
Scatchard ^a	0.132	0.0342	10.088	2522.5			
Scatchard ^b	0.200	0.0069	14.569	511.49			
Scatchard ^c	0.228	0.0165	3.382	1609.4			
Tsao and Smith ^a	0.080	0.0137	3.914	1291.0			
Tsao and Smith ^b	0.086	0.0080	4.485	456.03			
Tsao and Smith ^c	0.123	0.0147	3.369	1305.7			
2-Pro	panol $(1) + W$	Vater $(2) + EN$	(ISE (3)				
Rastogi	0.296	0.0122	3.695	795.93			
Radojkovic	0.025	0.0020	0.912	373.22			
Jacob and Fitzner	0.075	0.0065	1.446	277.78			
Toop ^a	0.100	0.0067	2.013	948.82			
Toop ^b	0.102	0.0096	2.282	420.35			
Toop ^c	0.104	0.0144	3.325	1259.7			
Kohler	0.036	0.0054	0.933	790.62			
Scatchard ^a	0.138	0.0343	9.394	2577.9			
Scatchard ^b	0.272	0.0074	13.688	584.08			
Scatchard ^c	0.318	0.0171	3.321	1764.2			
Tsao and Smith ^a	0.106	0.0140	3.659	1393.7			
Tsao and Smith ^b	0.101	0.0079	4.185	425.57			
Tsao and Smith ^c	0.161	0.0154	3.284	1434.1			

 a Ethanol is the asymmetric component. b Water is the asymmetric component. c EMISE is the asymmetric component.

fraction of the *i* component; η and η_i are the dynamic viscosity of the mixture and the pure components, respectively; and n_D and $n_{D,i}$ are the refractive index of the mixture and the refractive index of the pure components, respectively.

Figure 5. Isolines for the deviation of refractive index, Δn_{D123} , from Cibulka and Redlich–Kister equations for the ternary systems (a) 1-propanol (1) + water (2) + EMISE (3) and (b) 2-propanol (1) + water (2) + EMISE (3).

3.2. Correlation of Physical Properties. The contribution to the excess property of the constituent binary mixtures was evaluated by the Redlich–Kister equation¹⁸

$$\Delta Q_{12} = x_1 x_2 \sum_{p=0}^{M} B_p (x_1 - x_2)^p \tag{4}$$

where ΔQ_{12} is the excess property; x_1 and x_2 are the mole fraction of component 1 and 2, respectively; B_p is the fitting parameter; and M is the degree of the polynomic expansion. The parameters for the excess properties of all the binary mixtures involved in the ternary system are listed in Table 5 together with the root-mean-square deviations

$$\sigma = \left\{ \sum_{i}^{n_{\text{dat}}} (z_{\text{exptl}} - z_{\text{calcd}})^2 / n_{\text{dat}} \right\}$$
(5)

where z_{exptl} , z_{calcd} , and n_{dat} are the values of the experimental and calculated property and the number of experimental data, respectively.

The binary systems 1-propanol (1) + EMISE (2), 2-propanol (1) + EMISE (2), and water (1) + EMISE (2) were determined in a previous paper.¹⁷ Figures 1 to 3 show the fitted curves of excess properties $V^{\rm E}$, $\Delta\eta$, and $\Delta n_{\rm D}$, of the binary systems 1-propanol (1) + water (2) and 2-propanol (1) + water (2).

The $V^{\rm E}$, $\Delta n_{\rm D}$, $\Delta \eta$, and $\Delta G^{*{\rm E}}$ data of the ternary systems were correlated using the equations proposed by Cibulka¹ and Singh et al.²

Figure 6. Isolines for the deviation of dynamic viscosity, Δn_{D123} , in mPa·s, from Cibulka and Redlich–Kister equations for the ternary systems (a) 1-propanol (1) + water (2) + EMISE (3) and (b) 2-propanol (1) + water (2) + EMISE (3).

The Cibulka equation:

$$Q_{123}^{\rm E} = Q_{12}^{\rm E} + Q_{13}^{\rm E} + Q_{23}^{\rm E} + x_1 x_2 x_3 (A + Bx_1 + Cx_2)$$
(6)

The Singh et al. equation:

$$Q_{123}^{\rm E} = Q_{12}^{\rm E} + Q_{13}^{\rm E} + Q_{23}^{\rm E} + Ax_1x_2x_3 + Bx_1(x_2 - x_3) + Cx_1^2(x_2 - x_3)^2$$
(7)

where *A*, *B*, and *C* are fit parameters and Q_{ij}^{E} is the contribution to the excess property of the constituent binary mixtures evaluated by the Redlich–Kister equation (eq 4).

The fit parameters and root-mean-square deviations (eq 5) are given in Table 6. As can be observed in this table, for $\Delta n_{\rm D}$ and $\Delta G^{*\rm E}$, both equations correlate in a similar way the behavior of the two ternary systems, but for the other studied properties, the better fitting is given by Cibulka, where the correlated values are in good agreement with the experimental data. In Figures 4 to 6, the isolines of the excess properties $V^{\rm E}$, $\Delta n_{\rm D}$, and $\Delta \eta$ calculated from Cibulka for both ternary systems are shown.

3.3. *Prediction of Physical Properties.* The predictive methods can be divided into symmetric and asymmetric, depending on whether the assumption of the three binary mixtures contributing equally to the ternary mixture magnitude is accepted or not.

To predict the excess properties (V^{E} , Δn_{D} , $\Delta \eta$, $\Delta G^{*\text{E}}$), we have used symmetric (Radojkovic et al.,³ Rastogi,⁴ Jacob and

Fitzer,⁵ and Kohler ⁶) and asymmetric (Toop,⁷ Tsao and Smith,⁸ and Scatchard et al.⁹) geometrical solution models.

Table 7 lists the root-mean-square deviations of fit for each dependent variable and equation. The root-mean-square deviations, σ , presented were calculated as eq 5.

4. Conclusions

Densities, refractive indices and viscosities for the binary and ternary mixtures 1-propanol + water, 2-propanol + water, 1-propanol + water + EMISE, and 2-propanol + water + EMISE were measured at 298.15 K and at atmospheric pressure over the whole range of compositions. From these physical properties, the excess properties were calculated.

For both binary systems, the excess molar volumes show negative deviations over the whole range of compositions with a minimum over 0.4 mol fraction. Dynamic viscosity deviations and refractive index deviations are both positive over the whole range of compositions with a maximum over (0.2 and 0.3) mol fraction, respectively.

For the studied ternary systems, the excess molar volumes and dynamic viscosity deviations are negative for both systems. For the ternary system containing 1-propanol, we can observe a minimum over 0.7 mol fraction. Refractive index deviation for both systems is positive over the whole range of compositions.

Seven geometrical solution models were used to predict the excess properties. The one of Radojkovic gives reasonable good results for all properties for the two studied systems. Also the Kohler model describes quite well the behavior of all the excess properties of the ternary system, except for the excess free energies of activation of viscous flow. The best prediction of the excess free energy of activation of the two studied ternary systems is calculated by the Jacob and Fitzner model. In general, the symmetric equations give better predictive results, especially the ones of Radojkovic, Kohler, and Jacob and Fitzner. The predictions of the asymmetric equations of Tsao and Smith and Scatchard disagree significantly with experimental data. It is noteworthy that in all asymmetric models the best results for the ΔG^{*E} are obtained when water is the asymmetric component.

Literature Cited

- Cibulka, I. Estimation of excess volume and density of ternary liquid mixtures of nonelectrolytes from binary data. *Collect. Czech. Commun.* 1982, 47, 1414–1419.
- (2) Singh, P.; Nigam, R.; Sharma, S.; Aggarwal, S. Molar excess volumes of ternary mixtures of nonelectrolytes. *Fluid Phase Equilib.* 1984, 18, 333–344.
- (3) Radojkovic, N.; Tasic, A.; Grozdanic, D.; Djordjevic, B.; Malic, M. Excess volumes of acetone + benzene, acetone + cyclohexane, and

acetone + benzene + cyclohexane at 298.15 K. J. Chem. Thermodyn. **1977**, *9*, 349–352.

- (4) Rastogi, R. P.; Nath, J.; Das, S. S. Thermodynamic properties of ternary mixtures. 2. The excess volumes of mixing of cyclohexane, aromatics, and halomethanes. J. Chem. Eng. Data 1977, 22, 249–252.
- (5) Jacob, K. T.; Fitzner, K. The estimation of the thermodynamic properties of ternary alloys from binary data using the shortest distance composition path. *Thermochim. Acta* **1977**, *18*, 197–206.
- (6) Kohler, F. Estimation of the thermodynamic data for a ternary system from the corresponding binary systems. *Monatsh. Chem.* **1960**, *91*, 738–740.
- (7) Toop, G. W. Predicting ternary activities using binary data. Trans. TMS-AIME 1965, 223, 850–855.
- (8) Tsao, C. C.; Smith, J. M. Heat of mixing of liquids. *Chem. Eng. Prog.*, *Symp. Ser.* **1953**, 49, 107–117.
- (9) Scatchard, G.; Ticknor, L. B.; Goates, J. R.; McCartney, E. R. Heats of mixing in some nonelectrolyte solutions. J. Am. Chem. Soc. 1952, 74, 3721–3724.
- (10) Gómez, E.; González, B.; Calvar, N.; Tojo, E.; Domínguez, A. Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. *J. Chem. Eng. Data* **2006**, *51*, 2096–2102.
- (11) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents; Willey: New York, 1986.
- (12) Arce, A.; Rodil, E.; Soto, A. Physical and excess properties for binary mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate, [Omim]-[BF₄], ionic liquid with different alcohols. *J. Solution Chem.* 2006, *35*, 63–78.
- (13) Pal, A.; Sharma, S. Excess molar volumes and viscosities of 1-propanol + ethylengycol, + ethylene glycol monomethyl, + ethylene glycol dimethyl, + diethylene glycol dimethyl, + triethylene glycol dimethyl, + diethylene glycol diethyl, and + diethylene glycol dibutyl ethers at 298.15 K. J. Chem. Eng. Data **1998**, 43, 532–536.
- (14) Contreras, M. Densities and viscosities of binary mixtures of 1,4-dioxane with propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 3-methyl-1-butanol at *T* = (298.15, 303.15, and 308.15) K. *J. Chem. Thermodyn.* 2001, *38*, 434–442.
- (15) Jacquemin, J.; Husson, P.; Padua, A. A. H.; Majer, V. Density and viscosity of several pure and water-saturated ionic liquids. *Green Chem.* 2006, 8, 172–180.
- (16) Yang, J. Z.; Lu, X. M.; Gui, J. S.; Xu, W. G. A new theory for ionic liquids - the interstice model. Part 1. The density and surface tension of ionic liquid EMISE. *Green Chem.* 2004, *6*, 541–543.
- (17) González, E. J.; González, B.; Calvar, N.; Domínguez, A. Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at *T* = (298.15, 313.15, and 328.15) K and atmospheric pressure. *J. Chem. Eng. Data* 2007, 52, 1641–1648.
- (18) Redlich, O.; Kister, A. T. Thermodynamic of noneletrolytic solutions. Algebraic representation of thermodynamic properties and the classification of solutions. *J. Ing. Eng. Chem.* **1948**, *40*, 345–348.

Received for review November 28, 2007. Accepted January 11, 2008. The authors are grateful to the Ministerio de Ciencia y Tecnología of Spain (project CTQ2004-00454) and Xunta de Galicia (PGIDIT05PXIC-38303PN) for financial support.

JE700700F