Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, *o*-Xylene, *m*-Xylene, *p*-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K

Anil K. Nain,*,[†] Prakash Chandra,[‡] Jata D. Pandey,[‡] and Swarita Gopal[†]

Department of Chemistry, Dyal Singh College (University of Delhi), New Delhi 110003, India, and Department of Chemistry, University of Allahabad, Allahabad 211002, U.P., India

The densities (ρ) and refractive indices (n) of binary mixtures of 1,4-dioxane with benzene, toluene, o-xylene, m-xylene, p-xylene, and mesitylene, including those of pure liquids, over the entire composition range expressed by mole fraction x_1 of 1,4-dioxane were measured at temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K under atmospheric pressure. From the experimental data, the excess molar volumes (V_m^E), deviations in refractive indices (Δn), partial molar volumes ($V_{m,1}^{\circ\infty}$ and $V_{m,2}^{\circ\infty}$) of the components at infinite dilution were calculated. The V_m^E values were negative for 1,4-dioxane + benzene, positive for 1,4-dioxane + o-xylene, + m-xylene, + p-xylene, and + mesitylene mixtures over the entire mole fraction range at all investigated temperatures, and exhibit a sigmoid trend for1,4-dioxane in the mixture is increased. The results indicate the presence of weak interactions between 1,4-dioxane and aromatic hydrocarbon molecules. The deviations in V_m^E values follow the order benzene < to explete < m-xylene < m-xylene < m-xylene. It is observed that V_m^E values depend on the number and position of the methyl groups in these aromatic hydrocarbons.

Introduction

Knowledge of the composition and temperature dependence of physicochemical properties of multicomponent liquid mixtures provides information on the intermolecular interactions among component molecules.^{1–3} Knowledge of physicochemical properties of nonaqueous binary liquid mixtures has relevance in theoretical and applied areas of research, and such results are frequently used in the design process (flow, mass transfer, or heat transfer calculations) of many chemical and industrial processes. As a part of our ongoing research focusing on experimental and theoretical studies of physicochemical properties of nonaqueous binary liquid mixtures,^{4–13} we report here the results of our study on the binary mixtures of 1,4dioxane with six aromatic hydrocarbons (benzene, toluene, *o*-xylene, *m*-xylene, *p*-xylene, and mesitylene) over the entire composition range at seven different temperatures.

1,4-Dioxane is an excellent aprotic solvent, has a zero dipole moment,¹⁴ and is commercially used in polymerization and other chemical reactions in the cleaning of polymer surfaces and electronic materials. The aromatic hydrocarbon molecules possess large quadruple moments,¹⁵ which causes an orientational order in these liquids. The orientational order is thought of as a partial alignment of neighboring segments or possibly of whole molecules.¹⁵ Also, binary mixtures containing aromatic hydrocarbons are interesting because they have applications in the study of polymer phase diagrams and the preferential interaction of polymers in mixed solvents.^{16,17} 1,4-dioxane is cyclic ether that has electron-donor ability¹⁸ toward the aromatic

* To whom correspondence should be addressed. E-mail: ak_nain@ yahoo.co.in.

* University of Allahabad.

rings that act like weak electron-acceptors.¹⁹ Therefore, the 1,4dioxane + aromatic hydrocarbon mixtures will be interesting because they involve charge-transfer interactions that may be influenced by the presence of alkyl groups on the ring.²⁰ A survey of literature indicates that there has been no temperaturedependent study on these systems from the point of view of their volumetric and refractive index behaviors. However, Khan and Subrahmanyam²¹ reported excess volumes for 1,4-dioxane + benzene, and Francesconi and Comelli²² reported excess volumes of 1,4-dioxane + toluene at 298.15 K.

In the present article, we report densities (ρ) and refractive indices (n) of 1,4-dioxane + benzene, + toluene, + o-xylene, + m-xylene, + p-xylene, and + mesitylene binary mixtures, including those of pure liquids at temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K under atmospheric pressure, covering the entire composition range expressed by the mole fraction x_1 of 1,4-dioxane ($0 \le x_1 \le 1$). The experimental values of ρ and *n* have been used to calculate the excess molar volumes (V_m^E) , deviations in refractive index (Δn) , partial molar volumes $(V_{m,1}^{\circ \infty} \text{ and } V_{m,2}^{\circ \infty})$, and excess partial molar volumes $(V_{m,1}^{\circ E, \infty} \text{ and } V_{m,2}^{\circ E, \infty})$ of the components 1,4-dioxane and aromatic hydrocarbon at infinite dilution. The variation of these parameters with the composition and temperature of the mixtures has been discussed in terms of the molecular interactions in these mixtures. The effect of the number and position of the methyl groups in these aromatic hydrocarbons on molecular interactions in these mixtures has also been discussed.

Experimental Section

1,4-dioxane and the aromatic hydrocarbons (benzene, toluene, *o*-xylene, *m*-xylene, *p*-xylene, and mesitylene) were products from Spectrochem Pvt., India and were purified by the methods

10.1021/je800579j CCC: \$40.75 © 2008 American Chemical Society Published on Web 10/21/2008

Dyal Singh College.

	ρ		n	n			
		g•c	m ⁻³				
liquid	experimental	literature	experimental	literature			
1,4-dioxane	1.02795	1.02797^{14}	1.4203	1.42025^{14}			
benzene	0.87361	$ \begin{array}{r} 1.02787^{20} \\ 0.8736^{14} \\ 0.87362^{1} \\ 0.87357^{26} \end{array} $	1.4980	1.49792 ¹⁴ 1.4979 ¹⁷			
toluene	0.86236	0.87337 0.86219^{14} 0.86231^{27}	1.4942	1.49413 ¹⁴ 1.4941 ¹⁷			
o-xylene	0.87557	0.87594^{14} 0.87558^{28}	1.5029	1.50295 ¹⁴			
<i>m</i> -xylene	0.86002	0.86009^{14} 0.86000^{29}	1.4948	1.49494^{14} 1.4946^{17}			
<i>p</i> -xylene	0.85682	0.85669^{14} 0.85685^{30}	1.4933	1.49325^{14}			
mesitylene	0.86145	$\begin{array}{c} 0.86111^{14} \\ 0.86114^{11} \\ 0.86150^{17} \end{array}$	1.4969	1.49684 ¹⁴			

described in the literature;^{14,23} the mass fraction purities, as determined by gas chromatography, are: 1,4-dioxane > 0.997, benzene > 0.998, toluene > 0.998, o-xylene > 0.997, m-xylene > 0.997, p-xylene > 0.997, and mesitylene > 0.995. Before use, the pure chemicals were stored over 0.4 nm molecular sieves for 72 h to remove any water and were degassed at low pressure. The mixtures were prepared by mass and were kept in special airtight stopper glass bottles to avoid evaporation. The weighings were done using an electronic balance (model GR-202R, AND, Japan) with a precision of \pm 0.01 mg. The uncertainty in the mole fraction was estimated to be less than \pm 0.0001.

We measured the densities of pure liquids and their binary mixtures by using a single-capillary pycnometer (made of Borosil glass) that had a bulb capacity of ~ 10 mL. The capillary, with graduated marks, had a uniform bore and could be closed by a well-fitting glass cap. The marks on the capillary were calibrated using triply distilled water. The uncertainty in density measurements was within $\pm 2 \cdot 10^{-5}$ g·cm⁻³. The refractive indices of pure liquids and their binary mixture were measured using a thermostatted Abbe refractometer. We calibrated the refractometer by measuring the refractive indices of triply distilled water and toluene at various temperatures. The values of refractive index were obtained using sodium D light. The temperature of the test liquids between the prisms of the refractometer during the measurements was maintained to an uncertainty of ± 0.01 K by circulating water through the jacket around the prisms from an electronically controlled thermostatic water bath, and the temperature was measured with a digital thermometer connected to the prism jacket. The uncertainty in refractive index measurements was within \pm 0.0001. The temperature of the test liquids during the measurements was maintained to an uncertainty of ± 0.01 K in an electronically controlled thermostatic water bath (JULABO, model ME-31A, Germany). The reliability of experimental measurements of ρ and n was ascertained by a comparison of the experimental data of pure liquids with the corresponding literature^{1,4,14,24-30} values at 298.15 K (Table 1), and the agreement between the values was found to be good.

Results and Discussion

The experimental values of densities (ρ) and refractive indices (n) of binary mixtures of 1,4-dioxane with benzene, toluene,

Figure 1. Variation of excess molar volume $(V_{\rm m}^{\rm E})$ against mole fraction (x_1) of 1,4-dioxane for the binary mixtures at (a) T = 298.15 K and (b) T = 318.15 K. •, 1,4-dioxane + benzene; \blacksquare , 1,4-dioxane + toluene; \blacktriangle , 1,4-dioxane + *o*-xylene; \bigcirc , 1,4-dioxane + *m*-xylene; \triangle , 1,4-dioxane + *p*-xylene; \diamondsuit , 1,4-dioxane + mesitylene; -, calculated from eq 3.

o-xylene, *m*-xylene, *p*-xylene, and mesitylene, with 1,4-dioxane as a common component, over the whole composition range expressed in the mole fraction x_1 of 1,4-dioxane at the investigated temperatures are listed in Tables 2, 3, 4, 5, 6, and 7. The excess molar volumes (V_m^E) and deviations in refractive indices (Δn)³¹ of the mixtures were calculated using the following relations

$$V_{\rm m}^{\rm E} = x M_1 (1/\rho - 1/\rho_1) + (1 - x) M_2 (1/\rho - 1/\rho_2)$$
(1)

$$\Delta n = n - [\phi n_1 + (1 - \phi) n_2]$$
⁽²⁾

where *M* is the molar mass, ϕ is the volume fraction (calculated using the molar volumes of the pure components obtained from the density data), and subscripts 1 and 2 stand for pure components 1,4-dioxane and aromatic hydrocarbons, respectively. The values of $V_{\rm m}^{\rm E}$ and Δn calculated by the use of eqs 1 and 2 are included in Tables 2, 3, 4, 5, 6, and 7. The $V_{\rm m}^{\rm E}$ and Δn values were fitted to a Redlich–Kister-type³² polynomial equation

$$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1} = x(1-x) \sum_{i=0}^{J} A_i (1-2x)^i$$
 (3)

In case of Δn , volume fraction ϕ has been used in place of x in eq 3. The values of coefficients, A_i , were evaluated by using the method of least-squares with all points weighted equally. The coefficients A_0 , A_1 , A_2 , A_3 , and A_4 of V_m^E and Δn for the mixtures at all investigated temperatures are listed in Tables 8

and 9, respectively. The variations of $V_{\rm m}^{\rm E}$ and Δn with mole fraction x_1 of 1,4-dioxane along with the smoothed $V_{\rm m}^{\rm E}$ and Δn values calculated by using eq 3 at (298.15 and 318.15) K are presented graphically in Figures 1 and 2.

The results presented in Tables 2, 3, 4, 5, 6, and 7 and Figure 1 indicate that V_m^E values are negative for 1,4-dioxane + benzene, positive for 1,4-dioxane + *o*-xylene, + *m*-xylene, + *p*-xylene, and + mesitylene mixtures over the entire mole

Table 2. Mole Fractions (x_1) , Densities (ρ) , Refractive Indices (n), Excess Molar Volumes (V_m^E) , and Deviations in Refractive Indices (Δn) of 1,4-Dioxane (1) + Benzene (2) Mixtures at the Temperatures (288.15 to 318.15) K

	ρ		$V_{\rm m}^{\rm E}$			ρ		$V_{\rm m}^{\rm E}$	
x.	$\overline{g \cdot cm^{-3}}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$	x.	$\overline{g \cdot cm^{-3}}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$
	g em		enn mor	T - 29	00 15 V	8 ••••		enn mor	100 110
0.0000	0.88430	1 5042	0.000	1 - 2c	0.5800	0.07348	1 4565	-0.077	0.145
0.0000	0.88430	1.3042	-0.022	0.000	0.5800	0.97348	1.4505	-0.077	0.145
0.1403	0.89510	1 4924	-0.022	0.047	0.7197	0.90523	1.4510	-0.062	0.139
0.2123	0.91674	1 4864	-0.057	0.108	0.7822	1.00500	1 4408	-0.052	0.123
0.2809	0.92728	1 4807	-0.069	0.126	0.8561	1.00500	1 4352	-0.032	0.082
0.3528	0.93834	1.4748	-0.076	0.138	0.9287	1.02799	1.4298	-0.019	0.050
0.4195	0.94863	1.4694	-0.080	0.144	1.0000	1.03923	1.4245	0.000	0.000
0.5037	0.96165	1.4626	-0.081	0.148					
				T - 20	3 15 K				
0.0000	0 87805	1 5011	0.000	0.000	0.5800	0.06780	1 4530	-0.074	0.138
0.0000	0.88077	1.3011	-0.021	0.000	0.5800	0.90789	1.4339	-0.074	0.138
0.1403	0.90028	1 4894	-0.021	0.043	0.7197	0.97882	1 4432	-0.059	0.133
0.2123	0.91128	1 4835	-0.055	0.102	0.7822	0.99937	1 4384	-0.039	0.121
0.2809	0.92179	1 4778	-0.066	0.102	0.8561	1 01094	1 4329	-0.035	0.077
0.3528	0.93282	1.4720	-0.073	0.129	0.9287	1.02235	1.4276	-0.018	0.045
0.4195	0.94309	1.4666	-0.077	0.136	1.0000	1.03359	1.4224	0.000	0.000
0.5037	0.95608	1.4599	-0.077	0.140					
				T - 20	08 15 K				
0.0000	0.87361	1 /080	0.000	0.000	0.5800	0.06230	1 /513	-0.070	0.131
0.0000	0.88/38	1.4980	-0.010	0.000	0.5800	0.90230	1.4515	-0.063	0.131
0.1403	0.89485	1.4921	-0.019	0.059	0.7197	0.97321	1 4407	-0.056	0.123
0.2123	0.90582	1 4805	-0.050	0.003	0.7822	0.99374	1 4360	-0.046	0.098
0.2809	0.91630	1.4749	-0.062	0.109	0.8561	1.00530	1.4306	-0.032	0.071
0.3528	0.92731	1.4692	-0.069	0.122	0.9287	1.01671	1.4254	-0.017	0.040
0.4195	0.93755	1.4639	-0.073	0.129	1.0000	1.02795	1.4203	0.000	0.000
0.5037	0.95051	1.4573	-0.073	0.134					
				T - 30	13 15 K				
0.0000	0.86826	1 /0/0	0.000	0.000	0.5800	0.05671	1 4487	-0.065	0.124
0.0000	0.87800	1 / 800	-0.018	0.000	0.5800	0.95071	1.4407	-0.059	0.124
0.1403	0.88942	1 4834	-0.033	0.063	0 7197	0.97837	1 4382	-0.052	0.104
0.2123	0.90036	1.4775	-0.048	0.086	0.7822	0.98811	1.4336	-0.043	0.090
0.2809	0.91081	1.4720	-0.058	0.101	0.8561	0.99966	1.4283	-0.029	0.064
0.3528	0.92180	1.4663	-0.066	0.114	0.9287	1.01107	1.4232	-0.015	0.035
0.4195	0.93201	1.4611	-0.069	0.121	1.0000	1.02232	1.4182	0.000	0.000
0.5037	0.94494	1.4546	-0.068	0.126					
				T = 30)8 15 K				
0.0000	0.86290	1 4918	0.000	0.000	0.5800	0.95112	1 4461	-0.062	0.116
0.0713	0.87360	1 4859	-0.018	0.030	0.6504	0.96200	1 4409	-0.056	0.109
0.1403	0.88399	1.4803	-0.032	0.057	0.7197	0.97275	1.4358	-0.049	0.095
0.2123	0.89490	1.4746	-0.046	0.078	0.7822	0.98248	1.4312	-0.040	0.081
0.2809	0.90532	1.4691	-0.056	0.092	0.8561	0.99402	1.4260	-0.027	0.056
0.3528	0.91628	1.4635	-0.063	0.106	0.9287	1.00543	1.4210	-0.014	0.030
0.4195	0.92647	1.4583	-0.066	0.113	1.0000	1.01668	1.4161	0.000	0.000
0.5037	0.93938	1.4519	-0.066	0.118					
				T = 31	3.15 K				
0.0000	0.85756	1.4887	0.000	0.000	0.5800	0.94554	1.4435	-0.058	0.111
0.0713	0.86822	1.4829	-0.016	0.027	0.6504	0.95640	1.4383	-0.052	0.102
0.1403	0.87858	1.4773	-0.030	0.051	0.7197	0.96713	1.4332	-0.044	0.090
0.2123	0.88945	1.4716	-0.043	0.071	0.7822	0.97685	1.4287	-0.036	0.076
0.2809	0.89984	1.4662	-0.052	0.086	0.8561	0.98839	1.4236	-0.025	0.053
0.3528	0.91077	1.4607	-0.059	0.101	0.9287	0.99979	1.4187	-0.012	0.028
0.4195	0.92094	1.4556	-0.062	0.108	1.0000	1.01105	1.4139	0.000	0.000
0.5037	0.93382	1.4492	-0.061	0.112					
				T = 31	8.15 K				
0.0000	0.85223	1.4856	0.000	0.000	0.5800	0.93996	1.4409	-0.053	0.105
0.0713	0.86284	1.4798	-0.014	0.023	0.6504	0.95080	1.4357	-0.048	0.097
0.1403	0.87317	1.4743	-0.027	0.045	0.7197	0.96152	1.4307	-0.041	0.084
0.2123	0.88400	1.4686	-0.039	0.064	0.7822	0.97123	1.4263	-0.033	0.070
0.2809	0.89436	1.4633	-0.048	0.080	0.8561	0.98276	1.4212	-0.022	0.048
0.3528	0.90526	1.4578	-0.054	0.094	0.9287	0.99415	1.4164	-0.010	0.025
0.4195	0.91541	1.4528	-0.057	0.102	1.0000	1.00542	1.4117	0.000	0.000
0.5037	0.92826	1.4465	-0.057	0.106					

Table 3. Mole Fractions (x_1) , Densities (ρ) , Refractive Indices (n), Excess Molar Volumes (V_m^E) , and Deviations in Refractive Indices (Δn) of 1,4-Dioxane (1) + Toluene (2) Mixtures at the Temperatures (288.15 to 318.15) K

	ρ		$V_{\rm m}^{\rm E}$			ρ		$V_{\rm m}^{\rm E}$	
r.	$\overline{\mathfrak{g}} \cdot \mathrm{cm}^{-3}$	п	$\overline{\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}}$	$100 \cdot \Delta n$	r.	$\overline{\mathfrak{g}} \cdot \mathrm{cm}^{-3}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$
<i>x</i> ₁	5 cm		em mor	100 <u>A</u> n	20 15 W	5 0111		em mor	100 Δπ
0.0000	0.05150	4 4000	0.000	T = 28	38.15 K	0.00000		0.007	0.400
0.0000	0.8/1/9	1.4998	0.000	0.000	0.5819	0.96038	1.4611	-0.026	0.102
0.0688	0.88109	1.4955	0.008	-0.009	0.6506	0.97239	1.4557	-0.029	0.100
0.13/3	0.89067	1.4914	0.009	0.016	0.7212	0.98511	1.4499	-0.031	0.091
0.2112	0.90134	1.4809	0.000	0.044	0.7903	0.99793	1.4440	-0.029	0.078
0.2636	0.91247	1.4622	0.001	0.007	0.8040	1.01202	1.4374	-0.022	0.038
0.5552	0.92515	1.4710	-0.003	0.082	1.0000	1.02374	1.4510	-0.012	0.032
0.4301	0.93002	1.4/19	-0.013	0.095	1.0000	1.03923	1.4245	0.000	0.000
0.5004	0.94757	1.4000	0.017	0.077					
				T = 29	93.15 K				
0.0000	0.86708	1.4970	0.000	0.000	0.5819	0.95515	1.4586	-0.023	0.095
0.0688	0.87632	1.4927	0.009	-0.015	0.6506	0.96710	1.4533	-0.027	0.094
0.1373	0.88584	1.4886	0.011	0.009	0.7212	0.97974	1.4475	-0.028	0.086
0.2112	0.89645	1.4842	0.008	0.037	0.7903	0.99249	1.4417	-0.026	0.072
0.2858	0.90751	1.4795	0.004	0.060	0.8640	1.00651	1.4352	-0.020	0.052
0.3552	0.91813	1.4/49	-0.002	0.075	0.9336	1.02016	1.4288	-0.011	0.028
0.4301	0.95092	1.4095	-0.009	0.080	1.0000	1.05559	1.4224	0.000	0.000
0.3004	0.94241	1.4045	-0.010	0.095					
				T = 29	98.15 K				
0.0000	0.86236	1.4942	0.000	0.000	0.5819	0.94992	1.4561	-0.021	0.089
0.0688	0.87154	1.4899	0.010	-0.020	0.6506	0.96180	1.4508	-0.025	0.089
0.1373	0.88100	1.4858	0.013	0.001	0.7212	0.97437	1.4451	-0.025	0.081
0.2112	0.89155	1.4814	0.010	0.030	0.7903	0.98706	1.4393	-0.025	0.066
0.2858	0.90255	1.4768	0.005	0.053	0.8640	1.00100	1.4329	-0.019	0.047
0.3552	0.91311	1.4722	-0.000	0.069	0.9336	1.01458	1.4266	-0.010	0.025
0.4361	0.92582	1.4667	-0.00/	0.079	1.0000	1.02795	1.4203	0.000	0.000
0.5064	0.93725	1.4617	-0.014	0.086					
				T = 30)3.15 K				
0.0000	0.85764	1.4913	0.000	0.000	0.5819	0.94469	1.4536	-0.018	0.083
0.0688	0.86676	1.4870	0.012	-0.022	0.6506	0.95650	1.4483	-0.021	0.081
0.1373	0.87616	1.4829	0.015	-0.008	0.7212	0.96901	1.4427	-0.023	0.076
0.2112	0.88665	1.4786	0.012	0.020	0.7903	0.98163	1.4370	-0.022	0.061
0.2858	0.89758	1.4740	0.009	0.043	0.8640	0.99550	1.4306	-0.017	0.043
0.3552	0.90808	1.4695	0.003	0.062	0.9336	1.00901	1.4244	-0.009	0.023
0.4361	0.92072	1.4640	-0.003	0.073	1.0000	1.02232	1.4182	0.000	0.000
0.5064	0.93209	1.4591	-0.011	0.080					
				T = 30)8.15 K				
0.0000	0.85293	1.4884	0.000	0.000	0.5819	0.93946	1.4510	-0.015	0.077
0.0688	0.86199	1.4841	0.013	-0.024	0.6506	0.95121	1.4458	-0.019	0.075
0.1373	0.87133	1.4800	0.017	-0.017	0.7212	0.96365	1.4403	-0.021	0.068
0.2112	0.88175	1.4757	0.016	0.011	0.7903	0.97620	1.4346	-0.021	0.056
0.2858	0.89262	1.4712	0.012	0.034	0.8640	0.98999	1.4283	-0.015	0.038
0.3552	0.90306	1.4668	0.006	0.053	0.9336	1.00344	1.4222	-0.008	0.019
0.4361	0.91563	1.4614	-0.001	0.066	1.0000	1.01668	1.4161	0.000	0.000
0.5064	0.92693	1.4565	-0.008	0.074					
				T = 31	13.15 K				
0.0000	0.84821	1.4855	0.000	0.000	0.5819	0.93423	1.4484	-0.012	0.070
0.0688	0.85721	1.4812	0.014	-0.028	0.6506	0.94592	1.4433	-0.017	0.069
0.1373	0.86649	1.4771	0.019	-0.025	0.7212	0.95829	1.4378	-0.019	0.061
0.2112	0.87685	1.4729	0.018	0.001	0.7903	0.97077	1.4322	-0.018	0.051
0.2858	0.88766	1.4684	0.014	0.025	0.8640	0.98449	1.4260	-0.014	0.035
0.3552	0.89804	1.4640	0.009	0.046	0.9336	0.99787	1.4199	-0.007	0.018
0.4361	0.91054	1.4587	0.002	0.059	1.0000	1.01105	1.4139	0.000	0.000
0.5064	0.92177	1.4539	-0.005	0.067					
				T = 31	18.15 K				
0.0000	0.84349	1.4826	0.000	0.000	0.5819	0.92900	1.4458	-0.009	0.063
0.0688	0.85243	1.4783	0.015	-0.032	0.6506	0.94063	1.4408	-0.015	0.063
0.1373	0.86165	1.4742	0.021	-0.033	0.7212	0.95293	1.4353	-0.016	0.055
0.2112	0.87195	1.4700	0.021	-0.010	0.7903	0.96534	1.4298	-0.016	0.047
0.2858	0.88270	1.4655	0.016	0.016	0.8640	0.97899	1.4236	-0.012	0.031
0.3552	0.89302	1.4613	0.011	0.038	0.9336	0.99230	1.4176	-0.006	0.017
0.4361	0.90545	1.4560	0.004	0.053	1.0000	1.00542	1.4117	0.000	0.000
0.5064	0.91661	1.4512	-0.002	0.061					

fraction range at all investigated temperatures, and exhibit a sigmoid trend for 1,4-dioxane + toluene mixtures wherein $V_{\rm m}^{\rm E}$ changes sign from positive to negative as the concentration of 1,4-dioxane in the mixture is increased. The $V_{\rm m}^{\rm E}$ values obtained in the present work compare well with those reported by other investigators for 1,4-dioxane + benzene²¹ and 1,4-dioxane + toluene²² mixtures at 298.15 K. The extent of deviation in $V_{\rm m}^{\rm E}$ from linear dependence on mole fraction

(Figure 1) follows the sequence benzene < toluene < p-xylene < m-xylene < o-xylene < mesitylene. This suggests that there is an expansion in volume of the mixtures as we move from benzene to mesitylene. The behavior of $V_{\rm m}^{\rm E}$ with the composition of the mixture

The behavior of $V_{\rm m}^{\rm E}$ with the composition of the mixture can be qualitatively examined by considering the nature of the component molecules in the pure state and in the mixture. The molecules of 1,4-dioxane are nonpolar, and those of the .

Table 4. Mole Fractions (x_1) , Densities (ρ) , Refractive Indices (n) , Excess Molar Volumes $(V$	${}_{m}^{E}$), and Deviations in Refractive Indices (Δn) of
1,4-Dioxane (1) + o -Xylene (2) Mixtures at the Temperatures (288.15 to 318.15) K	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ρ		$V_{\rm m}^{\rm E}$			ρ		$V_{\mathrm{m}}^{\mathrm{E}}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x_1	g·cm ⁻³	п	$\frac{1}{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$	x_1	$\overline{g \cdot cm^{-3}}$	п	$\frac{1}{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	-		T = 28	8.15 K	0	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.88409	1.5083	0.000	0.000	0.5810	0.95889	1.4606	0.202	-0.625
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0672	0.89120	1.5029	0.053	-0.134	0.6518	0.97057	1.4545	0.183	-0.610
	0.1391	0.89918	1.4972	0.102	-0.252	0.7248	0.98338	1.4482	0.153	-0.561
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2103	0.90748	1.4914	0.144	-0.364	0.7888	0.99525	1.4427	0.122	-0.484
	0.2853	0.91669	1.4853	0.181	-0.458	0.8595	1.00911	1.4365	0.085	-0.376
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3543	0.92567	1.4796	0.202	-0.530	0.9298	1.02375	1.4305	0.042	-0.210
$\begin{array}{c} 0.592 \\ 0.94769 \\ 0.87983 \\ 1.5055 \\ 0.000 \\ 0.87983 \\ 1.5055 \\ 0.000 \\ 0.88055 \\ 0.1501 \\ 0.072 \\ 0.88055 \\ 0.1501 \\ 0.0972 \\ 0.18805 \\ 0.1801 \\ 0.2133 \\ 0.9025 \\ 1.4886 \\ 0.154 \\ 0.0025 \\ 0.1848 \\ 0.110 \\ -0.222 \\ 0.7248 \\ 0.97814 \\ 1.4402 \\ 0.133 \\ -0.534 \\ 0.9295 \\ 1.4886 \\ 0.154 \\ -0.575 \\ 0.788 \\ 0.9891 \\ 1.4402 \\ 0.003 \\ 0.133 \\ 0.91206 \\ 1.4825 \\ 0.000 \\ 0.2533 \\ 0.91206 \\ 1.4825 \\ 0.0295 \\ 1.4876 \\ 0.227 \\ -0.596 \\ 0.000 \\ 0.000 \\ 0.592 \\ 0.93118 \\ 1.4707 \\ 0.227 \\ -0.596 \\ 1.0000 \\ 0.000 \\ 0.592 \\ 0.93118 \\ 1.4707 \\ 0.227 \\ -0.596 \\ 1.0000 \\ 0.000 \\ 0.591 \\ 0.9477 \\ 1.441 \\ 0.227 \\ -0.630 \\ \hline $	0.4293	0.93600	1.4734	0.213	-0.583	1.0000	1.03923	1.4245	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5092	0.94769	1.4667	0.214	-0.617					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					T = 29	3.15 K				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.87983	1.5055	0.000	0.000	0.5810	0.95386	1.4580	0.216	-0.638
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0672	0.88685	1.5001	0.057	-0.141	0.6518	0.96544	1.4520	0.196	-0.623
	0.1391	0.89473	1.4944	0.110	-0.262	0.7248	0.97814	1.4457	0.165	-0.575
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2103	0.90295	1.4886	0.154	-0.375	0.7888	0.98991	1.4402	0.133	-0.504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2853	0.91206	1.4825	0.193	-0.472	0.8595	1.00366	1.4342	0.093	-0.387
0.423 0.93118	0.3543	0.92095	1.4769	0.215	-0.541	0.9298	1.01819	1.4282	0.048	-0.222
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4293	0.93118	1.4707	0.227	-0.596	1.0000	1.03359	1.4224	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5092	0.94277	1.4641	0.227	-0.630					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					T = 29	98 15 K				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.87557	1.5029	0.000	0.000	0.5810	0.94883	1.4554	0.230	-0.661
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0672	0.88250	1.4974	0.061	-0.153	0.6518	0.96031	1.4495	0.209	-0.641
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1391	0.89029	1 4917	0.117	-0.276	0.7248	0.97290	1 4433	0.177	-0.586
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2103	0.89842	1 4858	0.163	-0.397	0.7240	0.98457	1 4378	0.144	-0.519
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2853	0.00012	1 4798	0.205	-0.492	0.8595	0.99821	1 4318	0.102	-0.401
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3543	0.91623	1 4742	0.205	-0.566	0.0393	1.01263	1 4259	0.054	-0.237
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4293	0.92636	1.4681	0.220	-0.618	1,0000	1.01205	1 4203	0.000	0.000
$\begin{array}{c} F = 303.15 \ {\rm K} \\ \hline T = 308.15 \ {\rm K} \\ \hline 0.0000 \ 0.8670.5 \ 1.4975 \ 0.000 \ 0.000 \ 0.5810 \ 0.93879 \ 1.4502 \ 0.257 \ -0.668 \\ \hline 0.0000 \ 0.8670.5 \ 1.4975 \ 0.000 \ 0.000 \ 0.5810 \ 0.93879 \ 1.4502 \ 0.257 \ -0.668 \\ \hline 0.0000 \ 0.8670.5 \ 1.4975 \ 0.000 \ 0.000 \ 0.5810 \ 0.93879 \ 1.4502 \ 0.257 \ -0.668 \\ \hline 0.0000 \ 0.8670.5 \ 1.4918 \ 0.070 \ -0.173 \ 0.6518 \ 0.95007 \ 1.44444 \ 0.234 \ -0.676 \\ \hline 0.1391 \ 0.88936 \ 1.4918 \ 0.070 \ -0.257 \ -0.688 \ 0.97390 \ 1.4502 \ 0.257 \ -0.667 \\ \hline 0.1391 \ 0.88936 \ 1.4803 \ 0.183 \ -0.425 \ 0.7888 \ 0.97390 \ 1.4502 \ 0.257 \ -0.657 \\ \hline 0.2103 \ 0.88936 \ 1.4803 \ 0.183 \ -0.425 \ 0.7888 \ 0.97390 \ 1.4421 \ 0.118 \ -0.432 \\ 0.2833 \ 0.9679 \ 1.44627 \ 0.268 \ -0.657 \ 1.0000 \ 1.01668 \ 1.4161 \ 0.000 \ 0.000 \\ 0.5992 \ 0.92802 \ 1.4562 \ 0.267 \ -0.684 \\ \hline T = 313.15 \ {\rm K} \\ \hline 0.0000 \ 0.86577 \ 1.4948 \ 0.000 \ 0.000 \ 0.5810 \ 0.9377 \ 1.4476 \ 0.271 \ -0.712 \\ 0.6544 \ 0.283 \ 0.9855 \ 1.4483 \ 0.175 \ -0.654 \ 0.265 \ -0.657 \ 1.0000 \ 1.01668 \ 1.4161 \ 0.000 \ 0.000 \ 0.000 \ 0.5992 \ 0.92802 \ 1.4455 \ 0.265 \ -0.544 \ 0.127 \ -0.575 \ 0.57 \ 0.000 \ 0.000 \ 0.5810 \ 0.9377 \ 0.4476 \ 0.271 \ -0.712 \ 0.5444 \ 0.175 \ -0.554 \ 0.285 \ 0.9377 \ 0.14376 \ 0.271 \ -0.712 \ 0.573 \ 0.99813 \ 0.4455 \ 0.245 \ -0.577 \ 0.0665 \ -0.544 \ 0.107 \ -0.575 \ 0.57 \ 0.57 \ 0.57 \ 0.57 \ 0.57 \ 0$	0.5092	0.92050	1 4615	0.241	-0.645	1.0000	1.02775	1.4205	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3072	0.93705	1.4015	0.241	0.045					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.05101	1 5000	0.000	T = 30	03.15 K	0.04004	1 1500	0.040	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.87131	1.5002	0.000	0.000	0.5810	0.94381	1.4528	0.243	-0.680
	0.0672	0.87815	1.4946	0.065	-0.160	0.6518	0.95519	1.4469	0.222	-0.658
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1391	0.88585	1.4889	0.125	-0.287	0.7248	0.96766	1.4408	0.190	-0.604
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2103	0.89389	1.4831	0.173	-0.411	0.7888	0.97923	1.4354	0.155	-0.537
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2853	0.90280	1.4771	0.218	-0.510	0.8595	0.99277	1.4295	0.110	-0.414
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3543	0.91151	1.4714	0.242	-0.583	0.9298	1.00708	1.4236	0.059	-0.251
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4293	0.92155	1.4654	0.255	-0.637	1.0000	1.02232	1.4182	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5092	0.93293	1.4589	0.255	-0.665					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					T = 30	08.15 K				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.86705	1.4975	0.000	0.000	0.5810	0.93879	1.4502	0.257	-0.698
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0672	0.87380	1.4918	0.070	-0.173	0.6518	0.95007	1.4444	0.234	-0.676
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1391	0.88141	1.4861	0.133	-0.303	0.7248	0.96243	1.4383	0.201	-0.627
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2103	0.88936	1.4803	0.183	-0.425	0.7888	0.97390	1.4329	0.165	-0.554
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2853	0.89817	1.4743	0.230	-0.527	0.8595	0.98733	1.4271	0.118	-0.432
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3543	0.90679	1.4687	0.256	-0.604	0.9298	1.00153	1.4213	0.065	-0.265
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4293	0.91674	1.4627	0.268	-0.657	1.0000	1.01668	1.4161	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5092	0.92802	1.4562	0.267	-0.684					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					T = 31	3.15 K				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	0.86279	1.4948	0.000	0.000	0.5810	0.93377	1.4476	0.271	-0.712
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0672	0.86945	1.4890	0.074	-0.185	0.6518	0.94495	1.4418	0.248	-0.694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1391	0.87697	1.4833	0.140	-0.322	0.7248	0.95720	1.4357	0.213	-0.644
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2103	0.88483	1.4775	0.194	-0.447	0.7888	0.96857	1.4304	0.176	-0.575
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2853	0.89355	1.4715	0.242	-0.547	0.8595	0.98189	1.4246	0.127	-0.452
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3543	0.90208	1.4659	0.269	-0.622	0.9298	0.99599	1.4190	0.070	-0.274
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4293	0.91193	1.4600	0.282	-0.673	1.0000	1.01105	1.4139	0.000	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5092	0.92311	1.4535	0.281	-0.701					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					T = 31	8.15 K				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0000	0.85853	1.4921	0.000	0.000	0.5810	0.92875	1.4450	0.285	-0.725
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0672	0.86510	1.4862	0.079	-0.197	0.6518	0.93983	1.4392	0.261	-0.711
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1391	0.87253	1.4804	0.148	-0.342	0.7248	0.95197	1.4332	0.226	-0.660
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2103	0.88030	1.4746	0.204	-0.470	0.7888	0.96324	1.4279	0.188	-0.590
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2853	0.88893	1.4687	0.254	-0.567	0.8595	0.97645	1.4221	0.136	-0.472
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3543	0.89737	1.4632	0.282	-0.640	0.9298	0.99045	1,4166	0.075	-0.284
0.5092 0.91820 1.4509 0.294 -0.718	0.4293	0.90712	1.4573	0.296	-0.689	1.0000	1.00542	1.4117	0.000	0.000
	0.5092	0.91820	1.4509	0.294	-0.718					

aromatic hydrocarbons (benzene, toluene, *o*-xylene, *m*-xylene, *p*-xylene, and mesitylene) have a large quadruple moment,¹⁵ which causes molecular order in the pure state. Mixing 1,4-dioxane with the aromatic hydrocarbons would induce a decrease in the molecular order in the latter, resulting in an

expansion in volume and hence positive $V_{\rm m}^{\rm E}$ values. There is a possibility of electron donor-acceptor-type interactions²⁶ between electronegative oxygen atoms of 1,4-dioxane (acting as donor) and the π electrons of the ring of aromatic hydrocarbon molecules (acting as acceptor), which would

Table 5. Mole Fractions (x_1) , Densities (ρ) , Refractive Indices (n), Excess Molar Volumes (V_m^E) , and Deviations in Refractive Indices (Δn) of 1,4-Dioxane (1) + m-Xylene (2) Mixtures at the Temperatures (288.15 to 318.15) K

	ρ		$V_{\rm m}^{\rm E}$			ρ		$V_{\rm m}^{\rm E}$	
x_1	$\overline{g \cdot cm^{-3}}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$	x_1	$\overline{g \cdot cm^{-3}}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$
1	6			T = 28	18 15 K	0			
0.0000	0.86859	1.4999	0.000	0.000	0.5487	0.94500	1.4598	0.178	-0.561
0.0938	0.87961	1.4933	0.055	-0.155	0.6300	0.95944	1.4536	0.160	-0.547
0.1532	0.88695	1.4890	0.087	-0.249	0.7182	0.97623	1.4468	0.131	-0.494
0.2046	0.89354	1.4852	0.114	-0.328	0.8035	0.99374	1.4401	0.094	-0.405
0.2698	0.90226	1.4805	0.142	-0.402	0.8708	1.00847	1.4348	0.061	-0.299
0.3374	0.91176	1.4755	0.164	-0.472	0.9324	1.02271	1.4299	0.032	-0.174
0.4002	0.92105	1.4709	0.178	-0.515	1.0000	1.03923	1.4245	0.000	0.000
0.4714	0.93218	1.4656	0.183	-0.548					
				T = 29	3.15 K				
0.0000	0.86431	1.4974	0.000	0.000	0.5487	0.94002	1.4574	0.191	-0.573
0.0938	0.87520	1.4907	0.062	-0.167	0.6300	0.95433	1.4512	0.173	-0.563
0.1532	0.88246	1.4864	0.097	-0.268	0.7182	0.97098	1.4444	0.145	-0.509
0.2046	0.88898	1.4826	0.126	-0.349	0.8035	0.98836	1.4378	0.105	-0.419
0.2698	0.89762	1.4779	0.155	-0.419	0.8708	1.00299	1.4325	0.070	-0.311
0.3374	0.90705	1.4730	0.177	-0.487	0.9324	1.01715	1.4277	0.037	-0.179
0.4002	0.91626	1.4684	0.191	-0.531	1.0000	1.03359	1.4224	0.000	0.000
0.4714	0.92730	1.4631	0.196	-0.563					
				T = 29	8.15 K				
0.0000	0.86002	1.4948	0.000	0.000	0.5487	0.93504	1.4549	0.203	-0.585
0.0938	0.87079	1.4880	0.067	-0.181	0.6300	0.94922	1.4487	0.187	-0.574
0.1532	0.87797	1.4837	0.106	-0.279	0.7182	0.96573	1.4420	0.158	-0.525
0.2046	0.88442	1.4799	0.138	-0.361	0.8035	0.98298	1.4354	0.117	-0.435
0.2698	0.89298	1.4753	0.168	-0.434	0.8708	0.99751	1.4302	0.079	-0.322
0.3374	0.90234	1.4704	0.189	-0.499	0.9324	1.01159	1.4255	0.042	-0.189
0.4002	0.91147	1.4658	0.204	-0.541	1.0000	1.02795	1.4203	0.000	0.000
0.4714	0.92242	1.4000	0.209	-0.576					
				T = 30	03.15 K				
0.0000	0.85574	1.4922	0.000	0.000	0.5487	0.93006	1.4524	0.217	-0.597
0.0938	0.86638	1.4853	0.074	-0.194	0.6300	0.94411	1.4462	0.201	-0.590
0.1532	0.87348	1.4811	0.116	-0.289	0.7182	0.96049	1.4395	0.172	-0.541
0.2046	0.87987	1.4772	0.149	-0.378	0.8035	0.97760	1.4329	0.129	-0.457
0.2698	0.88835	1.4/20	0.181	-0.449	0.8708	0.99203	1.4279	0.089	-0.337
0.3374	0.89763	1.4677	0.203	-0.516	0.9324	1.00603	1.4232	0.048	-0.199
0.4002	0.90008	1.4032	0.218	-0.530	1.0000	1.02232	1.4162	0.000	0.000
0.4714	0.91755	1.4500	0.222	0.567	0.15 17				
0.0000	0.95145	1 4907	0.000	T = 30	0.5497	0.02508	1 4409	0.220	0 (14
0.0000	0.85145	1.4896	0.000	0.000	0.5487	0.92508	1.4498	0.229	-0.614
0.0938	0.80197	1.4820	0.080	-0.207	0.0300	0.93901	1.4437	0.214	-0.606
0.1332	0.80899	1.4765	0.125	-0.309 -0.305	0.7182	0.93323	1.4371	0.164	-0.337 -0.478
0.2698	0.88372	1 4699	0.103	-0.468	0.8708	0.98656	1.4255	0.098	-0.353
0.3374	0.89292	1.4651	0.215	-0.534	0.9324	1.00048	1.4209	0.053	-0.214
0.4002	0.90190	1.4606	0.230	-0.571	1.0000	1.01668	1.4161	0.000	0.000
0.4714	0.91268	1.4555	0.234	-0.602					
				T = 31	3 15 K				
0.0000	0 84717	1 4870	0.000	0.000	0 5487	0.92010	1 4473	0.243	-0.626
0.0000	0.85756	1 4799	0.087	-0.219	0.6300	0.93391	1 4412	0.243	-0.617
0.1532	0.86450	1.4756	0.136	-0.328	0.7182	0.95001	1.4346	0.198	-0.572
0.2046	0.87077	1.4718	0.172	-0.411	0.8035	0.96686	1.4280	0.152	-0.492
0.2698	0.87909	1.4672	0.206	-0.486	0.8708	0.98109	1.4231	0.107	-0.370
0.3374	0.88821	1.4624	0.229	-0.549	0.9324	0.99493	1.4186	0.058	-0.220
0.4002	0.89712	1.4580	0.244	-0.588	1.0000	1.01105	1.4139	0.000	0.000
0.4714	0.90781	1.4529	0.247	-0.617					
				T = 31	8.15 K				
0.0000	0.84288	1.4844	0.000	0.000	0.5487	0.91512	1.4447	0.257	-0.639
0.0938	0.85316	1.4772	0.092	-0.232	0.6300	0.92881	1.4387	0.242	-0.628
0.1532	0.86001	1.4728	0.145	-0.347	0.7182	0.94477	1.4321	0.212	-0.587
0.2046	0.86622	1.4691	0.182	-0.426	0.8035	0.96150	1.4256	0.163	-0.506
0.2698	0.87447	1.4645	0.218	-0.503	0.8708	0.97562	1.4206	0.117	-0.388
0.3374	0.88350	1.4597	0.243	-0.568	0.9324	0.98938	1.4163	0.064	-0.226
0.4002	0.89234	1.4553	0.257	-0.605	1.0000	1.00542	1.4117	0.000	0.000
0.4714	0.90294	1.4503	0.260	-0.631					

result in negative $V_{\rm m}^{\rm E}$ values. The observed trends in $V_{\rm m}^{\rm E}$ values suggest the presence of weak donor-acceptor (charge-transfer) interactions between 1,4-dioxane and aromatic hydrocarbon molecules in these mixtures, which follows the order benzene > toluene > *p*-xylene > *m*-xylene > *o*-xylene > mesitylene. Recently, Ma et al.²⁶ have also reported a similar type of donor-acceptor interactions between the oxygen atom of sulfolane and the π electrons of the aromatic

hydrocarbons (benzene, toluene, ethylbenzene, *o*-xylene, *m*-xylene, and *p*-xylene), and Ali et al.¹² also reported similar interactions between the oxygen atom of dimethyl sulfoxide and the π electrons on the ring of the aromatic hydrocarbon (benzene, toluene, *o*-xylene, *m*-xylene, *p*-xylene, and mesitylene) binary mixtures.

It is observed that $V_{\rm m}^{\rm E}$ values increase as the number of $-{\rm CH}_3$ groups in the ring increase from benzene (without

Table 6. Mole Fractions (x_1) , Densities (ρ) , Refractive Indices (n) , Excess Molar Volumes (V_m^E) , and Deviations in Refractive	Indices (Δn) of
1,4-Dioxane (1) $+ p$ -Xylene (2) Mixtures at the Temperatures (288.15 to 318.15) K	

	ρ		$V_{\rm m}^{\rm E}$	$100 \cdot \Delta n$		ρ			
<i>X</i> 1	$\overline{g \cdot cm^{-3}}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	g·cm ⁻³	<i>X</i> 1	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	п	V_{m}^{E}	$100 \cdot \Delta n$
1	8			T = 288	2 15 K			· m	
0.0000	0.86552	1.4985	0.000	0.000	0.5846	0.94987	1.4569	0.138	-0.511
0.0716	0.87409	1.4937	0.030	-0.106	0.6543	0.96276	1.4516	0.123	-0.496
0.1445	0.88322	1.4887	0.061	-0.206	0.7249	0.97661	1.4462	0.102	-0.453
0.2132	0.89223	1.4839	0.089	-0.293	0.7923	0.99062	1.4410	0.079	-0.385
0.2871	0.90241	1.4787	0.116	-0.369	0.8623	1.00605	1.4355	0.052	-0.289
0.3582	0.91276	1.4736	0.133	-0.430	0.9311	1.02214	1.4301	0.025	-0.156
0.4358	0.92473	1.4680	0.143	-0.474	1.0000	1.03923	1.4245	0.000	0.000
0.5042	0.93590	1.4629	0.146	-0.506					
				T = 2.93	3.15 K				
0.0000	0.86117	1 4959	0.000	0.000	0 5846	0 94484	1 4544	0.146	-0.525
0.0716	0.86964	1 4911	0.036	-0.113	0.6543	0.95763	1 4492	0.131	-0.509
0.1445	0.87869	1 4861	0.050	-0.216	0.0343	0.97138	1 4438	0.109	-0.465
0.2132	0.88763	1 4813	0.000	-0.305	0.7923	0.98527	1 4386	0.087	-0.403
0.2871	0.89773	1 4761	0.124	-0.384	0.8623	1.00060	1 4332	0.058	-0.299
0.3582	0.0000	1.4710	0.124	-0.443	0.0025	1.00000	1.4332	0.020	-0.166
0.4358	0.91988	1.4655	0.153	-0.486	1 0000	1.03359	1 4224	0.000	0.000
0.5042	0.93097	1 4604	0.155	-0.516	1.0000	1.05557	1.7227	0.000	0.000
0.5042	0.95097	1.4004	0.155	0.510	15 15				
0.0000	0.95(92	1 4022	0.000	T = 298	6.15 K	0.02091	1 4520	0 154	0.524
0.0000	0.85682	1.4933	0.000	0.000	0.5846	0.93981	1.4520	0.154	-0.534
0.0/16	0.86520	1.4884	0.040	-0.120	0.6543	0.95250	1.4467	0.139	-0.521
0.1445	0.87416	1.4834	0.076	-0.226	0.7249	0.96615	1.4414	0.117	-0.476
0.2132	0.88303	1.4/86	0.105	-0.318	0.7923	0.97992	1.4362	0.095	-0.416
0.2871	0.89305	1.4734	0.133	-0.400	0.8623	0.99515	1.4309	0.064	-0.309
0.3582	0.90324	1.4684	0.152	-0.457	0.9311	1.01103	1.4256	0.033	-0.175
0.4358	0.91503	1.4629	0.162	-0.498	1.0000	1.02795	1.4203	0.000	0.000
0.5042	0.92604	1.4579	0.164	-0.525					
				T = 303	3.15 K				
0.0000	0.85247	1.4907	0.000	0.000	0.5846	0.93478	1.4495	0.163	-0.543
0.0716	0.86076	1.4858	0.045	-0.128	0.6543	0.94738	1.4443	0.147	-0.534
0.1445	0.86964	1.4808	0.083	-0.236	0.7249	0.96092	1.4390	0.125	-0.493
0.2132	0.87843	1.4760	0.114	-0.330	0.7923	0.97458	1.4338	0.104	-0.432
0.2871	0.88837	1.4708	0.143	-0.415	0.8623	0.98970	1.4286	0.071	-0.324
0.3582	0.89849	1.4658	0.161	-0.470	0.9311	1.00548	1.4234	0.038	-0.185
0.4358	0.91019	1.4604	0.171	-0.510	1.0000	1.02232	1.4182	0.000	0.000
0.5042	0.92112	1.4554	0.172	-0.535					
				T = 308	2 15 K				
0.0000	0.84812	1 / 881	0.000	1 - 308	0.5846	0.02076	1 4470	0.170	-0.557
0.0000	0.85622	1.4001	0.000	-0.125	0.5640	0.92970	1.4470	0.170	-0.547
0.0710	0.85052	1.4051	0.049	-0.155	0.0343	0.94220	1.4410	0.133	-0.347
0.1445	0.80312	1.4/01	0.089	-0.240	0.7249	0.95509	1.4303	0.135	-0.309
0.2152	0.87383	1.4/33	0.122	-0.348	0.7925	0.90925	1.4514	0.111	-0.448
0.26/1	0.88509	1.4081	0.132	-0.430	0.8025	0.98423	1.4202	0.078	-0.340
0.3582	0.89374	1.4032	0.109	-0.485	0.9311	0.99993	1.4211	0.042	-0.200
0.4558	0.90555	1.4378	0.180	-0.521 -0.540	1.0000	1.01008	1.4101	0.000	0.000
0.3042	0.91020	1.4529	0.160	-0.549					
				T = 313	3.15 K				
0.0000	0.84377	1.4855	0.000	0.000	0.5846	0.92474	1.4445	0.178	-0.566
0.0716	0.85188	1.4805	0.054	-0.142	0.6543	0.93714	1.4394	0.163	-0.554
0.1445	0.86060	1.4754	0.096	-0.260	0.7249	0.95046	1.4341	0.141	-0.520
0.2132	0.86923	1.4706	0.131	-0.359	0.7923	0.96392	1.4290	0.118	-0.456
0.2871	0.87902	1.4655	0.161	-0.444	0.8623	0.97880	1.4238	0.086	-0.352
0.3582	0.88899	1.4606	0.178	-0.499	0.9311	0.99438	1.4188	0.047	-0.206
0.4358	0.90051	1.4552	0.189	-0.535	1.0000	1.01105	1.4139	0.000	0.000
0.5042	0.91128	1.4503	0.189	-0.559					
				T = 318	3.15 K				
0.0000	0.83942	1.4830	0.000	0.000	0.5846	0.91972	1.4420	0.186	-0.577
0.0716	0.84744	1.4778	0.058	-0.154	0.6543	0.93202	1.4369	0.171	-0.563
0.1445	0.85608	1.4727	0.103	-0.279	0.7249	0.94523	1.4316	0.150	-0.532
0.2132	0.86463	1.4680	0.141	-0.374	0.7923	0.95859	1.4266	0.126	-0.466
0.2871	0.87435	1.4628	0.169	-0.461	0.8623	0.97335	1.4214	0.093	-0.365
0.3582	0.88424	1.4580	0.187	-0.513	0.9311	0.98883	1.4165	0.052	-0.213
0.4358	0.89567	1.4526	0.198	-0.551	1.0000	1.00542	1.4117	0.000	0.000
0.5042	0.90636	1.4478	0.198	-0.572					

 $-CH_3$ groups) to mesitylene (with three $-CH_3$ groups). This is due to the fact that the methyl group ($-CH_3$) is an electronreleasing group that would enhance the electron density of the benzene ring of the aromatic molecules; however, the electron-accepting tendency of the aromatic ring would decrease as we move from benzene to mesitylene, resulting in decreased donor-acceptor interaction between unlike molecules with an increase in the number of methyl groups $(-CH_3)$ in the aromatic hydrocarbon molecule, which would cause an expansion in the volume of the mixture. This would cause an increase in V_m^E values in the sequence benzene < toluene < xylenes < mesitylene as we move from benzene to mesitylene.

Another factor that would cause an increase in $V_{\rm m}^{\rm E}$ values is the steric hindrance due to $-{\rm CH}_3$ groups of the rings. As the number of methyl groups in the ring increase from

Table 7. Mole Fractions (x_1) , Densities (ρ) , Refractive Indices (n), Excess Molar Volumes (V_m^E) , and Deviations in Refractive Indices (Δn) of 1,4-Dioxane (1) + Mesitylene (2) Mixtures at the Temperatures (288.15 to 318.15) K

	ρ		$V_{\rm m}^{\rm E}$			ρ		$V_{\rm m}^{\rm E}$	
x_1	$\overline{g \cdot cm^{-3}}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$	x_1	$\overline{g \cdot cm^{-3}}$	п	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$100 \cdot \Delta n$
1	6			T = 28	8 15 K	0			
0.0000	0.86928	1.5020	0.000	0.000	0.5801	0.94434	1.4584	0.327	-0.806
0.0696	0.87628	1.4969	0.070	-0.170	0.6548	0.95796	1.4525	0.291	-0.783
0.1408	0.88383	1.4916	0.143	-0.332	0.7227	0.97144	1.4470	0.243	-0.733
0.2098	0.89162	1.4865	0.207	-0.465	0.7936	0.98675	1.4412	0.181	-0.638
0.2800	0.90004	1.4812	0.269	-0.588	0.8663	1.00378	1.4354	0.117	-0.469
0.3558	0.90987	1.4755	0.315	-0.689	0.9319	1.02049	1.4300	0.056	-0.275
0.4276	0.91997	1.4701	0.338	-0.755	1.0000	1.03923	1.4245	0.000	0.000
0.5066	0.93203	1.4641	0.347	-0.796					
				T = 29	93.15 K				
0.0000	0.86537	1.4995	0.000	0.000	0.5801	0.93954	1.4558	0.346	-0.832
0.0696	0.87224	1.4942	0.080	-0.192	0.6548	0.95301	1.4500	0.310	-0.808
0.1408	0.87967	1.4889	0.160	-0.355	0.7227	0.96636	1.4445	0.261	-0.756
0.2098	0.88736	1.4838	0.227	-0.490	0.7936	0.98151	1.4388	0.197	-0.660
0.2800	0.89568	1.4786	0.291	-0.609	0.8663	0.99839	1.4330	0.129	-0.489
0.3558	0.90540	1.4729	0.338	-0.713	0.9319	1.01496	1.4277	0.064	-0.290
0.4276	0.91540	1.4675	0.361	-0.781	1.0000	1.03359	1.4224	0.000	0.000
0.5066	0.92735	1.4615	0.367	-0.820					
				T = 29	98.15 K				
0.0000	0.86145	1.4969	0.000	0.000	0.5801	0.93474	1.4532	0.364	-0.854
0.0696	0.86820	1.4915	0.088	-0.203	0.6548	0.94806	1.4474	0.329	-0.828
0.1408	0.87552	1.4862	0.174	-0.369	0.7227	0.96128	1.4420	0.278	-0.775
0.2098	0.88310	1.4811	0.246	-0.506	0.7936	0.97627	1.4363	0.214	-0.679
0.2800	0.89132	1.4758	0.312	-0.633	0.8663	0.99300	1.4306	0.142	-0.508
0.3558	0.90093	1.4702	0.361	-0.735	0.9319	1.00943	1.4254	0.072	-0.304
0.4276	0.91083	1.4648	0.383	-0.801	1.0000	1.02795	1.4203	0.000	0.000
0.5066	0.92267	1.4589	0.387	-0.837					
				T = 30)3.15 K				
0.0000	0.85754	1.4944	0.000	0.000	0.5801	0.92994	1.4506	0.384	-0.880
0.0696	0.86416	1.4888	0.099	-0.225	0.6548	0.94312	1.4449	0.348	-0.853
0.1408	0.87137	1.4835	0.191	-0.398	0.7227	0.95621	1.4395	0.295	-0.798
0.2098	0.87884	1.4784	0.267	-0.536	0.7936	0.97104	1.4338	0.230	-0.705
0.2800	0.88696	1.4731	0.335	-0.665	0.8663	0.98761	1.4282	0.156	-0.534
0.3558	0.89646	1.4675	0.385	-0.763	0.9319	1.00391	1.4231	0.081	-0.319
0.4276	0.90626	1.4622	0.406	-0.827	1.0000	1.02232	1.4182	0.000	0.000
0.5066	0.91/99	1.4563	0.408	-0.861					
				T = 30)8.15 K				
0.0000	0.85363	1.4918	0.000	0.000	0.5801	0.92514	1.4480	0.404	-0.901
0.0696	0.86013	1.4861	0.108	-0.237	0.6548	0.93818	1.4423	0.367	-0.873
0.1408	0.86722	1.4807	0.207	-0.416	0.7227	0.95114	1.4370	0.313	-0.822
0.2098	0.87459	1.4756	0.287	-0.557	0.7936	0.96581	1.4313	0.247	-0.729
0.2800	0.88260	1.4703	0.358	-0.688	0.8663	0.98223	1.4257	0.168	-0.558
0.3558	0.89200	1.4648	0.408	-0.785	0.9319	0.99839	1.4208	0.089	-0.338
0.4276	0.90170	1.4595	0.428	-0.846	1.0000	1.01668	1.4161	0.000	0.000
0.3000	0.91552	1.4337	0.428	-0.884					
				T = 31	3.15 K				
0.0000	0.84971	1.4893	0.000	0.000	0.5801	0.92034	1.4454	0.424	-0.923
0.0696	0.85610	1.4834	0.115	-0.258	0.6548	0.93325	1.4397	0.386	-0.897
0.1408	0.86307	1.4779	0.222	-0.449	0.7227	0.94607	1.4344	0.330	-0.844
0.2098	0.87034	1.4729	0.306	-0.585	0.7936	0.96058	1.4288	0.264	-0.748
0.2800	0.87825	1.4676	0.380	-0.718	0.8663	0.97685	1.4233	0.181	-0.576
0.3558	0.88/54	1.4621	0.431	-0.811	0.9319	0.99287	1.4184	0.098	-0.350
0.4270	0.09/14	1.4308	0.430	-0.874	1.0000	1.01105	1.4139	0.000	0.000
0.5000	0.70005	1.7,310	0.770	0.202	0.4.5.15				
0.0000	0.0.500		0.000	T = 31	8.15 K	0.01		0	0 0 1 -
0.0000	0.84580	1.4868	0.000	0.000	0.5801	0.91554	1.4428	0.445	-0.945
0.0696	0.85207	1.4807	0.125	-0.279	0.6548	0.92832	1.4371	0.405	-0.921
0.1408	0.85892	1.4751	0.239	-0.481	0.7227	0.94100	1.4318	0.349	-0.8/1
0.2098	0.80009	1.4/01	0.327	-0.613	0.7930	0.93333	1.4203	0.281	-0.773
0.2600	0.0/390	1.4040	0.405	-0.747	0.0005	0.9/14/	1.4200	0.195	-0.393
0.5558	0.00000	1.4393	0.433	-0.842 -0.807	1 0000	1 00542	1.4101	0.107	0.001
0.5066	0.90398	1.4484	0.469	-0.934	1.0000	1.00342	1.711/	0.000	0.000

benzene to mesitylene, the closer approach of the 1,4-dioxane molecule to the aromatic ring becomes increasingly difficult, resulting in decreased interaction between 1,4-dioxane and aromatic hydrocarbon molecules. Among the xylenes, the magnitude of negative $V_{\rm m}^{\rm E}$ values follows the order *o*-xylene < m-xylene < p-xylene, which suggests that the position of $-{\rm CH}_3$ groups on the aromatic ring plays a substantial role

in deciding the magnitude of $V_{\rm m}^{\rm E}$ and hence the order of interaction between the component molecules of the mixtures. The more negative $V_{\rm m}^{\rm E}$ values for 1,4-dioxane + *p*-xylene are observed because 1,4-dioxane molecules could more closely approach the ring of *p*-xylene from two directions, as compared with *o*- and *m*-xylenes; this shows a maximum interaction of 1,4-dioxane molecule with the former xylene

Table 8. Coefficients (A_i) from Equation 3 for V_m^E and Standard
Deviations (σ) for 1,4-Dioxane + Aromatic Hydrocarbon Mixtures
at Temperatures (288.15 to 318.15) K

Table 9. Coefficients (A_i) from Equation 3 for $V_m^{\rm m}$ and Standard
Deviations (σ) for 1,4-Dioxane + Aromatic Hydrocarbon Mixtures
at Temperatures (288.15 to 318.15) K

 A_2

 A_{2}

 A_4

 $100 \cdot \sigma$

 A_1

T/K

 A_0

<i>T/</i> K	A_0	A_1	A_2	A_3	A_4	σ			
1,4-dioxane + benzene									
288.15	-0.3241	-0.0394	-0.0063	0.0167	0.0243	0.0002			
293.15	-0.3091	-0.0401	0.0001	0.0195	0.0201	0.0002			
298.15	-0.2921	-0.0426	0.0044	0.0353	0.0311	0.0002			
303.15	-0.2752	-0.0475	0.0092	0.0394	0.0406	0.0004			
308.15	-0.2631	-0.0466	0.0237	0.0294	0.0187	0.0004			
313.15	-0.2469	-0.0499	0.0368	0.0258	0.0083	0.0002			
288.15	-0.3241	-0.0394	-0.0063	0.0167	0.0243	0.0002			
		1,4-di	ioxane + to	luene					
288.15	-0.0750	0.1781	-0.0014	0.0092	0.0691	0.0002			
293.15	-0.0631	0.1813	-0.0008	-0.0006	0.0798	0.0004			
298.15	-0.0529	0.1794	-0.0026	0.0060	0.1000	0.0005			
303.15	-0.0402	0.1841	0.0019	0.0014	0.1011	0.0005			
308.15	-0.0291	0.1892	0.0131	0.0000	0.0944	0.0003			
313.15	-0.0182	0.1882	0.0156	0.0058	0.1086	0.0003			
318.15	-0.0071	0.1871	0.0183	0.0122	0.1226	0.0004			
		1 4-di	$axane + a_{-}$	vylene					
288 15	0.8579	0 1327	-0.1596	-0.0401	-0.0017	0.0008			
200.15	0.0372	0.1327	-0.1390	-0.0530	0.0276	0.0008			
208.15	0.9680	0.1367	-0.1380	-0.0727	0.0270	0.0008			
303 15	1.0247	0.1307	-0.1001	-0.0936	0.0465	0.0009			
308.15	1.0247	0.1372	-0.0846	-0.1148	0.0403	0.0010			
313 15	1 1342	0.1479	-0.0615	-0.1140	0.0519	0.0013			
318 15	1.1942	0.1474	-0.0395	-0.1239	0.0517	0.0015			
510.15	1.1711	1.4 di	0.0575	0.1257	0.0005	0.0015			
200 15	0.7204	0.0042	0.2264	0.0269	0.0248	0.0005			
202.15	0.7294	0.0943	-0.2364	-0.0268	0.0248	0.0005			
293.15	0.7814	0.0952	-0.1540	-0.0304	-0.0377	0.0005			
298.15	0.8313	0.0945	-0.0676	-0.0431	-0.1167	0.0008			
200.15	0.8860	0.0917	0.0010	-0.0493	-0.1454	0.0007			
308.15	0.9353	0.0878	0.0744	-0.0486	-0.2067	0.0006			
210.15	0.9903	0.0844	0.1510	-0.0443	-0.2544	0.0006			
318.15	1.0430	0.0799	0.2188	-0.0555	-0.3102	0.0009			
200 1 5	0.5000	1,4-di	pxane + p-x	xylene	0.0000	0.0004			
288.15	0.5830	0.0550	-0.2445	-0.0293	0.0302	0.0004			
293.15	0.6183	0.0626	-0.2235	-0.0351	0.0784	0.0007			
298.15	0.6535	0.0717	-0.1844	-0.0461	0.0820	0.0009			
303.15	0.6874	0.0791	-0.1379	-0.0644	0.0831	0.0010			
308.15	0.7194	0.0914	-0.0897	-0.0823	0.0785	0.0010			
313.15	0.7536	0.0987	-0.0511	-0.0997	0.0972	0.0008			
318.15	0.7890	0.1069	-0.0145	-0.1192	0.1212	0.0009			
		1,4-dio	xane + mes	sitylene					
288.15	1.3829	0.1340	-0.6036	-0.0336	0.0804	0.0013			
293.15	1.4659	0.1659	-0.5175	-0.0591	0.0708	0.0013			
298.15	1.5471	0.1976	-0.4309	-0.1046	0.0381	0.0014			
303.15	1.6346	0.2369	-0.3558	-0.1500	0.0445	0.0016			
308.15	1.7179	0.2721	-0.2609	-0.1860	0.0011	0.0018			
313.15	1.8004	0.3038	-0.1752	-0.2386	-0.0287	0.0018			
318.15	1.8878	0.3383	-0.0884	-0.2832	-0.0426	0.0019			

compared with the latter two xylenes. These trends are in good agreement with the $V_{\rm m}^{\rm E}$ values reported³³ for dimethyl sulfoxide + xylene binary mixtures.

The values of $V_{\rm m}^{\rm E}$ increase with the increase in temperature of the mixture (Figure 1) for all six binary systems under study. The increase in $V_{\rm m}^{\rm E}$ is attributed to the breaking of donor-acceptor interactions between unlike molecules with the rise in temperature, which leads to an expansionin volume and therefore results in an increase in $V_{\rm m}^{\rm E}$ values.

The results presented in Figure 2 indicate that Δn values are positive for 1,4-dioxane + benzene, negative for 1,4-dioxane + *o*-xylene, + *m*-xylene, + *p*-xylene, and + mesitylene mixtures over entire mole fraction range at all investigated temperatures, and exhibit a sigmoid trend for 1,4-dioxane + toluene mixtures wherein Δn changes sign from negative to positive as the concentration of 1,4-dioxane in the mixture is increased. The extent of negative deviation in Δn from linear dependence on

1,4-dioxane + benzene									
288.15	0.5899	0.0055	0.2020	0.0085	-0.0523	0.0013			
293.15	0.5589	-0.0076	0.1883	0.0392	-0.0923	0.0011			
298.15	0.5332	-0.0134	0.1015	0.0526	-0.0318	0.0006			
303.15	0.5030	-0.0101	0.0437	0.0548	-0.0156	0.0007			
308.15	0.4702	-0.0095	-0.0075	0.0617	-0.0111	0.0008			
313.15	0 4449	-0.0020	-0.0532	0.0214	0.0179	0.0006			
318 15	0.4266	-0.0088	-0.1049	0.0261	0.0319	0.0005			
1.4.12									
200.15	0 4010	1,4-0	10xane + 10	oluene	0.5440	0.0020			
288.15	0.4018	0.0111	0.1191	-0.3103	-0.5449	0.0030			
293.15	0.3758	0.0129	0.1056	-0.3465	-0.6197	0.0033			
298.15	0.3511	0.0097	0.0860	-0.3725	-0.6/9/	0.0034			
303.15	0.3266	0.0049	0.0291	-0.4158	-0.6607	0.0027			
308.15	0.3030	-0.0074	-0.0632	-0.4342	-0.5971	0.0021			
313.15	0.2777	-0.0074	-0.1212	-0.4993	-0.5660	0.0017			
318.15	0.2532	-0.0211	-0.1889	-0.5420	-0.5244	0.0014			
1,4-dioxane $+ o$ -xylene									
288.15	-2.5002	-0.1825	-0.1995	-0.0708	0.0641	0.0027			
293.15	-2.5545	-0.1611	-0.2745	-0.0889	0.0268	0.0019			
298.15	-2.6279	-0.2194	-0.3203	-0.0224	-0.1532	0.0039			
303.15	-2.7044	-0.2375	-0.3440	0.0222	-0.2551	0.0042			
308.15	-2.7835	-0.2296	-0.3828	0.0011	-0.4001	0.0047			
313.15	-2.8429	-0.1992	-0.5746	-0.1290	-0.3703	0.0041			
318.15	-2.9030	-0.1855	-0.7215	-0.2311	-0.4139	0.0039			
1.4-dioxane $\pm m$ -xylene									
288.15	-2.2248	-0.3702	-0.2779	0.0796	0.3195	0.0022			
293.15	-2.2807	-0.3500	-0.3810	-0.0650	0.2900	0.0029			
298.15	-2.3315	-0.3151	-0.4476	-0.1534	0.2261	0.0023			
303.15	-2.3867	-0.2745	-0.6262	-0.2451	0.3211	0.0036			
308.15	-2.4487	-0.2469	-0.7341	-0.3223	0.2094	0.0036			
313 15	-24968	-0.2327	-0.8993	-0.4158	0 2542	0.0020			
318.15	-2.5440	-0.2296	-1.1056	-0.4933	0.3651	0.0021			
		1.4.di	ovono \perp n	vulana					
200 15	2 0 4 2 2	0.2020	0xalle + p	0.0000	0 1192	0.0019			
200.15	-2.0422	-0.2020	-0.0140	-0.0909	0.1162	0.0018			
293.15	-2.0901	-0.1938	-0.1047	-0.1246	0.1091	0.0019			
298.15	-2.1306	-0.1837	-0.2513	-0.1621	0.1748	0.0027			
303.15	-2.1723	-0.1521	-0.4437	-0.2221	0.3016	0.0029			
308.15	-2.2252	-0.1430	-0.5456	-0.2171	0.2376	0.0030			
313.15	-2.2600	-0.1644	-0.6/81	-0.2235	0.2795	0.0027			
318.15	-2.3057	-0.1782	-0.7660	-0.2865	0.1998	0.0021			
		1,4-dio	xane + mes	sitylene					
288.15	-3.1964	-0.5998	-0.6148	-0.1695	0.4500	0.0036			
293.15	-3.3009	-0.5944	-0.5531	-0.2674	0.0478	0.0035			
298.15	-3.3789	-0.5963	-0.6423	-0.2928	-0.0297	0.0043			
303.15	-3.4770	-0.5706	-0.7837	-0.4754	-0.1890	0.0520			
308.15	-3.5625	-0.5455	-0.8986	-0.5271	-0.3164	0.0051			
313.15	-3.6587	-0.5481	-0.9239	-0.7197	-0.6156	0.0058			
318.15	-3.7567	-0.5081	-1.0133	-1.0040	-0.7924	0.0072			

composition follows the sequence benzene < toluene < p-xylene < m-xylene < o-xylene < mesitylene. In general, the positive deviations in Δn values (on a volume fraction dependence basis) are considered to be due to the presence of significant interactions in the mixtures, whereas negative deviations in Δn values indicate weak interactions between the components of the mixture.^{31,34} The observed trends (Figure 2) of Δn values indicate the presence of weak interactions in these mixtures, which follow the order benzene > toluene > p-xylene > *m*-xylene > *o*-xylene > mesitylene. The Δn values decrease with the increase in temperature for each binary mixture, indicating that the interactions between unlike molecules weaken with a rise in temperature. Also, the deviations in Δn values are found to be opposite to the sign of excess molar volumes $V_{\rm m}^{\rm E}$ for all six binary mixtures (Figure 1), which is in agreement with the view proposed by Brocos et al.31,34 This further reinforces our earlier conclusions regarding the intermolecular

Table 10. $V_{m,1}^{\circ\infty}$, $V_{m,2}^{\circ E,\infty}$, $V_{m,2}^{\circ E,\infty}$ Values for 1,4-Dioxane + Aromatic Hydrocarbon Mixtures at Temperatures T = (288.15 to 318.15) K

	$V_{m,1}^{\circ\infty}$	$V_{m,1}^{\circ E,\infty}$	$V_{m,2}^{\circ\infty}$	$V_{m,2}^{\circ E,\infty}$			
<i>T/</i> K	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	$cm^3 \cdot mol^{-1}$			
1.4-dioxane + benzene							
288.15	84.451	-0.329	88.046	-0.283			
293.15	84.933	-0.310	88.599	-0.268			
298.15	85.446	-0.264	89.161	-0.249			
303.15	85.949	-0.234	89.744	-0.217			
308.15	86.423	-0.238	90.317	-0.204			
313.15	86.917	-0.226	90.906	-0.178			
318.15	87.443	-0.189	91.515	-0.139			
		1,4-dioxane + to	luene				
288.15	84.960	0.180	105.496	-0.195			
293.15	85.439	0.197	106.100	-0.165			
298.15	85.940	0.230	106.705	-0.141			
303.15	86.431	0.248	107.312	-0.123			
308.15	86.928	0.268	107.917	-0.111			
313.15	87.443	0.300	108.541	-0.088			
318.15	87.964	0.333	109.171	-0.066			
		1,4-dioxane $+ o$ -x	xylene				
288.15	85.569	0.789	120.694	0.604			
293.15	86.115	0.873	121.382	0.711			
298.15	86.654	0.944	122.074	0.816			
303.15	87.190	1.008	122.768	0.916			
308.15	87.732	1.072	123.456	1.007			
313.15	88.294	1.151	124.153	1.099			
318.15	88.862	1.231	124.858	1.194			
		1,4-dioxane $+ m$ -	xylene				
288.15	85.365	0.585	122.683	0.450			
293.15	85.897	0.654	123.363	0.525			
298.15	86.409	0.698	124.046	0.596			
303.15	86.966	0.784	124.767	0.699			
308.15	87.503	0.842	125.457	0.764			
313.15	88.071	0.928	126.171	0.847			
318.15	88.608	0.977	126.889	0.928			
		1,4-dioxane $+ p$ -x	kylene				
288.15	85.174	0.394	123.009	0.343			
293.15	85.743	0.501	123.731	0.446			
298.15	86.287	0.577	124.437	0.525			
303.15	86.830	0.647	125.162	0.618			
308.15	87.378	0.717	125.882	0.699			
313.15	87.942	0.799	126.629	0.801			
318.15	88.514	0.883	127.388	0.908			
	1	,4-dioxane + mes	sitylene				
288.15	85.740	0.960	139.035	0.759			
293.15	86.369	1.126	139.813	0.912			
298.15	86.958	1.247	140.593	1.061			
303.15	87.593	1.410	141.405	1.236			
308.15	88.205	1.544	142.182	1.372			
313.15	88.805	1.662	142.991	1.531			
318.15	89.443	1.812	143.816	1.702			

interactions from the variations of $V_{\rm m}^{\rm E}$ values of these mixtures.

The partial molar volumes, $V_{m,1}^{\circ}$ of component 1 (1,4-dioxane) and $V_{m,2}^{\circ}$ of component 2 (aromatic hydrocarbon), in these mixtures over the entire composition range were calculated by using the following relations³³

$$V_{m,1}^{\circ} = V_{m}^{E} + V_{m,1} + x_{2} (\partial V_{m}^{E} / \partial x_{1})_{T,p}$$
(4)

$$V_{m,2}^{\circ} = V_{m}^{E} + V_{m,1} - x_{1} (\partial V_{m}^{E} / \partial x_{1})_{T,p}$$
(5)

where $V_{m,1}$ and $V_{m,2}$ are the molar volumes of pure components 1,4-dioxane and aromatic hydrocarbon, respectively, and x_1 and x_2 are the mole fractions of components in the mixture. The derivative $(\partial V_m^E/\partial x_1)_{T,p}$ in eqs 4 and 5 was obtained by the

Figure 2. Deviations in refractive index (Δn) versus mole fraction (x_1) of 1,4-dioxane for the binary mixtures at (a) T = 298.15 K and (b) T = 318.15 K. \blacklozenge , 1,4-dioxane + benzene; \blacksquare , 1,4-dioxane + toluene; \blacktriangle , 1,4-dioxane + *o*-xylene; \diamondsuit , 1,4-dioxane + *m*-xylene; \bigtriangleup , 1,4-dioxane + *p*-xylene; \diamondsuit , 1,4-dioxane + mesitylene; \neg , calculated from eq 3.

differentiation of eq 3, which leads to the following equations for $V_{m,1}^{\circ}$ and $V_{m,2}^{\circ}$

$$V_{m,1}^{\circ} = V_{m,1} + x_2^2 \sum_{i=0}^{j} A_i (1 - 2x_1)^i - 2x_1 x_2^2 \sum_{i=1}^{j} A_i (1 - 2x_1)^{i-1}$$
(6)

$$V_{m,2}^{\circ} = V_{m,2} + x_1^2 \sum_{i=0}^{j} A_i (1 - 2x_1)^i + 2x_1^2 x_2 \sum_{i=1}^{j} A_i (1 - 2x_1)^{i-1}$$
(7)

Using the values of partial molar volumes $V_{m,1}^{\circ\infty}$ and $V_{m,2}^{\circ\infty}$ of the components at infinite dilution obtained from eqs 4, 5, 6, and 7, we calculated the excess partial molar volumes $V_{m,1}^{\circ E,\infty}$ and $V_{m,2}^{\circ E,\infty}$ of the components at infinite dilution by using the following relations³⁵

$$V_{m,1}^{\circ E,\infty} = V_{m,1}^{\circ \infty} - V_{m,1}$$
 (8)

$$V_{m,2}^{\circ E,\infty} = V_{m,2}^{\circ \infty} - V_{m,2}$$
 (9)

The values $V_{m,1}^{\circ\infty}$, $V_{m,1}^{\circ E,\infty}$, $V_{m,2}^{\circ\infty}$, and $V_{m,2}^{\circ E,\infty}$ for all six binary systems at the investigated temperatures are listed in Table 10. A close perusal of Table 10 indicates that the values of $V_{m,1}^{\circ E,\infty}$ and $V_{m,2}^{\circ E,\infty}$ calculated using eqs 8 and 9 are negative for 1,4-dioxane + benzene and are positive for 1,4-dioxane + *o*-xylene, + *m*-xylene, + *p*-xylene, and + mesitylene mixtures; $V_{m,1}^{\circ E,\infty}$ values are positive, whereas $V_{m,2}^{\circ E,\infty}$ values are negative for 1,4-dioxane + toluene mixtures at each investigated temperature. This suggests that the molar volumes of each component in the mixture are less than their respective molar volumes in the pure state; that is, there is a contraction in volume on mixing 1,4-dioxane with benzene, whereas the molar volumes of each component in the mixture are more than their respective molar volumes in the pure state (i.e., there is a expansion in volume on mixing 1,4-dioxane with o-xylene, m-xylene, pxylene, and mesitylene). For the 1,4-dioxane + toluene system, there is an expansion in volume in the toluene-rich region, whereas there is a contraction in volume in the 1,4-dioxanerich region, which is well reflected in the sigmoid trend in $V_{\rm m}^{\rm E}$ values. This further supports the trends observed in $V_{\rm m}^{\rm E}$ values for these binary systems. Also, the values of $V_{{\rm m},1}^{\circ{\rm E},\infty}$ and $V_{{\rm m},2}^{\circ{\rm E},\infty}$ increase with the increase in temperature of the mixture for each system investigated, which indicates the breaking of donor-acceptor interactions between unlike molecules with the rise in temperature, leading to an expansion in volume. This further supports the trends observed in $V_{\rm m}^{\rm E}$ values for these binary systems.

Conclusions

The densities and refractive indices for 1,4-dioxane + benzene, + toluene, + o-xylene, + m-xylene, + p-xylene, and + mesitylene mixtures, including those of pure liquids, have been measured at different temperatures. The values of $V_{\rm m}^{\rm E}$ and Δn for the mixtures and $V_{\rm m,1}^{\circ\infty}$, $V_{\rm m,2}^{\circ\rm E,\infty}$, $V_{\rm m,2}^{\circ\rm E,\infty}$ for the components were calculated. The observed trends in $V_{\rm m}^{\rm E}$ and Δn values indicate the presence of specific interactions between MA + benzene, + toluene, + o-xylene, + m-xylene, and + p-xylene and weak interactions in MA + mesitylene mixtures, and this interaction decreases with the increase in temperature. The extent of negative deviation in $V_{\rm m}^{\rm E}$ values shows that the interactions in these mixtures follows the order benzene > toluene > p-xylene > m-xylene > o-xylene > mesitylene. It is observed that the magnitude of $V_{\rm m}^{\rm E}$ depends on the number and position of methyl groups in these aromatic hydrocarbon molecules.

Acknowledgment

We thank Dr. I. S. Bakshi, Principal, Dyal Singh College (University of Delhi) for encouragement and for providing facilities.

Literature Cited

- Maravkova, L.; Linek, J. Excess molar volumes of (benzene + isopropylbenzene, or 1,3,5-trimethylbenzene, or 1,2,4-trimethylbenzene) at temperatures between 298.15 to 328.15 K. J. Chem. Thermodyn. 2003, 35, 1139–1149.
- (2) Giner, B.; Lafuente, C.; Villares, A.; Haro, M.; Lopez, M. C. Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes. *J. Chem. Thermodyn.* 2007, 39, 148– 157.
- (3) Nain, A. K. Refractive indices and deviations in refractive indices for binary mixtures of formamide + 1-butanol, + 2-butanol, + 1,3butanediol, and + 1,4-butanediol at temperatures from (293.15 to 318.15) K. J. Chem. Eng. Data 2008, 53, 1208–1210.

- (4) Nain, A. K. Densities and Volumetric Properties of (formamide + ethanol, or 1-propanol, or 1,2-ethanediol, or 1,2-propanediol) mixtures at temperatures between 293.15 and 318.15 K. J. Chem. Thermodyn. 2007, 39, 462–473.
- (5) Nain, A. K. Densities and volumetric properties of (acetonitrile + an amide) at temperatures between 293.15 and 318.15 K. J. Chem. Thermodyn. **2006**, *38*, 1360–1370.
- (6) Nain, A. K. Densities and volumetric properties of binary mixtures of tetrahydrofuran with some aromatic hydrocarbons at temperatures from 278.15 to 318.15 K. J. Solution Chem. 2006, 35, 1417–1439.
- (7) Nain, A. K. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of acetonitrile with some amides at different temperatures. *Bull. Chem. Soc. Jpn.* 2006, *79*, 1688–1695.
- (8) Nain, A. K. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of formamide with ethanol, 1-propanol, 1,2ethanediol and 1,2-propanediol at different temperatures. *J. Mol. Liq.* 2008, 140, 108–116.
- (9) Nain, A. K. Densities and volumetric properties of binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4butanediol at temperatures between 293.15 and 318.15 K. J. Solution Chem. 2007, 36, 497–516.
- (10) Nain, A. K. Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: an ultrasonic and viscometric study. *Fluid Phase Equilib.* 2008, 265, 46–56.
- (11) Nain, A. K. Ultrasonic and viscometric studies of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at temperatures from 293.15 and 318.15 K. *Fluid Phase Equilib.* 2007, 259, 218–227.
- (12) Ali, A.; Nain, A. K.; Chand, D.; Ahmad, R. Volumetric and ultrasonic studies of molecular interactions in binary mixtures of dimethyl sulfoxide with some aromatic hydrocarbons at different temperatures. *Bull. Chem. Soc. Jpn.* **2006**, *79*, 702–710.
- (13) Ali, A.; Nain, A. K.; Chand, D.; Ahmad, R. Viscosities and refractive indices of binary mixtures of dimethylsulphoxide with some aromatic hydrocarbons at different temperatures: an experimental and theoretical study. J. Chin. Chem. Soc. 2006, 53, 2006.
- (14) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed.; Wiley: New York, 1986.
- (15) Patterson, D. Structure and the thermodynamics of non-electrolyte mixtures. J. Solution Chem. **1994**, 23, 105–119.
- (16) Koningaveld, R.; Stepto, R. F. T. On polymer mixture thermodynamics. *Macromolecules* 1977, 10, 1166–1167.
- (17) Aralaguppi, M. I.; Aminabhavi, T. M.; Harogoppad, S. B.; Balundgi, R. H. Thermodynamic interaction in binary mixtures of dimethyl sulfoxide with benzene, toluene, 1,3-dimethylbenzene, 1,3,5-trimethyl benzene, and methoxybenzene from 298.15 to 308.15 K. J. Chem. Eng. Data **1992**, 37, 298–303.
- (18) Giner, B.; Martin, S.; Artigas, H.; Lopez, M. C.; Lafuente, C. Study of weak interactions through thermodynamic mixing properties. *J. Phys. Chem. B* **2006**, *110*, 17683–17690.
- (19) Andrews, A. W.; Morcon, K. W. Thermodynamic properties of some hydrocarbon + cyclic ether mixtures: 1. Volumes of mixing. J. Chem. Thermodyn. 1973, 3, 513–518.
- (20) Alkorta, I.; Rosaz, I.; Elguero, J. An attractive interaction between the π -cloud of C₆F₆ and electron-donor atoms. *J. Org. Chem.* **1997**, 62, 4687–4691.
- (21) Khan, V. H.; Subrahmanyam, S. V. Excess thermodynamic functions of the systems: benzene + p-xylene and benzene + p-dioxan. *Trans. Faraday Soc.* **1971**, 67, 2282–2291.
- (22) Francesconi, R.; Comelli, F. Excess enthalpies and excess volumes of binary mixtures containing toluene + cyclic ethers at 298.15 K. *J. Chem. Eng. Data* **1992**, *37*, 230–232.
- (23) Vogel, A. I. Vogel's Textbook of Practical Organic Chemistry, 5th ed.; Wiley: New York, 1989.
- (24) Sastry, N. V.; Valand, M. K. Volumetric behaviour of acrylic esters (methyl-, ethyl-, and butyl acrylate) + 1-alcohol (heptanol, octanol, decanol, dodecanol) at 298.15 and 308.15 K. *Phys. Chem. Liq.* 2000, 38, 61–72.
- (25) George, J.; Sastry, N. V.; Patel, S. R.; Valand, M. K. Densities, viscosities, speeds of sound, and relative permittivities for methyl acrylate + 1-alcohols (C_1 - C_6) at T = (308.15 and 318.15) K. J. Chem. Eng. Data **2002**, 47, 262–269.
- (26) Yang, C.; Ma, P.; Zhou, Q. Excess molar volumes and viscosities of binary mixtures of sulpholane with benzene, toluene, ethylbenzene, *p*-xylene, *o*-xylene, and *m*-xylene at 303.15 and 323.15 K and atmospheric pressure. *J. Chem. Eng. Data* 2004, 49, 881–885.

- (27) Exarchos, N. C.; Tasioula-Margar, M.; Demetropoulos, I. N. Viscosities and densities of dilute solutions of glycerol trioleate + octane, + *p*-xylene, + toluene, and + chloroform. *J. Chem. Eng. Data* **1995**, 40, 567–571.
- (28) Serrano, L.; Silva, J. A.; Farelo, F. Densities and viscosities of binary and ternary liquid systems containing xylene. J. Chem. Eng. Data 1990, 35, 288–291.
- (29) Lien, P.; Lin, H.; Lee, M.; Venkatesu, P. Excess molar enthalpies of dimethyl carbonate with *o*-xylene, *m*-xylene, *p*-xylene, ethylbenzene, or ethyl benzaoate at 298.15 K. J. Chem. Eng. Data 2003, 48, 110– 113.
- (30) Ouyang, G.; Guizeng, L.; Pan, C.; Yang, Y.; Huang, Z.; Kang, B. Excess molar volumes and surface tensions of xylenes with isopropyl ether or methyl *tert*-butyl ether at 298.15 K. J. Chem. Eng. Data 2004, 49, 732–734.
- (31) Brocos, P.; Pineiro, A.; Bravo, R.; Amigo, A. Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. *Phys. Chem. Chem. Phys.* **2003**, *5*, 550–557.

- (32) Redlich, O.; Kister, A. T. Algebric representation of thermodynamic properties and classification of solutions. *Ind. Eng. Chem.* 1948, 40, 345–348.
- (33) Wang, H.; Liu, W.; Huang, J. Densities and volumetric properties of (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15)
 K. J. Chem. Thermodyn. 2004, 36, 743–752.
- (34) Pineiro, A.; Brocos, P.; Amigo, A.; Pintos, M.; Bravo, R. Prediction of excess volumes and excess surface tensions from experimental refractive indices. *Phys. Chem. Liq.* **2000**, *38*, 251–260.
- (35) Hawrylak, B.; Gracie, K.; Palepu, R. Thermodynamic properties of binary mixtures of butanediols with water. J. Solution Chem. 1998, 27, 17–31.

Received for review July 26, 2008. Accepted September 15, 2008. S.G. thanks the Department of Science and Technology (DST) of the Government of India for financial support in the form of a major research project.

JE800579J