Solubility of Isonicotinic Acid in 4-Methylpyridine + Water from (287.65 to 361.15) K

Liu-Cheng Wang,* Hui Ding, Jian-Hong Zhao, Cheng-Ying Song, and Jian-She Wang

College of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China

To provide thermodynamic data for isonicotinic acid production, the solubilities of isonicotinic acid in water and 4-methylpyridine binary solvent mixture were determined from (287.65 to 361.15) K with the solvent mole fraction composition ranging from 0.00 to 1.00. The experimental data were correlated with the modified Apelblat equation. The calculated results show good agreement with the experimental data.

Introduction

Isonicotinic acid is an important intermediate in the synthesis of anti-TB drugs and can also be used as an anticorrosion reagent, plating additive, and photosensitive resin stabilizer.¹ It is manufactured through several chemical methods including potassium permanganate oxidation, air oxidation, and ozone oxidation.² An alternative method is the electrolytic method using 4-methylpyridine as the raw material and aqueous sulfuric acid solution as the supporting electrolytes. The reaction conditions are mild, giving high product purity, reducing waste, and nonpolluting.³ In the synthesis and purification process of isonicotinic acid, it is necessary to know the solubility of the acid in the related solvents, but the solubility data which have been reported are only in water.⁴ In this study, the solubilities of isonicotinic acid in water and 4-methylpyridine binary solvent have been measured from (287.65 to 361.15) K at atmospheric pressure.

Experimental Section

Materials. Analytical grade isonicotinic acid obtained from the Shanghai Huixing Biochemical Reagents Co. Ltd. was further purified by recrystallization, and its purity was determined by UV spectrophotometry (type UV-2401PC, Shimadzu Co. Ltd.) to be 0.99 in mass fraction. 4-Methylpyridine from the Shanghai Chemical Reagent Co. was purified by distillation, and the mass fraction was determined by gas chromatography (type GC2010 Shimadzu Co. Ltd., DB-1 capillary column with a FIDdetector) to be 0.995. The water used in the experiments was double-distilled water.

Apparatus and Procedure. The solubilities were measured by a dynamic method at atmospheric pressure.⁵⁻⁷ The experiment was carried out in a magnetically stirred, jacketed glass vessel (60 cm³). A constant temperature (\pm 0.02 K) was maintained by circulating water through the outer jacket from a thermostatically controlled water bath (Shanghai Laboratory Instrument Works Co. Ltd.) at the required temperature. A condenser was upright connected with the vessels to prevent the solvents from evaporating. A mercury in-glass thermometer was inserted into the inner chamber of the vessels for the measurement of the temperature. The uncertainty of the temperature was \pm 0.05 K. Solvents for the solubility measurement were prepared by mass using an analytical balance (type

Figure 1. Solubility of isonicotinic acid in water: \bigcirc , literature data; \times , experimental data.

AW120, Shimadzu Co.). The balance has a range of measurement up to 120 g, with an uncertainty of \pm 0.0001 g. Predetermined amounts of isonicotine acid were weighed and transferred into the vessel. The contents of the vessel were heated very slowly at rates less than 2 K • h⁻¹ with continuous stirring. In the early stage of the experiment, there were a lot of undissolved particles in the mixture, so the solution was turbid, and with increasing temperature, the color of the solution gradually shallowed. At the end of dissolution, the temperature was recorded as the liquidus temperature. In the process of solubility measurement, some of the solubility experiments were conducted two or three times to check the reproducibility. The reproducibility of the measurements was 0.1 K, which corresponds to a relative error in composition smaller than ± 1 %. To verify the reliability of the measurement, the solubilities of isonicotinic acid in water were measured, and the results are shown in Figure 1. In Figure 1, T is the absolute temperature and x is the experimental solubility in mole fraction. It is clear from Figure 1 that our experimental results show good agreement with literature data.⁴ Compared with the literature data, the deviations of the solubility are less than 2.0 %.

Results and Discussion

The measured mole fraction solubilities (x) of isonicotinic acid in 4-methylpyridine + water at different temperatures (T) are presented in Table 1. The mass fraction (w) of 4-methylpyridine in the solvents is 0, 0.10, 0.20, 0.40, 0.60, 0.80, and 1.00,

^{*} Corresponding author. E-mail: wanglc@zzu.edu.cn.

Table 1. Mole Fraction Solubilities (x) of Isonicotinic Acid in (w)4-Methylpyridine + (1 - w) Water, Where w is the Mass Fraction

<i>T</i> /K	$10^{2}x$	$10^{2}x_{c}$	<i>T</i> /K	$10^{2}x$	$10^{2}x_{c}$		
w = 0.00							
290.45	0.06648	0.03393	320.15	0.1572	0.1554		
295.65	0.07914	0.07872	326.55	0.1820	0.1820		
300.75	0.09214	0.09171	330.65	0.2006	0.2005		
305.45	0.1049	0.1050	335.55	0.2234	0.2243		
309.85	0.1185	0.1186	341.05	0.2512	0.2532		
313.65	0.1311	0.1314	347.25	0.2881	0.2332		
218.05	0.1311	0.1314	252 55	0.2301	0.2880		
510. 4 5 0.1462 0.1469 555.55 0.5500 0.5277							
297.05	1 414	W = ().10 222.45	1 724	1 722		
207.95	1.414	1.452	220.55	1.724	1.752		
295.25	1.491	1.4/5	338.33	1.760	1.769		
305.75	1.551	1.541	343.05	1.795	1.804		
311.45	1.584	1.578	348.45	1.840	1.845		
317.05	1.618	1.616	353.55	1.887	1.886		
322.35	1.653	1.652	361.55	1.967	1.951		
327.75	1.687	1.690					
w = 0.20							
292.85	2.491	2.497	332.55	2.825	2.828		
302.95	2.573	2.568	338.85	2.886	2.893		
309.15	2.620	2.616	344.45	2.947	2.954		
314.25	2.659	2.658	350.05	3.018	3.017		
318.65	2.698	2.696	356.05	3.091	3.088		
324.85	2 757	2 753	361 35	3 1 5 8	3 1 5 3		
524.05	2.151	2.155	2 40	5.150	5.155		
202 (5	2 705	w = 0	0.40	4.170	4 107		
292.65	3.705	3.716	329.75	4.179	4.18/		
299.15	3.786	3.777	335.85	4.283	4.291		
306.25	3.859	3.855	341.75	4.390	4.398		
311.55	3.921	3.920	347.25	4.501	4.505		
316.95	3.999	3.992	352.95	4.625	4.622		
323.05	4.087	4.081	357.85	4.736	4.727		
		w = 0	0.60				
287.65	3.419	3.454	325.65	4.620	4.276		
290.55	3.497	3.502	330.75	4.399	4.420		
296.35	3 638	3,606	336.05	4 554	4 577		
302 55	3 767	3 727	341.15	4 726	4 738		
310.15	3 801	3 890	346.05	1 897	4 900		
314.25	3 006	3.095	350.05	5.083	5.071		
320.25	4 124	4 134	355 35	5 260	5 232		
520.25	7.127	ч.1 <i>3</i> ч	0.00	5.200	5.252		
204.05	2 4 6 9	w = 0	J.80 228.25	2 0 2 0	2.046		
294.05	2.468	2.484	328.25	3.838	3.846		
297.35	2.603	2.589	334.35	4.159	4.160		
302.15	2.752	2.752	340.45	4.483	4.501		
306.75	2.920	2.918	346.05	4.845	4.838		
311.55	3.116	3.1031	352.35	5.254	5.248		
317.75	3.365	3.359	358.55	5.689	5.684		
322.15	3.545	3.555					
w = 1.00							
299.65	2.326	2.312	333.45	4.410	4.436		
303 55	2.479	2.509	338.25	4.820	4.820		
306.65	2 682	2 674	343.85	5 286	5 295		
311.65	2.002	2.074	340 35	5 782	5 703		
316.25	3 2/18	3 225	35/ 65	6 305	6 302		
222.25	2 627	2.624	250.25	6 701	6 777		
322.23	5.027	3.024	559.55	0.791	0.///		
521.45	4.010	3.98/					

respectively. The temperature dependence of isonicotinic acid solubility at fixed solvent composition is described by the modified Apelblat equation⁸⁻¹⁰

$$\ln x = A + \frac{B}{T/K} + C \ln(T/K) \tag{1}$$

where x is the mole fraction solubility of isonicotinic acid; T is the absolute temperature; and A, B, and C are the parameters in eq 1. The values of these parameters together with the root-mean-square deviations (rmsd's) are listed in Table 2. The rmsd is defined as

rmsd =
$$\left[\sum_{i=1}^{N} \frac{(x_{ci} - x_i)^2}{N}\right]^{1/2}$$
 (2)

where *N* is the number of experimental points and x_c is the solubility calculated by eq 1. From Tables 1 and 2, it can be found that the calculated solubilities show good agreement with the experimental data, which indicates that the modified Apelblat equation can be used to correlate the solubility data of isonicotinic acid in 4-methylpyridine + water. The overall rmsd of 91 data points for the 4-methylpyridine + water system at various contents of isonicotinic acid in the mixed solvent is $1.12 \cdot 10^{-4}$. The experimental solubility and correlation equation in this work can be used as essential data and models to serve the synthesis and purification process of isonicotinic acid.

By using the data shown in Table 1, the dependence of the solubilities x calculated from eq 1 and values of A, B, and C on the mass fraction w of 4-methylpyridine in solvent for the isonicotinic acid + 4-methylpyridine + water system are given in Figure 2. It showed the relations between the solubility and the composition of the mixed solvent at fixed temperatures, and from the results shown in Table 1 and Figure 2, it can be seen that the solubility of isonicotinic acid in 4-methylpyridine + water is higher than that in water and 4-methylpyridine. It also can be seen from Figure 2 that with a temperature increase from (295 to 345) K, the maximum of every curve increases from 40 % to 60 %. According to Scatchard-Hildebrand's theory,^{11,12} the solubility of the solute in the solvent is the largest when the solubility parameters of the solute and the solvent are the same. For the binary solvent of A and B, it is possible that the solubility is the maximum when the parameter meets the following relationship, $\delta_A < \delta_1 < \delta_B$. The values of the solubility parameter of isonicotinic, 4-methylpyridine, and water are 24.4 (calculated by the Fedors group contribution method^{13,14}), 20.9, and 47.9, respectively, so the solubility of isonicotinic acid may be the maximum in the binary solvent of 4-methylpyridine and water. It shows good agreement with the results of the experiment.

Figure 2. Dependence of the solubilities *x* calculated from eq 1 and values of *A*, *B*, and *C* at (295 to 345) K on the mass fraction (*w*) of 4-methylpyridine in solvent for 4-methylpyridine + water.

Table 2. Parameters of Equation 1 for the Isonicotinic Acid +4-Methylpyridine + Water System at Various Contents of4-Methylpyridine (w) in the Mixed Solvent

w	Α	В	С	104(rmsd)
0.0	25.3437	-3706.99	-3.50757	0.10
0.1	-22.6218	506.981	2.93404	0.97
0.2	-31.4529	1026.39	4.27102	0.45
0.4	-42.9838	1566.65	6.04647	0.69
0.6	-52.4856	1790.80	7.57617	2.1
0.8	-58.5235	1485.75	8.75750	0.98
1.0	-5.09073	-1563.78	1.14726	1.5
1.0	-5.09073	-1563.78	1.14726	1.5

Literature Cited

- Wu, F.; Huang, Z. Q.; Hu., N. Y. Electrochemical Synthesis of 4-Picolinic Acid. J. Guang Dong Chem. Eng. 1991, 4, 21–24.
- (2) Qiao, Q. D.; Yu, D. Y.; Liang, H. Y. Electrochemical Synthesis of 4-Picolinic Acid from 4-Methylpyridine. *Fine Chem.* 2000, 17.
- (3) Wang, L. C.; Zhao, J. H.; Song, C. Y.; Xu, H. S. Studies on electro synthesis Conditions of isonicotinic acid from 4-Methylpyridine. *J. Chem. Eng. Tech.* 2006, 22, (4).
- (4) Portnov, M. A.; Al'tshuler, G. N.; Vaisman, M. N.; Khimiko-Farmatsevticheskii, Z. Solubility and pK_a value of isonicotinic acid as factors in optimizing conditions for isolating it. *J. Pharm. Chem.* **1971**, *5* (7), 43–45. Original article submitted April 1, 1970.
- (5) Domanska, U.; Kozlowska, M. K. Solubility of imidazoles in ketones. *Fluid Phase Equilib.* 2003, 206, 253–266.
- (6) Domanska, U.; Pobudkowska, M. A. Solubility of 2-methylbenzimidazole in ethers and ketones. *Fluid Phase Equilib.* 2003, 206, 341– 353.
- (7) Li, D.-Q.; Liu, J.-C.; Liu, D.-Z.; Wang, F.-A. Solubilities of terephthalaldehydic, p-toluic, benzoic, terephthalic and isophthalic acids in N,N-dimethylformamide from 294.75 to 370.45 K. *Fluid Phase Equilib.* **2002**, 200, 69–74.

- (8) Hao, H. X.; Wang, J. K.; Wang, Y. L. Solubility of dexamethasone sodium phosphate in different solvents. J. Chem. Eng. Data 2004, 49, 1697–1698.
- (9) Zhao, J.-H.; Wang, L.-C.; Xu, H.-S.; Song, C.-Y.; Wang, F.-A. Solubilities of *p*-Aminophenol in sulfuric acid + water from (286.15 to 362.80) K. J. Chem. Eng. Data **2005**, 50, 977–979.
- (10) Gao, J.; Wang, Z. W.; Xu, D. M.; Zhang, R. K. Solubilities of triphenylphosphine in ethanol, 2- propanol, acetone, benzene, and toluene. J. Chem. Eng. Data 2007, 52, 189–191.
- (11) Sidi-Boumedine, R.; Horstmann, S.; Fischer, K. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions. *Fluid Phase Equilib.* **2004**, *218* (1), 149–155.
- (12) Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. *Molecular thermodynamics of fluid-Phase equilibria*, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, 1999; pp 645–647.
- (13) Barton, A. F. M. CRC Handbook of solubility parameters and other cohesion parameters, 2nd ed.; CRC Press: Florida, 1991.
- (14) Dean, J. A. Lange's handbook of chemistry, 15th ed.: McGraw-Hill Book Co.: New York, 1999.

Received for review May 15, 2008. Accepted August 18, 2008.

JE800352U