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The ability of the targeted quantitative structure-property relationships (TQSPR) method to predict properties
for groups of congeneric compounds was tested with Tc and pc data for five homologous series: n-alkanes,
1-alkenes, 1-alkanols, n-alkylbenzenes, and n-alkanoic acids. Training sets were identified from a database
of 326 hydrocarbon and oxygen compounds with different structures, described with 1664 descriptors, or
from the respective series only. It has been established that the TQSPR method can identify descriptors
collinear with the property studied and develop linear equations for the series from measured data. In most
cases, the respective collinear descriptors could be identified with the controls imbedded in the TQSPR
program. Comparison with presently available methods shows that TQSPR achieves deviations from measured
data in most cases within the average experimental uncertainties, like the best ABC methods, but it needs
smaller amounts of measured data and provides higher statistical confidence in long-range prediction. The
method has been tested with only five homologous series, but the existence of descriptors collinear with
properties found in the present work is relevant to all homologous series. When applied to simple molecules,
TQSPR can also provide insight into the way compounds are selected by structural similarity and outline
eventual inefficiencies in this selection.

Introduction

Prediction of properties of pure compounds by quantitative
structure-property relationships (QSPRs) is a valuable tool in
chemistry and chemical engineering, environmental engineering,
and environmental impact assessment, hazard, and operability
analysis, etc.1 Probably one of the main reasons for its relatively
wide application is the success in drug design of the quantitative
structure-activity relationships (QSARs), which employ a
similar methodology. Other reasons are the lack or high price
of experimental data, the impossibility to determine experimen-
tally property values of some compounds, the increasing use
of pure component data for prediction of properties of their
mixtures, the possibility for molecular design, and upgrading
to simulation of properties of materials at the macro scale, etc.2

Except for those obtained by “ab initio” quantum-chemical
methods, which require huge computational time, QSPRs are
typically empirical correlations derived from a limited amount
of available structural information and experimental property
data. Although sometimes implied otherwise, independent
studies3-6 advise that QSPR predictions, especially when
extrapolating outside of the available data, can have significant
errors. That is why it is recommended to define a “model
applicability domain”,7 outlined in the space of the selected
descriptors. This follows from the fact that no matter how robust
a QSPR might be it cannot be expected to predict for all possible
compounds because it is derived from a limited number of

compounds with particular chemical structures. Moreover, even
within the applicability domain, the uncertainties of the predic-
tions depend on the presentation of the structure of the given
molecule in the databases used; i.e., if the chemical structure
of a compound is well represented in the training set, the
prediction is expected to be much more accurate than when its
structure is sparsely represented.8 Basak et al.9 also point out
that QSPR models work best for “congeneric” molecules, i.e.,
belonging to a narrow class defined by structural analogy or
similarity of action for a particular application, and suggest
tailoring of the training sets by structural similarity. Therefore,
any QSPR model has an applicability domain, defined by the
compounds employed in its development, and the training set
should contain compounds structurally related between them-
selves and representative for the rest of the compounds in the
model application domain.

The targeted QSPR (TQSPR) method (described in detail by
Brauner et al.10) is designed to answer the above requirements.
It defines structural similarity between potential predictiVe
compounds and a target compound as measured by the partial
correlation coefficient between the vector of the molecular
descriptors of the target compound and that of a potential
predictive compound.11 Absolute values of the partial correlation
close to one indicate high correlation between the vectors of
the target and a predictive compound, and thus a high level of
similarity between the molecular structures of the target
compound and the predictive compound. The number of the
compounds structurally similar to the target, which form the
applicability domain of the model, can be selected by choosing
an acceptable lowest value of the correlation coefficients of the
similarity group. The training set from which the model is
developed usually includes a selected number of compounds
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with the highest values of the correlation coefficient, but the
training set compounds may be also chosen, applying other
criteria. The prediction (Validation) set used for Validation of
the developed model may include all applicability domain
compounds, except those in the training set, or a selected number
of them. Cross-Validation can be performed in the usual manner,
by exchanging compounds between the training and prediction
sets.12

Methods designed for prediction of properties of homologous
series have a specific importance in the use of structure-property
relationships for property estimation. Their predictions are
important for high molecular mass compounds like polymers,13

synthetic fuels, and lubricants, etc. However, because the
structural variations within a homologous series are eminimal,
and thus the structural relations between the respective members
of the series are most comprehensive, predictions for homolo-
gous series provide also a good opportunity for understanding
how QSPRs work in general, in terms of selection of compounds
for the model, extrapolation, etc.

Properties of homologous series are usually predicted with
asymptotic behavior correlations (ABCs), employing the well-
known relationship between properties and number of repeating
units in the molecules of their members, based on the lattice-
fluid theory.14 The parameters of ABC models are typically
obtained by regressing most of the available experimental data.
The key parameter value of the property at an infinite number
of repeating units, however, is obtained by extrapolation, and
because of that, there are significant differences between values,
predicted by different authors for the same homologous
series.4,14

The TQSPR method up to now has been developed as a tool
for direct prediction of a property of a single compound, the
target. The aim of the present work is to investigate the
capabilities of the method to predict properties of groups of
compounds, i.e., members of homologous series. In our previous
work,5 we have shown that it is possible to derive a linear QSPR
for a property of a homologous series if a descriptor collinear
with the property can be identified. In this work, we study the
options for identification of collinear descriptors with TQSPR
and provide linear relationships for critical properties of five
widely used homologous series.

Methodology

Typical QSPR Technique and the TQSPR Method. For a
given property, a QSPR can be mathematically represented by
the following equation

yt ) f (xs, xp, �) (1)

where yt is the property (e.g., boiling temperature, melting
temperature, toxicity, etc.) to be predicted; xs is a vector of
descriptors selected from a huge databank, which represent
numerically the molecular structures of the compounds in the
used database (including also the target compound); xp is a
vector of other known properties, if the QSPR uses more widely
available physical property data (such as normal boiling
temperatures) to predict the yt property (e.g., critical tempera-
ture); and � is the vector of the QSPR parameters.

To derive the QSPR, the available data (descriptors and
experimental property values) are divided into a training set
and a Validation set. Model validation is typically carried out
using only one validation set. Cross-Validation techniques use
alternatively defined training and validation sets. Multiple linear
or nonlinear regression, partial least-squares techniques, etc. are
applied to the training set, in order to select the “significant

common features”15 molecular descriptors and the property
values to be included in the right-hand side of eq 1 and to
calculate the model parameter values. A recent review of the
traditional QSPR technique has been published by Godavarthy
et al.16 The targeted QSPR (TQSPR) technique is described
hereunder, only in principle. A detailed description is given
elsewhere.10

The first stage of the method differs significantly from the
typical QSPR methodology. It involves identification of a
similarity group (typically of around 50 compounds) structurally
related to the compound for which properties have to be
predicted (the target compound). For identification of the
similarity group, a much wider database of molecular descrip-
tors, xij, where i is the number of the compound and j is the
number of the descriptor/property, is used.

The similarity between potential predictive compounds and
the target compound is measured by the partial correlation
coefficient, rti, between the vector of the molecular descriptors
of the target compound, xt, and that of a potential predictive
compound xi. The partial correlation coefficient in this work is
defined as rti ) xjtxji

T, where xjt and xji are row vectors, centered
(by subtracting the mean) and normalized to a unit length (after
dividing by the Euclidean norm of the vector). Different methods
for adding the predictive compounds to the similarity group,
all related to cluster algorithms, and different methods for scaling
the descriptors were compared.17 It was found that while the
effects of the various similarity measures and scaling methods
on the average accuracy of prediction of the data measured were
of minor importance they somewhat changed the particular
compounds selected to the training sets.

The training set is established by selecting the first n
compounds, with the highest |rti| values, for which experimental
values of the desired property are available. To represent the
level of structural relationship between the similarity group and
the target compound with a single number, we used the
geometric average correlation coefficient (GACC) for the
training set, defined by Shacham et al.8

GACC) √|rt1rtn| (2)

For the TQSPR model development for a particular property
of the target compound, a linear structure-property relation is
assumed of the form

y ) �0 + �1�1 + �2�2 ... �m�m + ε (3)

where y is an n vector of the respective property (known,
measured) values; �1, �2... �m are n vectors of m predictive
molecular descriptors (to be identified via a stepwise regression
algorithm); �0, �1, �2... �m are the corresponding model
parameters to be estimated; and ε is an n vector of stochastic
terms (due to measurement uncertainties). Note that in the above
TQSPR model, only descriptors (and not property values) are
included on the right hand side of eq 3.

The second stage of the TQSPR method is similar to the
typical QSPR technique. The stepwise regression program
SROV18 is used for the selection of the independent variables.
In each step, it includes in the model one molecular descriptor
that reduces the prediction error most strongly. The descriptors
are selected to the model in a stepwise manner according to
the value of the partial correlation coefficient, |Fyj| between the
vector of the property values y and that of a potential predictive
descriptor �j. The partial correlation coefficient is defined as
Fyj ) yj�jj

T, where yj and �jj are row vectors, centered (by
subtracting the mean) and normalized to a unit length. Values

Journal of Chemical & Engineering Data, Vol. 53, No. 11, 2008 2511



close to one indicate high correlation between molecular
descriptor and the property.

Two criteria for measuring the signal-to-noise ratio in the
jth candidate descriptor (TNRj) and for the partial correlation
of the jth candidate descriptor with the prediction residual
(CNRj) ensure that the selected descriptors contain valuable
information and that overfitting is avoided. Additionally, the
SROV program provides a procedure for rotation of descriptors,
so that eventually a better combination of descriptors might be
found. The final model is validated with a selection of (or with
all) compounds in the similarity group which are not members
of the training set.

The brief description above reveals that the TQSPR method,
as compared to the traditional QSPR techniques, selects the sets
of compounds from which QSPRs are developed. The quality
of the established structural relationship is limited only by the
eventual inefficiency of the description of the molecular structure
with the available descriptors. However, the TQSPR method at
present has been developed mainly toward prediction of the
properties of a single compound, the target, and its ability to
predict for groups of compounds, as typical QSPRs do, needs
further elaboration.

The TQSPR method provides several opportunities for
prediction of properties of members of homologous series, which
are explored consecutively in this work:

- Selecting a suitable target compound from the homologous
series, defining a similarity group and a training set, and
predicting the property for the members of the homologous
series, that were not used for the model derivation, with the
thus derived model. The similarity group may be selected from
all database compounds (which have various structures), or the
homologous series might be a priori defined as the similarity
group;

- Targeting separately each of the members of a homologous
series one by one and thus providing estimated values of a
property for all compounds. The similarity group may be
selected as above;

- Identifying a descriptor which for a homologous series is
collinear with the estimated property, thus being able to derive
a linear relationship for prediction of the property values from
the values of this descriptor.

Sources of Data, Databases, and Software. Experimental
values of the critical temperatures, Tc, and pressures, pc, of five
homologous series with the general formula H(CH2)nR, where
R is the following end groups, H (normal alkanes), C2H3 (1-
alkenes), OH (1-alkanols), C6H5 (n-alkylbenzenes), and COOH
(n-alkanoic acids), have been used to test the different options
for prediction with the TQSPR method. While we believe that
the results we have obtained are relevant to most homologous
series, which differ only by their end groups, the homologous
series chosen have been used for comparison of the abilities of
several QSPR methods recently published.19

The experimental data used for the critical properties studied
and references to the literature sources are presented in Appendix
A, Table A1 to Table A10, respectively (Appendix A can be
found in the Supporting Information, SI). We would like to stress
that for the derivation of our models for the homologous series
only the experimental data, given in the tables of Appendix A,
were used.

In the tables of Appendix A, we present the uncertainties of
all experimental data in percentage form. This was needed to
be able to compare them with predictions from different QSPR
methods, which were published in percentage form.19 When the
uncertainties were given in the original publication only in

percentage form, we used them directly. When the uncertainties
in the respective experimental work were given only in absolute
values of measurement, we recalculated them in percentage
form. When the uncertainties of the experimental data were
given in the original publication in both ways (i.e., in the text
in percentage form and in the respective tables in absolute values
of measurement), we assumed that the tabulated data are the
representative ones and the uncertainties in the text were rounded
numbers. So, we calculated the uncertainties in percentage form
from the experimental uncertainties given in the original tables
in absolute values of measurement.

The tables in Appendix A contain also average and maximum
uncertainties of the experimental data for the carbon atom range
in each of the series, which has been used for comparison.

For the critical temperatures, we compare the average (AAPE)
and maximum (MAPE) deviations of the predicted values of
the different methods from the experimental values by

AAPE) ( 1
N)(∑

j)1

N |Tj
exp - Tj

calc|

Tj
exp ) (4)

where Tj
exp and Tj

calc are the experimental and calculated values
of the critical temperature and N is the number of data points.

MAPE) |Tj
exp - Tj

calc

Tj
exp |

max

(5)

For the critical pressures, the temperature values in eqs 4
and 5 are replaced by the respective pressure values. We would
like to note here that for consistency we keep the abbreviations
used by Nikitin et al.19 but use the formulas and interpretation
their team has adopted recently.20

For the prediction by targeting each of the members of the
homologous series, similarity groups of 50 compounds and
training sets of 10 compounds were identified from a database
of 326 compounds of different structure (the 260 hydrocarbons,
which we have listed in a previous work15 plus 66 oxygen-
containing compounds, namely, the members of the studied
series and a selection of polyvalent alcohols). Like in our
previous studies, we have used for the derivation of all our
models only the available experimental data from our database.

The chemical structures of all molecules have been character-
ized by a total of 1664 descriptors, calculated with the Dragon,
version 5.4. software21 (DRAGON, TALETE srl, http://
www.talete.mi.it) from minimized molecular models. The
molecular geometries were optimized using the CNDO (Com-
plete Neglect of Differential Overlap) semiempirical method
implemented in the HyperChem package (Version 7.01, Hy-
percube Inc.). Excluding the constant and near constant descrip-
tors led to a selection of 1280 descriptors, with which we
performed our work.

The software program used for the selection of the similarity
group and for deriving the QSPRs is the one we developed in
the MATLABR (ref 22) environment for the TQSPR method17

on the basis of the SROV program.18

Results and Discussion

Prediction of the Critical Temperature of n-Alkanes with
Compounds from the Whole Database and from the Series
Only. The TQSPR method in its original form develops
equations for prediction of the properties of single compounds
(targets) from training sets, selected from a group of structurally
similar compounds (similarity group). These equations can also
predict satisfactorily for most of the members of the similarity
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group as well. For homologous series, the similarity group may
be selected from all available compounds of different structures
in the database, or the particular series may be considered
naturally to be the similarity group.

In this part of our work, each member of the homologous
series was consecutively chosen as a target. When the whole
database of 326 compounds was used, similarity groups of 50
and training sets of 10 compounds were selected for each
targeted n-alkane. When the homologous series was assumed
to be the natural similarity group for all n-alkanes, the
10-member training sets for each member were selected from
the n-alkane series. In both cases only single descriptor equations
were developed from the training sets.

Table 1 compares the selected descriptors and predictions of
the models for the Tc of n-alkanes obtained with the training
sets selected from the whole database and from the homologous
series only. The descriptors are classified as “dominant”, i.e.,
the first chosen by the program as most correlated with the
property, and “selected”, descriptors found to provide a better
prediction when the deviation from measured values provided
by the dominant descriptors was considered unsatisfactory. The
predicted value was judged unsatisfactory in cases when the
deviation was greater than the experimental uncertainty shown
in Table A1 (SI, Appendix A), or there were systematic
deviations from the experimental data. Cases of systematic
deviations are marked in bold in Table 1. The selected
descriptors were chosen by a “trial and error” procedure, testing

first the dominant descriptors selected when the neighboring
compounds were targeted and the descriptors identified by the
TQSPR algorithm to be among the ten most correlated with Tc.
Typically, the differences in the correlation coefficients of the
first ten descriptors, suggested by the algorithm, are within the
range of the third digit.

It is seen from Table 1 that the AAPE and MAPE, obtained
with the dominant descriptors, are within the average experi-
mental uncertainties (Table A1 in Appendix A, SI), except for
the first two n-alkanes and four compounds in the end of the
series, for which systematic deviation is also observed. In both
cases, the equations with the “selected” descriptors fix the
problems. However, to identify unreasonable predictions like
those given in bold, they should always be checked against the
known measured values for the series, and a descriptor different
from the dominant should be selected if necessary. It is
interesting to note also that the differences between the models
developed from the whole database, and those from the series
only, do not seem to be as significant as originally expected.
The systematic deviations at the end of the series seem to be
the result of the lack of experimental data for closer members
rather than the incorrect selection of compounds for the training
sets (Table 9). It is seen also that the descriptors selected for a
given target vary when the training sets selected vary signifi-
cantly (Table 1 and Table 9).

The TQSPR method provides predicted property values also
for the members of the similarity group not included in the

Table 1. Prediction of Tc by Targeting Each of the n-Alkanes

training set from all 326 compounds training set from the n-alkane series

targeta Tc/K, exp
dominant (selected)

descriptor Tc/K predicted deviation/%
dominant (selected)

descriptor Tc/K predicted deviation/%

C2 305.32 HTm 285.76 6.41 CIC0 (HVcpx) 299.5 (307.7) 1.91 (0.78)
C3 369.83 TPC 374.21 1.18 HVcpx (CIC0) 363.8 (370.6) 1.63 (0.21)
n-C4 425.12 EPS1 428.87 0.88 CIC0 424.9 0.06
n-C5 469.7 IVDM 473.2 0.74 CIC0 469.6 0.02
n-C6 507.6 DP01 510.8 0.63 CIC0 507.6 0.00
n-C7 540.2 IVDM 540.2 0.00 CIC0 540.1 0.02
n-C8 568.7 IVDM 568.8 0.02 CIC0 568.9 0.03
n-C9 594.6 DP01 594.7 0.01 CIC1 594.3 0.05
n-C10 617.7 DP01 617.8 0.02 piPC01 618.0 0.05
n-C11 639 DP01 638.7 0.05 BELe7 637.5 0.23
n-C12 658 R4p 659.2 0.18 R4p 659.2 0.18
n-C13 675 H4p 676.8 0.27 R4p 676.1 0.16
n-C14 693 H3m 696.0 0.43 H3m 696.0 0.43
n-C15 708 RARS 708.1 0.01 R3m 707.5 0.07
n-C16 723 R4p 721.2 0.25 R4p 721.2 0.25
n-C17 736 HATSp 736.5 0.07 HATSp 736.5 0.07
n-C18 747 R1m 748.2 0.16 R1m 748.2 0.16
n-C19 755 R3m 755.6 0.08 R3m 755.6 0.08
n-C20 768 HATS4p 764.6 0.45 SIC2 766.8 0.15
n-C21 778 Mor21v 776.8 0.15 Mor21v 776.8 0.15
n-C22 786 HATS5v 782.7 0.42 HATS5v 782.7 0.42
n-C23 790 Mor21v 793.2 0.40 Mor21v 793.2 0.40
n-C24 800 HATS6u 801.7 0.21 HATS6u 801.7 0.21
n-C25 - R7m 808.1 - R7m 808.1 -
n-C26 816 Espm02u 814.3 0.21 ESpm02u 814.3 0.21
n-C27 - R7m 816.3 - R7m 816.3 -
n-C28 824 R6v 829.9 0.72 H8e 829.6 0.68
n-C29 - HATS5v (REIG) 832.7 (835.0) - HATS5v (REIG) 832.7 (835.00) -
n-C30 843 Mor26p (REIG) 831.7 (839.5) 1.34 (0.41) Mor26p (REIG) 831.7 (839.5) 1.34 (0.41)
n-C32 - HATS5v 849.0 - HATS5v 849.0 -
n-C35 - R7m (REIG) 873.6 (865.5) - R7m (REIG) 873.6 (865.5) -
n-C36 872 RTm 875 0.34 JGI1 (DP01) 863.9 (874.3) 0.93 (0.26)
n-C40 - RTm 892 - HATS5v 890.0 -
n-C44 - RTm 909 - HATS5v 906.3 -
n-C60 - RTm (Espm04x) 1425.0 (955) - R7m (DP01) 1389.0 (950.3) -

(C3 to C36), AAPE/% 0.35 (0.32) 0.31 (0.19)
(C3 to C36), MAPE/% 1.34 (0.41) 1.63 (0.41)

a Short notation; i.e., C2 is ethane, C3 is propane, n-C4 is butane, etc.
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training sets, some of which may be structurally different from
the particular homologous series. Table 2 shows such predictions
with the model developed for the target n-decane from its
training set, when selected from all 326 compounds. The average
errors of the predictions outside the training set, except for the
structurally most distant compounds (three of the last five in
Table 2), are within the average experimental uncertainties for
the respective series (Appendix A, SI).

Comparison of Tc and pc Predictions by ConsecutiWe
Targeting of Each Series Member with Those of Other
Methods. Critical temperatures and pressures were predicted
by consecutive targeting of each member of the n-alkane,
1-alkene, 1-alkanol, n-alkylbenzene, and n-alkanoic acid ho-
mologous series. In Tables 3 and 4, the obtained results are
compared with two well-known QSPR methods: the group
contribution method of Constantinou and Gani23 and the group/
bond contribution method of Marero and Gani.24 The AAPE
and MAPE deviations for these QSPR methods were taken from
Nikitin et al.19 Tables 3 and 4 contain the deviations of the
models, developed in this work only from the respective
homologous series, while the two group contribution methods
are developed from a much wider database and are expected to
be applicable not only to homologous series, but also to any

structure. As demonstrated above, targeting only homologous
series does not improve significantly the TQSPR predictions
for homologous series, so the comparison is correct. Table 3
and Table 4 show that the deviations of the TQSPR method
compare favorably with the deviations of the two well-
recognized QSPR methods.

Linear Equations for Tc and pc, of Each Series.
Comparison with ABC Methods. Our previous work5 demon-
strated that it was possible to develop linear QSPRs for
prediction of properties in homologous series, if a descriptor
collinear with a given property could be identified. There the
similarity group was defined as the whole homologous series,
and a collinear descriptor was found with all available experi-
mental data, even complemented by predicted data when long-
range extrapolation was needed; but, the experimental data were
insufficient. The parameters of the traditional QSPR model were
then determined from experimental data only.

In the present work, we use the TQSPR method to identify
descriptors collinear with a given property with a possible
minimum of experimental data only, employing the descriptor-
property correlation coefficients (Fyj) and the CNR values,
provided by the TQSPR program, as a guidance.

The following tables and figures present the linear equations,
obtained in this manner. The coefficients of the equations were
determined by using a smallest possible amount of measured
data, which would allow for adequate prediction of the rest of
the available experimental data. The respective data used can
be identified from the references of the tables given in the SI,
Appendix A (given in the Supporting Information).

It should be possible in principle to develop linear equations
from only two measured points. Table 5 shows the parameters
of equations, obtained with a minimum of experimental data,
and with only two measured points. Details for all models are
presented in the respective tables in Appendix B (given in the
Supporting Information).

Figures 1 to 8 present the experimental and the predicted
values obtained with the linear equations. Except for two cases
(for the Tc of n-alkanes and for the pc of n-alkanoic acids), which
require more than two measured data, all equations presented
on the figures are obtained from two measured data for the lower
members of the series only. These figures, and the detailed data
presented in Appendix B of the Supporting Information, clearly
demonstrate that even with only two measured points the studied
properties can be predicted with deviations comparable to those
typical for contemporary ABC methods and the linear TQSPR
equations derived from more experimental data. For certain
homologous series which might have only several measured
data, the procedure for the identification of collinear descriptors
might still require the use of data predicted with a reliable ABC
method.5 The equations obtained in such cases must be reported
with an exact description of the data, predicted from another
correlation, and why and how they have been used. We would
like again to point out, however, that for all series studied in
the present work the measured data have been sufficient, and
they have been developed from experimental data only.

Table 6 and Table 7 compare the predictions of all linear
equations, developed with TQSPR, with those of the recent ABC
equations, proposed by Nikitin et al.19 These tables show similar
average deviations of the compared methods, within the
experimental uncertainties of the measured properties. Com-
parison with our previous work,5 where linear equations for
homologous series were developed with traditional QSPR
methodology, outlines clear advantages of using the TQSPR
method suggested in this work, which achieves deviations close

Table 2. Predictions of Tc within the Similarity Group of 50
Compounds with Decane as the Targeta

DBNo. compound name
C

atoms
Tc/K,
exp.

Tc/K,
pred.

Deviation
%

5 hexane 6 507.6 507.3 0.07
6 heptane 7 540.2 540.1 0.02
7 octane 8 568.7 569.1 0.07
8 nonane 9 594.6 594.7 0.01
9 decane-target 10 617.7 594.7 0.01
10 undecane 11 639 638.8 0.03
11 dodecane 12 658 658.1 0.01
12 tridecane 13 675 675.8 0.12
13 tetradecane 14 693 692.2 0.11
14 pentadecane 15 708 707.6 0.06
15 hexadecane 16 723 722.0 0.13
16 heptadecane 17 736 735.6 0.06
17 octadecane 18 747 748.3 0.18
18 nonadecane 19 755 760.4 0.71
19 eicosane 20 768 771.9 0.51
20 heneicosane 21 778 782.8 0.62
21 docosane 22 786 793.2 0.92
22 tricosane 23 790 803.1 1.66
23 tetracosane 24 800 812.7 1.59
51 2-methylheptane 8 559.7 559.4 0.06
53 4-methylheptane 8 561.7 554.2 1.34
57 2,5-dimethylhexane 8 550 549.0 0.18
75 2-methyloctane 9 582.87 586.30 0.59
91 1-heptene 7 537.4 537.7 0.06
92 1-octene 8 567 566.9 0.01
93 1-nonene 9 593.1 593.0 0.02
94 1-decene 10 616.6 616.3 0.04
95 1-undecene 11 - 637.5 -
96 1-dodecene 12 658 656.9 0.16
97 1-tridecene 13 673 674.8 0.26
98 1-tetradecene 14 691 691.3 0.05
99 1-pentadecene 15 705 706.8 0.26
100 1-hexadecene 16 718 721.3 0.47
101 1-heptadecene 17 734 734.9 0.12
102 1-octadecene 18 748 747.7 0.03
103 1-nonadecene 19 755 759.8 0.64
151 butylcyclohexane 10 653.1 588.1 9.95
155 butylcyclopentane 9 - 570.2 -
197 pentylbenzene 11 675 608.8 9.81
234 p-diethylbenzene 10 657.9 576.9 12.32
252 4-methyloctane 9 - 580.8 -

a Deviations from the experimental values if available. The training
set compounds are shown in italic. In the TQSPR method, target
compounds are not used in training sets.
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to the experimental uncertainties for the respective properties
using a smaller amount of measured data and no predicted data.
The advantages of the linear equations developed with TQSPR
over traditional ABCs again is the use of less experimental data
and the higher level of confidence in linear long-range
extrapolation.

The comparison of the different methods, presented above,
is more likely to be of interest to readers that are “data experts”
and/or develop their own QSPRs. For practicing chemical
engineers looking for experimental and/or predicted data, the
primary choice would rather be among the commercial data-
bases. That is why we have also compared our predictions and
the predictions of Nikitin et al.19 to predicted data, recommended
by DIPPR.25 In order to do that, we have assumed that the
“reliabilities” (in percentage form) assigned to each predicted
value by DIPPR correspond to the deviations from the experi-
mental values, used in this work. Then we have calculated
AAPE and MAPE for the respective DIPPR data, as shown
above. The comparison showed that for all homologous series
the values predicted by Nikitin et al.19 and in this work were
significantly closer to the measured values than the predicted
values, recommended by DIPPR.

Identification of Descriptor-Property Collinearity. As seen
above, the identification of descriptors collinear with properties

Table 3. Experimental Uncertainties and Average (AAPE) and Maximum (MAPE) Deviations from Experimental Values for Predictions of Tc

by TQSPR and by Other QSPR Methodsa

uncertainty/%
this work, consecutive training sets

from series (whole database)
Constantinou and Gani

(Nikitin et al.19)
Marero and Gani
(Nikitin et al.19)

series
range of
C atoms avg. max AAPE/% MAPE/% AAPE/% MAPE/% AAPE/% MAPE/%

n-alkanes 3 to 36 0.91 1.50 0.19 (0.32) 0.41 (0.41) 1.05 5.76 0.92 3.11
1-alkenes 3 to 18 0.49 1.04 0.19 0.87 0.79 1.87 0.39 1.38
n-alkylbenzenes 3 to 13 0.69 1.06 0.31 0.71 1.24 2.90 0.41 0.96
1-alkanols 3 to 22 0.51 1.06 0.16 0.68 1.44 2.77 1.18 2.78
n-alkanoic acids 3 to 21 0.69 1.05 0.43 1.20 0.73 1.77 5.97 10.00

a The number of significant digits is given as in Nikitin et al.19

Table 4. Experimental Uncertainties and Average (AAPE) and Maximum (MAPE) Deviations from the Experimental Values for Predictions of
pc by TQSPR and by Other QSPR Methodsa

uncertainty/%
this work, consecutive training

sets from series
Constantinou and Gani

(Nikitin et al.19)
Marero and Gani
(Nikitin et al.19)

series
range of
C atoms avg. max. AAPE/% MAPE/% AAPE/% MAPE/% AAPE/% MAPE/%

n-alkanes 3 to 36 8.80 22.99 1.68 7.63 3.65 14.13 14.29 84.28
1-alkenes 3 to 18 2.55 10.36 1.68 3.24 3.61 7.85 4.73 11.84
n-alkylbenzenes 3 to 13 2.53 3.25 1.28 3.05 2.41 11.81 2.02 3.74
1-alkanols 3 to 22 1.99 3.13 1.27 5.45 5.51 9.57 2.02 3.74
n-alkanoic acids 3 to 21 4.62 23.81 1.48 4.26 5.03 10.98 4.24 7.93

a The number of significant digits is given as in Nikitin et al.19

Table 5. Linear Equations for Prediction of Properties from Selected Dataa

series equationb used data, figurec

n-alkanes Tc/K ) 154.4557 + 141.0302 IVDM (5.1) n-C3 to n-C12
pc/MPa ) -2.5244 + 20.4267 BIC1 (5.2) n-C3 to n-C14
pc/MPa ) -2.6027 + 20.7597 BIC1 (5.3) n-C3 and n-C14, Figure 1

1-n-alkenes Tc/K ) 195.178+ 111.440 DP01 (5.4) n-C3 to n-C7
Tc/K ) 195.421 + 111.466 DP01 (5.5) n-C3 and n-C7, Figure 2
pc/MPa ) -32.0022 + 31.9809 PCR (5.6) n-C3 to n-C7; n-C16
pc/MPa ) -32.5258 + 32.4242 PCR (5.7) n-C3 and n-C16, Figure 3

n-alkylbenzenes Tc/K ) -26.6100 + 259.648 piPC01 (5.8) n-C3 to n-C7
Tc/K ) -28.2629 + 259.888 piPC01 (5.9) n-C3 and n-C7, Figure 4
pc/MPa ) -0.12651 + 4.9908 ARR (5.10) n-C0 to n-C4
pc/MPa ) -0.1175 + 5.0125 ARR (5.11) n-C0 and n-C4, Figure 5

n-1-alkanols Tc/K ) 334.329 + 15.5792 RTu (5.12) n-C3 to n-C12
Tc/K ) 340.994 + 15.4458 RTu (5.13) n-C3 and n-C12, Figure 6
pc/MPa ) -1.97054 + 14.4979 VEZ2 (5.14) n-C3 to n-C7
pc/MPa ) -2.0084 + 14.5586 VEZ2 (5.15) n-C3 and n-C7, Figure 7

n-alkanoic acids Tc/K ) 588.957 + 16.6285 DP07 (5.16) n-C2 to n-C6
Tc/K ) 586.197 + 17.2789 DP07 (5.17) n-C2 and n-C6, Figure 8
pc/MPa ) 5.3283 - 7.4108 H2v (5.18) n-C4 to n-C10

a Details are given in the Supporting Information (Appendix B). b The equations are numbered consecutively; the first number corresponds to the
number of this Table. c Short notation; the number of the Figure on which the results are displayed is also shown.

Figure 1. Linear prediction of the pc of n-alkanes with eq 5.3, Table 5,
using only two of the measured data. b, experimental values of pc; 0,
predicted values of pc; s, line of approximated experimental values; - - -,
line of approximated predicted values. BIC1 is the collinear descriptor.
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studied is an important prerequisite of the proposed method.
Table 8 summarizes the descriptors found in this work to be
collinear with Tc or pc of the respective homologous series,
together with the compounds used for their identification by
the values of the property-descriptor correlation coefficients
(Fyj) and/or the CNR values. It includes also the definition of
the descriptors, as given in the User Manual of the Dragon 5.4.
software.21

It is seen from Table 8 that only in one case (pc, 1-n-alkenes)
the descriptor collinear with the respective property could not
be identified from experimental data for a relatively small group
of lower members of the respective homologous series by its
Fyj and/or CNR value. Typically, the TQSPR program will find
such a descriptor by interactive generation of candidate descrip-
tors and linear equations and selecting different target com-
pounds and/or amounts of measured data, until the user is
satisfied with the prediction of all experimental values.

The present work raises a question which is fundamental for
the QSPRs methodology; namely: Does the existence of
descriptors collinear with a given property imply that they
represent the “most significant common features” of the
chemical structure important for the particular property? The

answer to this question is not straightforward. Presently we
cannot provide a definite answer because it requires systematic
studies, which go beyond the aim of this work. Table 8 shows
that the ten collinear descriptors belong to six groups. Both
descriptors for the n-alkanes are information indices. The
descriptors for Tc of 1-n-alkenes and 1-n-alkanoic acids are
Randic molecular profiles. Walk and path count indices have
been chosen for the pc of 1-n-alkenes and the Tc of n-
alkylbenzenes, and GETAWAY descriptors - for the Tc of n-1-
alkanols and pc of 1-n-alkanoic acids. The remaining two
collinear descriptors belong to two different groups.

It should be pointed out, however, that our work indicated
that in addition to the collinear descriptors identified above there
might exist other collinear descriptors, which we have not
sought, as explained previously. Thus, the professional answer
to the posted question would require first analysis of the collinear
descriptors, suggested by the algorithm with the view to establish
one or more most suitable for the property. Then, the relation-
ships between collinear descriptors and respective properties,
and the factors which affect them, should be studied systemati-
cally. We trust that the present findings might serve as an
introduction to such studies.

Figure 2. Linear prediction of the Tc of n-1-alkenes with eq 5.5, Table 5,
using only two of the measured data. b, experimental values of Tc; 0,
predicted values of Tc; s, line approximating experimental values; - - -,
line approximating predicted values. DP01 is the collinear descriptor.

Figure 3. Linear prediction of the pc of n-1-alkenes with eq 5.7, Table 5,
using only two of the measured data. b, experimental values of pc; 0,
predicted values of pc; s, line approximating experimental values; - - -,
line approximating predicted values. PCR is the collinear descriptor.

Figure 4. Linear prediction of the Tc of n-alkylbenzenes with eq 5.9, Table
5, using only two of the measured data. b, experimental values of Tc; 0,
predicted values of Tc; s, line of approximated experimental values; - - -,
line of approximated predicted values. PiPC01 is the collinear descriptor.

Figure 5. Linear prediction of the pc of n-alkylbenzenes with eq 5.11, Table
5, using only two of the measured data. -b-, experimental values of pc; -
-0- -, predicted values of pc; s, line of approximated experimental values;
- - -, line of approximated predicted values. ARR is the collinear descriptor.

2516 Journal of Chemical & Engineering Data, Vol. 53, No. 11, 2008



Structural Similarity and Selection of Compounds for the
Training Sets. In the course of the work presented above, it
was found that many of the training sets contain compounds
which, from the point of view of common knowledge of
chemical structure, seem to be less related to the target than
others. This observation holds both for the similarity groups

of 50 and training sets of 10 compounds selected from the
whole database of 326 compounds, for each targeted n-alkane
(Table 9) and for the 10-member training sets determined
only from homologous series (Table 10). The two tables show
the order into which the members of the training set have
been selected only for some of the particular targets, but the
observations hereunder are based on all selections.

It can be seen from both tables that the problem is more
pronounced for the low carbon number members of the series.
For example, in the training set for ethane, identified from
the whole database (Table 9), propane was selected first, and
butane was the ninth. No other member of the n-alkane series
was identified as structurally similar to ethane. The n-alkane
most structurally related to propane was identified as pentane,
whereas butane was selected last; neither ethane nor any other
n-alkane was included in the propane training set. Instead,
the propane training set includes alcohols, iso-alkenes,
cycloalkanes, etc., most of them with up to four heavy atoms.
The number of n-alkanes selected in the training sets increases
with the increase of the number of carbon atoms in the target,
and the nonmembers gradually move to the last places in
the training sets.

The GACC values shown in the two tables provide a good
single number indication of the level of similarity between
the target compound and the training set. They are lowest
for the low carbon number compounds (up to approximately
8C atoms), highest for the compounds in the middle of the
homologous series (C9 to C30), and somewhat reduced
toward the upper end of the homologous series. For n-C12,
n-C14, and n-C16 to n-C26 from the whole database (Table
9), only members of the homologous series are selected.
Then, single nonmember compounds start to appear again
occasionally in the last places of the training sets, but without
a profound effect on the GACC. The values of the latter
increase or decrease significantly only when the appearance
of nonmembers is combined with the limitation of the ability
for balanced interpolation, i.e., when the number of com-
pounds with lower and higher carbon numbers is limited and
the distance (in terms of nC) between the predictive com-
pounds (above n-C30) increases. When the training sets are
selected solely from the n-alkanes (Table 10), only the latter
effect is observed.

The order of selection of the compounds for the training
sets from the series in most cases seems correlated with the
known alternation of the structures with odd and even
numbers of carbon atoms, which influences properties related
to crystals, e.g., melting temperatures. Indeed, for all targets
with more and for some with less than nine carbon atoms,
the first chosen compound is always with two more carbon
atoms than the target. Moreover, we have demonstrated5 that
the TQSPR method can exploit successfully these subtle
structural features. The deviations for compounds with lower
number of carbon atoms, however, indicate that there is a
strong influence of factors in addition to chemical structure
on the selection of training sets. For instance, it has been
demonstrated26 that certain descriptors (e.g., topological
indices) cannot be defined and/or have the same values for
the first members of homologous series; some descriptors
do not distinguish different heavy atoms, etc. In our work,
we have observed that the values of the descriptors depend
also on the extent of minimization of the molecular structure.
One example of values inconsistent with the general trend
is given in bold in Table B10 of the SI, but we have identified
more cases. There might be yet other nonidentified factors

Figure 6. Linear prediction of the Tc of n-1-alkanols with eq 5.13, Table
5, using only two of the measured data. b, experimental values of Tc; 0,
predicted values of Tc; s, line of approximated experimental values; - - -,
line of approximated predicted values. RTu is the collinear descriptor.

Figure 7. Linear prediction of the pc of n-1-alkanols with eq 5.15, Table 5,
using only two of the measured data. b, experimental values of pc; 0,
predicted values of pc; s, line of approximated experimental values; - - -,
line of approximated predicted values. VEZ2 is the collinear descriptor.

Figure 8. Linear prediction of the Tc of n-1-alkanols with eq 5.17, Table
5, using only two of the measured data. b, experimental values of Tc; 0,
predicted values of Tc; s, line of approximated experimental values; - - -,
line of approximated predicted values. DP07 is the collinear descriptor.
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as well. Thus, it is important to identify and study systemati-
cally all factors and their influence on descriptor selection,
predictive ability, meaning of collinearity, etc.

It is important to point out also that the results presented in
Table 9 and Table 10 are subject to variation when a different
descriptor normalization (e.g., the Euclidean norm instead of

infinite norm) and/or different property and descriptor databases
are used. In a previous work, we analyzed different normaliza-
tion techniques for prediction of properties of more than 100
compounds.17 As already stated above, while differences were
detected in the training sets, the prediction errors were not
significantly influenced.

Table 6. Experimental Uncertainty and Average and Maximum Deviations from the Experimental Values for the Prediction of Tc by Linear
Equationsa, Compared to a Recent Asymptotic Correlation

uncertainty/% this work, training sets from series Nikitin et al.19

series
compared range

of C atoms avg. max. AAPE/% MAPE/% AAPE/% MAPE/%

n-alkanes 3 to 36 0.91 1.50 0.47 (eq 5.1) 1.15 (eq 5.1) 0.35 1.34
1-alkenes 3 to 18 0.49 1.04 0.21 (eq 5.4) 0.19 (eq 5.5) 0.47 (eq 5.4) 0.47 (eq 5.5) 0.21 0.66
n-alkylbenzenes 3 to 13 0.69 1.06 0.19 (eq 5.8) 0.21 (eq 5.9) 0.33 (eq 5.8) 0.44 (eq 5.9) 0.59 1.18
1-alkanols 3 to 22 0.51 1.06 0.48 (eq 5.12) 0.53 (eq 5.13) 1.09 (eq 5.12) 1.31 (eq 5.13) 0.43 1.21
n-alkanoic acids 3 to 21 0.69 1.05 0.46 (eq 5.16) 0.68 (eq 5.17) 1.59 (eq 5.16) 1.73 (eq 5.17) 0.72 1.37

a The experimental uncertainties and the deviations from the measured values are presented in detail in the respective tables of the Supporting
Information (Appendices A and B). The number of significant digits is given as in Nikitin et al.19

Table 7. Experimental Uncertainty and Average and Maximum Deviations from the Experimental Values for the Prediction of pc by Linear
Equationsa, Compared to a Recent Asymptotic Correlation

uncertainty/% this work, training sets from series Nikitin et al.19

series
compared range

of C atoms avg. max. AAPE/% MAPE/% AAPE/% MAPE/%

n-alkanes 3 to 36 8.70 22.99 2.52 (eq 5.2) 1.76 (eq 5.3) 14.41 (eq 5.2) 8.26 (eq 5.3) 2.32 18.01
1-alkenes 3 to 18 2.55 10.36 2.22 (eq 5.6) 2.98 (eq 5.7) 4.38 (eq 5.6) 6.22 (eq 5.7) 1.45 2.94
n-alkylbenzenes 3 to 13 2.53 3.25 1.43 (eq 5.10) 1.84 (eq 5.11) 5.84 (eq 5.10) 4.54 (eq 5.11) 2.17 9.38
1-alkanols 3 to 22 1.99 3.13 1.28 (eq 5.14) 1.24 (eq 5.15) 6.54 (eq 5.14) 8.41 (eq 5.15) 1.14 2.56
n-alkanoic acids 3 to 21 4.62 23.81 2.99 (eq 5.18) 7.38 (eq 5.18) 4.90 9.76

a The experimental uncertainties and the deviations from the measured values are presented in detail in the respective tables of the Supporting
Information (Appendices A and B). The number of significant digits is given as in Nikitin et al.19

Table 8. Descriptors Collinear with the Critical Properties of the Homologous Series Studied

descriptora collinear with Dragon definition of descriptor

IVDM (C4 to C20; 1st CNR) Tc, n-alkanes Information index. Mean information content on the vertex degree
magnitude.

BIC1 (C4 to C16; 1st Fyj) pc, n-alkanes Information index. Bonding information content (neighbor symmetry of
1-order).

DP01 (C4 to C12; within first four of equal Fyj) Tc, 1-n-alkenes Randic molecular profile indices. DP01 is molecular profile 01.
PCR (-) pc, 1-n-alkenes Walk and path count index. The ratio of multiple path count over path

count.
piPC01 (C0 to C10; Fyj; 4 CNR) Tc, n-alkylbenzenes Walk and path count index. Molecular multiple path count of order 01

(sum of conventional bond orders.)
ARR (C0 to C10; 1st Fyj) pc, n-alkylbenzenes Constitutional descriptor. Aromatic ratio.
RTu (C4 to C14; 1st Fyj) Tc, n-1-alkanols GETAWAY descriptor. R total index/unweighted.
VEZ2 (C4 to C14; within first 4 of equal Fyj) pc, n-1-alkanols eigenvalue based index. Average eigenvector coef. sum from Z weighted

distance (Barysz) matrix.
DP07 (C4 to C14; 1st Fyj) Tc, n-alkanoic acids Randic molecular profile. Molecular profile 07.
H2v (C4 to C14; 1st CNR) pc, n-alkanoic acids GETAWAY descriptor. H autocorrelation of lag 2, weighted by atomic

van der Waals volumes

a The data in brackets are, respectively: the compounds needed to identify the collinear descriptor; the place of this descriptor in the Fyj and/or the
CNR selection; (-) means “not chosen” by either criterion, in this case the descriptor has been found by interactive tries. The target compound is
always the first member of the series, compared in Table 6 and Table 7. The similarity group does not contain compounds not included in the
comparison.

Table 9. Order of Selection of the n-Alkane Training Sets from the Whole Database

target compounda

order C2 C3 n-C11 n-C12 n-C36 n-C40

1st C3b propylene n-C13 n-C14 n-C40 n-C44
2nd methanol isobutene n-C9 n-C10 n-C35 n-C36
3rd propylene isobutane n-C12 n-C11 n-C32 n-C35
4th ethanol n-C5 n-C10 n-C13 n-C30 n-C32
5th cyclobutane c-2-butene n-C15 n-C16 n-C44 n-C30
6th c-2-butene t-2-butene n-C14 n-C15 n-C29 n-C29
7th t-2-butene cyclobutane 1-n-C11-ene n-C18 n-C28 n-C28
8th cyclopropane 1,3-butadiene n-C17 n-C9 n-C27 n-C27
9th n-C4 1-butene 1-n-C10-ene n-C17 n-C26 n-C26
10th 1,2-ethanediol n-C4 1-n-C12-ene n-C20 1-n-C30-ene 1-n-C30-ene
GACCc 0.796 0.909 0.978 0.977 0.989 0.986

a Short notation; i.e., C2 is ethane. b The chosen members of the n-alkane series are shown in bold. c GACC is the Geometric Average Correlation
Coefficient (eq 2).
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Labanowski et al.27 have shown that many of the popular
topological indices are highly correlated with the van der Waals
molecular surface area or the van der Waals volume. It was
suggested that the available measured Tc and pc of homologous
series depend linearly on the natural logarithm of the surface
area of minimized molecular models.28 The same authors also
pointed out the relationship between their models and the
parameters of the van der Waals equation of state. The practical
use of the surface area itself as a descriptor is limited by the
fact that its values are significantly different when calculated
by different programs, but its importance has been proved in
many later studies, which have selected descriptors related to
it in general QSPR models.16

The TQSPR method, when applied to congeneric compounds
(homologous series in the present work), provides new op-
portunities for studying systematically the relationships between
descriptors and properties, comparing descriptors and evaluating
their degeneracy, comparing methods for identification of
structural similarity between molecular structures.

Conclusions

The ability of the TQSPR method to predict properties for
members of homologous series has been tested with experi-
mental Tc and pc data from a database of 326 hydrocarbon- and
oxygen-containing compounds of different structures, described
with 1664 descriptors, and with five of the homologous series
contained in the database, having a general formula H(CH2)nR,
where R is the following end groups: H (normal alkanes), C2H3

(1-alkenes), OH (1-alkanols), C6H5 (n-alkylbenzenes), and
COOH (n-alkanoic acids).

The TQSPR method can be used for development of linear
equations for homologous series with descriptors collinear with
the studied property. Only in one case out of ten, the respective
collinear descriptors could not be identified with the controls
imbedded in the TQSPR program (Fyj and CNR). The com-
parison with presently available methods showed that while
achieving precision in most cases within average experimental
uncertainties like the best ABC methods, the TQSPR method
needs smaller amounts of measured data and provides higher
statistical confidence in long-range prediction.

The TQSPR method has been tested with only five homolo-
gous series, but the findings of the present work are relevant to
all homologous series because, by definition, the structure of
the members of a given homologous series is different only in
terms of the number of carbon atoms.

The results obtained reveal that the TQSPR method, when
applied to simple molecules, can provide insight into the way

compounds are selected for training sets by structural similarity.
They outline the existence of certain inefficiencies in this
selection, even when members of homologous series for which
a significant amount of measured data are available are
considered.

Our general approach in this and previous work has been to
test novel methods with the simplest structures and structural
variation. The present work showed that this approach provides
advantages from a methodological point of view over the
tendency in the literature published to develop QSPRs from as
large a database and structural variation as possible because it
allows for better understanding of how the novel methods, and
QSPRs in general, work.

The TQSPR method explicitly exploits the relationships
between chemical structures, their descriptors, and properties
and thus allows for systematic future studies of the causes for
inefficiencies and the eventual physical meaning of QSPRs.

Supporting Information Available:

Appendices A and B, containing ten tables each. This material
is available free of charge via the Internet at http://pubs.acs.org.
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Table 10. Order of Selection of the Training Sets Only from the
n-Alkane Homologous Series

target compounda
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