High Temperature and High Pressure Volumetric (Density and Apparent Molar Volumes) Properties of $\left(\mathbf{C a C l}_{2}+\mathbf{C}_{2} \mathbf{H}_{5} \mathbf{O H}\right)$ Solutions ${ }^{\dagger}$

Ilmutdin M. Abdulagatov, ${ }^{* *}$ Javid T. Safarov, ${ }^{\S, \|}$ Tavakkul A. Guliyev, ${ }^{, 1}$ Astan N. Shahverdiyev," and Egon P. Hassel ${ }^{\S}$

Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059, Rostock, Germany, and Azerbaijan Technical University, H. Javid Avn. 25, AZ1073 Baku, Azerbaijan

Abstract

The (p, ρ, T) and some derived volumetric properties such as apparent molar volumes V_{ϕ} of CaCl_{2} in ethanol, isothermal compressibility, and thermal expansion coefficients of $\left(\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ solutions at $T=(298.15$ to 398.15) K and pressures up to $p=40 \mathrm{MPa}$ are reported. The density measurements were made at seven molalities of $m=(0.09327,0.17427,0.43788,0.68992,0.98955,1.26564$, and 1.55045$) \mathrm{mol} \cdot \mathrm{kg}^{-1}$ of CaCl_{2}. An empirical correlation for the density of $\left(\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ as a function of pressure, temperature, and molality has been developed. This equation of state was used to calculate other volumetric properties such as isothermal compressibility and thermal expansion coefficients. The derived values of apparent molar volumes were extrapolated to zero concentration to calculate the values of apparent molar volumes (or partial molar volumes) at infinite dilution.

Introduction

The efficiency of an absorption heat transfer cycle depends on the physical and chemical properties of the heat transfer fluid. The problems of using conventional aqueous solutions of electrolytes were discussed in our previous publications on methanol solutions of electrolytes. ${ }^{1,2}$ This work is a continuation of the study of solutions of electrolytes for their future application as heat transfer fluids in absorption systems. These systems (alcohol solutions of electrolyte) could replace aqueous solutions at temperatures below the freezing point of water. Ethanol has a freezing temperature lower than methanol and can improve the circulation of heat transfer agents in the closed system.
A literature survey revealed that only two experimental data sets ${ }^{3,4}$ are available for the density of CaCl_{2} in ethanol solutions which cover very limited ranges of temperature (up to 343.15 K) and at pressure of 0.1 MPa only. Tashima and Arai^{3} reported the densities of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ at temperatures $T=(293.15$ to 343.15) K , molalities $m=(0$ to 2.236$) \mathrm{mol} \cdot \mathrm{kg}^{-1}$, and pressure of $p=0.1 \mathrm{MPa}$. The measurements were performed with a capped pycnometer. The uncertainty in the measured density was $0.4 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$. The measured density data were used to develop a correlation equation as a function of temperature and molality. Sardroodi and Zafarani-Moattar ${ }^{4}$ reported the densities of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ at temperatures of $T=298.15$ $\mathrm{K}, m=(0.0015$ to 3.3716$) \mathrm{mol} \cdot \mathrm{kg}^{-1,}$, and $p=0.1 \mathrm{MPa}$ using a vibration-tube densimeter (VTD). Apparent molar volumes were calculated from the experimental results. The uncertainty in the measured densities was estimated to be $0.01 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.

[^0]No density data are available for CaCl_{2} in ethanol solutions under high pressure.

The main objective of the paper is to provide accurate experimental density values for $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions at high temperatures (up to 398.15 K) and at high pressures (up to 40 MPa) for compositions up to $1.5505 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ using a vibrating-tube densimeter technique, which has been previously used for accurate measurements on other mixtures. ${ }^{5-7}$ The present results considerably expand the temperature and pressure ranges in which density data for the solutions are available. We have also developed an equation of state for the $\mathrm{CaCl}_{2}+$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution which accurately reproduces the present density results.

Experimental

The (p, ρ, T) properties of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions were studied using a high-pressure-high-temperature vibrating-tube densimeter DMA HPM. Since this method (apparatus, procedure of measurements, and calibration procedure) has been described fully in our previous publications, ${ }^{5-8}$ it will not be necessary to give here the details bearing on the present experiments. The vibration tube (length 15 cm , the U radius is 1 cm , OD 6 mm , ID 2 mm , volume of the liquid in the tube was $2 \mathrm{~cm}^{3}$) was made with corrosion resistance and good fabricability material (Hastelloy C-276, nickel-molybdenum-chromium-tungsten alloy). The measurements with a vibrating-tube densimeter are based on the dependence between the period of oscillation of a unilaterally fixed U-tube Hastelloy C-276 and its mass. The frequency of the harmonic oscillation of the tube can be directly related to the density of the fluid contained in the tube. The behavior of the vibrating tube can be described by the simple mathematical-physical model of the undamped spring-mass system. ${ }^{11}$ The classical equation for vibrating-tube densimeters is

$$
\begin{equation*}
\rho=A-B \tau^{2} \tag{1}
\end{equation*}
$$

where A and B are the calibrating constants as a function of temperature and pressure and subscript 0 relates to the reference

Figure 1. Measured values of density of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions as a function of temperature along various isobars together with values calculated from eq 6 at a selected molality of $m=0.1743 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ., 0.101 \mathrm{MPa}$; $\square, 10 \mathrm{MPa} ; \mathbf{\Delta}, 20 \mathrm{MPa} ; \bigcirc, 30 \mathrm{MPa} ; \square, 40 \mathrm{MPa} ;-$, calculated with eq 6.

Figure 2. Measured values of density of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions as a function of pressure along various isotherms together with values calculated from eq 6 at selected molality of $m=0.6899 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$. , $298.15 \mathrm{~K} ; ■, 323.15 \mathrm{~K} ; \boldsymbol{\Delta}, 348.15 \mathrm{~K} ; \bullet, 373.15 \mathrm{~K} ; \square, 398.15 \mathrm{~K} ;-$, calculated with eq 6 .
fluid. The parameters A and B can be determined for each temperature and pressure using a minimum of two reference fluids (see our previous publications ${ }^{5-8}$).

For the pressure measurement, a pressure transducer (model P-10, WIKA, Switzerland) was used. The temperature was measured using the (ITS-90) Pt100 thermometer. To check the apparatus and procedures of the measurements and the uncertainty of calibration before engaging in measurements on solution, the density of triple-distilled water and reference fluid (methanol) was measured and compared with the values calculated from IAPWS ${ }^{9}$ and IUPAC ${ }^{10}$ formulations.
$\mathrm{CaCl}_{2}(w>0.998)$ was supplied from Merck, Germany, and was used without further purification. Before measurements, the salt was dried for about 48 h in a special cell by heating at 413.15 K and reduced pressure (10 Pa). To prevent absorption of water, preparation of salt solutions was performed in a glovebox. Ethanol ($w>0.998$) was also supplied from Merck, Germany, and was degassed by vacuum distillation using a

Figure 3. Measured values of density of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions as a function of molality along various isobars together with values calculated from eq 6 at selected temperature of $298.15 \mathrm{~K} . \bullet, 0.1 \mathrm{MPa} ; \downarrow, 10 \mathrm{MPa}$; $\boldsymbol{\square}$, $20 \mathrm{MPa} ; \mathbf{\Delta}, 30 \mathrm{MPa} ; \square, 40 \mathrm{MPa} ;-$, calculated with eq 6.

Figure 4. Comparison of the present results for the density of $\mathrm{CaCl}_{2}+$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions with the data reported by other authors in the literature at atmospheric pressure and at temperature of 298.15 K together with values for $\mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}$ solutions. O , this work; \times, Tashima and Arai; ${ }^{3} \bullet$, Sardroodi and Zafarani-Moattar; ${ }^{4} \square$, Gates and $\operatorname{Wood}^{12}\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}\right)$; - , calculated with eq $6 ;---$, derived by a parallel shift (by $220 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$) (ρ, m) curve for $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution.

Vigreux column with a height of 90 cm . The final purity of the ethanol was checked by gas chromatography ($w>0.999$) and Karl Fischer titration (water mass fraction $<5 \cdot 10^{-5}$). The solutions were prepared by mass using an electronic scale with a resolution of $10^{-4} \mathrm{~g}$. The uncertainty in the pressure and temperature measurements are 5 kPa and 15 mK , respectively. The uncertainty in density measurements is $0.01 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ at low pressures (near atmospheric pressure) and $0.15 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ at high pressures (the combined expanded uncertainty, coverage factor is $k=2$). This leads to maximum relative uncertainties of 0.02 $\%$ for the performed measurements at high temperatures and high pressures.

Results and Discussion

Density. Measurements of the densities of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions at seven molalities of $m=(0.09327,0.17427,0.43788$, $0.68992,0.98955,1.26564$, and 1.55045$) \mathrm{mol} \cdot \mathrm{kg}^{-1}$ of CaCl_{2} were made in the temperature range between (298.15 and $398.15) \mathrm{K}$ and at pressures up to 40 MPa . The experimental temperature, density, pressure, and molality values for CaCl_{2} $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions are presented in Table 1 and shown in Figures 1 to 3 in $(\rho, T),(\rho, m)$, and (ρ, p) planes. The present

Table 1. Experimental Values of Density, Pressure, Temperature, and Molality of $\mathbf{C a C l}_{\mathbf{2}}$ of $\left(\mathbf{C a C l}_{\mathbf{2}}+\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathbf{O H}\right)$ Solutions

| p / MPa | $\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$ | p / MPa | $\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$ | p / MPa | $\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$ | p / MPa | $\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$ | p / MPa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\rho /\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$

$T=298.15 \mathrm{~K}$		$T=323.15 \mathrm{~K}$		$T=348.15 \mathrm{~K}$	
0.48	793.40	0.15	771.32	0.75	748.39
5.06	797.34	5.24	776.50	5.62	754.25
10.03	801.45	10.34	781.44	10.82	760.15
15.47	805.77	15.78	786.43	15.38	765.02
20.64	809.69	20.98	790.93	20.43	770.09
25.39	813.15	25.68	794.77	25.16	774.52
30.19	816.48	30.39	798.40	30.48	779.14
35.64	820.09	35.87	802.35	35.41	783.08
39.92	822.78	39.86	805.04	39.26	785.92
				$m=0.17427 \mathrm{~mol}^{2} \cdot \mathrm{~kg}^{-1}$	

$T=373.15 \mathrm{~K}$	
0.37	722.50
5.18	729.16
10.48	736.08
15.72	742.49
20.28	747.72
25.67	753.48
30.29	758.06
35.42	762.76
39.91	766.53

$T=398.15 \mathrm{~K}$	
0.68	692.59
5.10	700.41
10.08	708.63
15.41	716.75
20.03	723.21
25.06	729.63
30.17	735.52
35.18	740.65
39.92	744.93

$T=298.15 \mathrm{~K}$		$T=323.15 \mathrm{~K}$	
0.28	800.14	0.24	777.83
6.58	804.98	5.06	782.74
11.33	808.85	10.48	787.98
15.72	812.29	15.62	792.67
20.49	815.89	20.64	796.99
25.82	819.73	25.87	801.22
31.46	823.58	30.38	804.64
35.34	826.11	35.92	808.56
40.18	829.13	39.94	811.21

$T=348.15 \mathrm{~K}$	
0.89	755.18
5.09	760.16
10.48	766.21
15.76	771.77
20.48	776.42
25.62	781.15
30.42	785.25
35.86	789.53
39.97	792.50

$T=373.15 \mathrm{~K}$	
0.68	728.72
5.06	735.26
10.74	743.09
15.25	748.79
20.64	754.98
25.18	759.68
30.41	764.51
35.87	768.88
39.74	771.57

$T=398.15 \mathrm{~K}$	
1.03	700.75
5.07	707.51
10.54	716.08
15.29	722.99
20.14	729.54
24.98	735.56
30.78	742.10
35.46	746.84
39.79	750.79

$T=298.15 \mathrm{~K}$	
1.02	820.65
5.03	824.03
10.45	828.43
15.48	832.33
20.46	836.02
25.75	839.75
30.64	843.03
35.83	846.33
39.97	848.83

$T=298.15 \mathrm{~K}$	$T=323.15 \mathrm{~K}$		
1.17	839.86	1.06	817.18
5.01	843.06	5.30	821.26
11.05	847.88	10.18	825.76
15.12	850.99	15.37	830.30
20.13	854.64	20.64	834.66
25.31	858.24	25.39	838.36
30.12	861.41	30.18	841.89
34.21	863.97	35.76	845.73
39.77	867.27	39.94	848.42

$T=348.15 \mathrm{~K}$	
0.75	792.97
5.08	797.87
10.41	803.58
14.89	808.11
20.06	813.01
25.74	818.02
30.61	821.98
35.64	825.77
39.49	828.45

$m=0.98955 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$

$T=298.15 \mathrm{~K}$		$T=323.15 \mathrm{~K}$	
0.67	861.73	1.57	839.21
6.33	866.36	5.16	842.61
10.83	869.87	10.89	847.78
15.09	873.05	15.42	851.64
2.02	876.57	20.06	855.40
25.13	880.03	25.08	859.23
30.11	883.22	30.45	863.05
35.51	886.47	35.21	866.21
39.86	888.93	39.96	869.15

$T=348.15 \mathrm{~K}$	
0.58	814.32
5.06	819.30
10.31	824.81
15.21	829.63
20.67	834.64
25.94	839.09
30.86	842.93
35.37	846.17
39.97	849.20
$m=1.26564 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$	

$T=373.15 \mathrm{~K}$		$T=398.15 \mathrm{~K}$	
0.92	788.74	1.06	760.33
5.04	794.18	5.07	766.76
10.74	801.21	10.54	774.89
15.36	806.48	15.29	781.35
20.75	812.16	20.41	787.68
25.94	817.13	25.08	792.89
30.16	820.83	30.74	798.47
35.87	825.32	35.97	802.93
39.96	828.19	39.86	805.80

$T=298.15 \mathrm{~K}$		$T=323.15 \mathrm{~K}$	
0.26	881.44	0.31	857.30
5.06	885.32	5.07	861.31
10.85	889.78	10.06	865.40
14.86	892.71	15.41	869.66
20.08	896.35	19.98	873.20
25.41	899.86	24.86	876.87
30.06	902.74	30.07	880.67
35.91	906.14	35.16	884.27
39.98	908.34	39.87	887.49

$T=348.15 \mathrm{~K}$	
0.27	833.32
5.06	837.99
10.45	843.06
15.84	847.95
19.98	851.59
25.06	855.90
30.61	860.42
35.48	864.22
39.96	867.59

$T=373.15 \mathrm{~K}$	
0.42	808.17
4.98	813.49
9.78	818.85
15.26	824.65
20.03	829.44
25.41	834.54
29.98	838.62
35.07	842.89
39.97	846.74

$T=398.15 \mathrm{~K}$	
0.62	780.71
5.18	786.93
10.06	793.27
15.62	800.09
20.08	805.26
25.64	811.31
30.03	815.79
35.74	821.22
39.92	824.91

$T=298.15 \mathrm{~K}$		$T=323.15 \mathrm{~K}$	
0.21	901.58	0.52	876.88
5.02	905.41	5.12	881.08
10.41	909.48	10.74	885.92
15.24	912.94	15.02	889.39
20.26	916.34	20.42	893.50
25.01	919.38	25.31	896.97
30.42	922.62	30.14	900.16
35.05	925.22	35.62	903.49
39.96	927.80	39.98	905.92

$T=348.15 \mathrm{~K}$	
0.31	852.87
5.21	858.12
10.16	863.08
15.68	868.22
20.64	872.48
25.19	876.08
30.75	880.10
35.29	883.06
39.88	885.77

$T=373.15 \mathrm{~K}$	
0.39	828.22
5.14	834.25
10.15	840.15
15.29	845.70
20.14	850.48
25.75	855.45
30.14	858.93
35.48	862.67
39.97	865.39

$T=398.15 \mathrm{~K}$	
0.74	801.26
5.47	808.33
10.46	815.02
15.62	821.29
20.14	826.33
25.34	831.69
30.47	836.60
35.83	841.39
39.76	844.70

Figure 5. Apparent molar volume, V_{ϕ}, of CaCl_{2} in ethanol as a function of molality, m, at selected isotherm of $T=298.15 \mathrm{~K}$ along various isobars. \downarrow, $p=0.1 \mathrm{MPa} ; \Delta, p=10 \mathrm{MPa} ; \diamond, p=20 \mathrm{MPa} ; \Delta, p=30 \mathrm{MPa} ; *, p=$ 40 MPa .

Figure 6. Apparent molar volumes, V_{ϕ}, of CaCl_{2} in ethanol as a function of temperature at selected molality of $m=0.17427 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ for various isobars. $\downarrow, p=(0.101,0.24$, and 0.52$) \mathrm{MPa} ; \square, p=5 \mathrm{MPa} ; \boldsymbol{\Delta}, p=10$ $\mathrm{MPa} ; \bullet, p=15 \mathrm{MPa} ; \diamond, p=20 \mathrm{MPa} ; \square, p=25 \mathrm{MPa} ; \Delta, p=30 \mathrm{MPa} ;$ ○, $p=35 \mathrm{MPa} ; *, p=40 \mathrm{MPa}$.
experimental values of density for $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions at selected temperature of 298.15 K were compared with the data reported by Tashima and Arai ${ }^{3}$ and Sardroodi and ZafaraniMoattar ${ }^{4}$ (see Figure 4). The agreement (average absolute deviation, AAD) between the present results and those reported by Tashima and Arai ${ }^{3}$ and Sardroodi and Zafarani-Moattar ${ }^{4}$ are 0.50% and 0.05%, respectively. The data by Tashima and Arai ${ }^{3}$ are systematically higher than the present by 0.5%, while the data of Sardroodi and Zafarani-Moattar ${ }^{4}$ are in excellent agreement with the present results. Figure 4 also shows the data reported by Gates and Wood ${ }^{12}$ for $\mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}$ solutions at the same pressure and temperature. As one can see from this figure, the densities of $\mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}$ solutions are almost colinear with that of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (see dashed line in Figure 4). This is means that the (ρ, m) curve for $\mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}$ can be derived by a parallel shift (by $220 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$) (ρ, m) curve for $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution.

Apparent Molar Volumes. The measured densities for CaCl_{2} $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions were used to calculate the apparent molar volumes V_{ϕ} of CaCl_{2} in ethanol using the well-known relation

$$
\begin{equation*}
V_{\phi}=\left(\rho_{0}-\rho_{\mathrm{S}}\right) /\left(m \rho_{\mathrm{S}} \rho_{0}\right)+M / \rho_{\mathrm{S}} \tag{2}
\end{equation*}
$$

where ρ_{0} and ρ_{S} are densities of pure ethanol (calculated with the equation of state by Dillon and Penocello ${ }^{13}$) and the solutions, respectively; m is the molality of solution; and M is the molar mass of the dissolved CaCl_{2}. The derived values of the apparent molar volumes are given in Table 2 and shown in Figures 5 to 7 in different projections. The maximum relative uncertainty of the derived values of apparent molar volumes, δV_{ϕ}, is about $\delta V_{\phi}=0.15 \%$ at high molalities and (2 to 3) \% at low molalities. ${ }^{14}$ Figure 7 compares the present apparent molar volumes of CaCl_{2} in ethanol with the data reported by Sardroodi and Zafarani-Moattar. ${ }^{4}$ In the same figure, the apparent molar volumes of CaCl_{2} in water reported by Gates and Wood ${ }^{12}$ are also presented. The data by Sardroodi and Zafarani-Moattar ${ }^{4}$ at $m>0.5$ molality are systematically lower \{by about (1 to 1.2) $\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$ \} than the present values. Derived apparent molar volumes were fitted to the Pitzer ioninteraction relation ${ }^{15}$ to calculate the values of apparent molar volumes at infinite dilution

$$
\begin{align*}
& V_{\phi}=V_{\phi}^{0}+v\left|z_{\mathrm{M}} z_{\mathrm{X}}\right| A_{V} h(I)+ \\
& \quad 2 v_{\mathrm{M}} v_{\mathrm{X}} R T\left[m B_{\mathrm{MX}}^{V}+m^{2}\left(v_{\mathrm{M}} z_{\mathrm{M}}\right) C_{\mathrm{MX}}^{V}\right] \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
h(I) & =\ln \left(1+b I^{1 / 2}\right) / 2 b, A_{V}=-4 R T\left(\frac{\partial A_{\phi}}{\partial P}\right)_{T}, \\
B_{\mathrm{MX}} & =\beta_{\mathrm{MX}}^{0}+2 \beta_{\mathrm{MX}}^{1}\left[1-\left(1+\alpha I^{1 / 2}\right) \exp \left(-\alpha I^{1 / 2}\right)\right] / \alpha^{2} I, \\
B_{\mathrm{MX}}^{V}(I) & =\left(\frac{\partial B_{\mathrm{MX}}}{\partial P}\right)_{T, I}, C_{\mathrm{MX}}=C_{\mathrm{MX}}^{\phi} / 2\left|z_{\mathrm{M}} z_{\mathrm{X}}\right|^{1 / 2}, \\
C_{\mathrm{MX}}^{V} & =\left(\frac{\partial C_{\mathrm{MX}}}{\partial P}\right)_{T}, I=0.5 \sum_{i} m_{i} z_{i}^{2}
\end{aligned}
$$

A_{V} and A_{ϕ} are the Debye-Hückel slope for the apparent molar volume and osmotic coefficient, respectively; $b=1.2$ $\left(\mathrm{kg} \cdot \mathrm{mol}^{-1}\right)^{1 / 2} ; R=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} ; B_{\mathrm{MX}}$ and C_{MX} are the second and third virial coefficients; I is the ionic strength; z_{i} are the charges of the ions; $\alpha \approx 2 \mathrm{~kg}^{1 / 2} \cdot \mathrm{~mol}^{-1 / 2}$ is the ioninteraction parameter specific to each solute (may be adjusted for each solute) and might remain the same for broad classes

Figure 7. Comparison of the present results for the apparent molar volumes of CaCl_{2} in ethanol with the data reported by other authors in the literature at atmospheric pressure and at a temperature of 298.15 K together with values for apparent molar volumes of CaCl_{2} in water. - this work; O , Sardroodi and Zafarani-Moattar; ${ }^{4} \square$, Gates and Wood ${ }^{12}\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}\right)$; - , smothed curves.

Table 2. Apparent Molar Volumes, \boldsymbol{V}_{ϕ}, of $\mathbf{C a C l}_{2}$ in Ethanol

$V_{\phi} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$							
$m /\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$							
p / MPa	0.09327	0.17427	0.43788	0.68992	0.98955	1.26564	1.55045
$T=298.15 \mathrm{~K}$							
0.1	9.463	10.422	12.902	14.647	16.045	16.903	17.556
5	10.982	11.796	14.002	15.548	16.795	17.570	18.246
10	12.447	13.121	15.128	16.477	17.586	18.331	19.025
15	13.682	14.387	16.168	17.382	18.395	19.110	19.838
20	15.033	15.603	17.165	18.267	19.210	19.908	20.670
25	16.173	16.687	18.155	19.138	20.006	20.708	21.506
30	17.270	17.732	19.076	19.976	20.814	21.501	22.339
35	18.333	18.742	19.965	20.805	21.594	22.299	23.156
40	19.362	19.720	20.826	21.607	22.364	23.073	23.965
$T=323.15 \mathrm{~K}$							
0.1	4.434	5.873	9.844	12.892	15.670	17.366	18.084
5	6.585	7.884	11.526	14.272	16.790	18.320	18.998
10	8.644	9.810	13.098	15.635	17.948	19.357	20.011
15	10.435	11.553	14.593	16.928	19.076	20.409	21.054
20	12.321	13.313	16.058	18.207	20.228	21.494	22.136
25	13.790	14.820	17.391	19.409	21.329	22.544	23.200
30	15.372	16.180	18.637	20.587	22.404	23.600	24.253
35	16.730	17.579	19.874	21.723	23.469	24.631	25.299
40	18.209	18.933	21.068	22.821	24.500	25.629	26.313
$T=348.15 \mathrm{~K}$							
0.1	-1.001	0.716	5.761	9.543	12.852	14.684	15.107
5	2.106	3.702	8.152	11.516	14.430	16.027	16.382
10	5.064	6.442	10.383	13.409	16.018	17.442	17.764
15	7.499	8.844	12.417	15.172	17.560	18.858	19.163
20	10.000	11.131	14.350	16.869	19.055	20.262	20.561
25	11.846	13.026	16.082	18.416	20.461	21.610	21.922
30	13.971	14.936	17.779	19.943	21.856	22.952	23.268
35	15.661	16.677	19.297	21.364	23.180	24.228	24.563
40	17.462	18.354	20.797	22.711	24.455	25.471	25.824
$T=373.15 \mathrm{~K}$							
0.24	-9.188	-6.782	-0.390	4.199	7.929	9.703	9.679
5	-4.259	-2.256	3.234	7.163	10.301	11.714	11.573
10	0.236	1.947	6.640	9.979	12.636	13.777	13.567
15	3.874	5.378	9.552	12.487	14.778	15.735	15.506
20	7.313	8.516	12.221	14.801	16.793	17.600	17.372
25	10.200	11.293	14.594	16.894	18.664	19.375	19.160
30	12.761	13.840	16.737	18.837	20.428	21.065	20.863
35	15.025	16.078	18.745	20.621	22.079	22.654	22.493
40	17.380	18.126	20.596	22.332	23.663	24.192	24.050
$T=398.15 \mathrm{~K}$							
0.52	-26.666	-23.096	-13.359	-6.692	-1.542	0.742	0.569
5	-17.879	-14.753	-6.823	-1.398	2.672	4.277	3.805
10	-9.934	-7.481	-0.932	3.473	6.667	7.747	7.086
15	-3.599	-1.505	3.971	7.604	10.112	10.822	10.076
20	1.713	3.543	8.130	11.141	13.155	13.595	12.810
25	6.312	7.757	11.707	14.255	15.865	16.109	15.309
30	10.063	11.427	14.841	16.990	18.298	18.413	17.614
35	13.631	14.705	17.655	19.459	20.519	20.532	19.751
40	16.645	17.626	20.137	21.711	22.567	22.499	21.737

Table 3. Parameters of the Pitzer Ion-Interaction Model, Equation 3, as a Function of Temperature and Pressure

p	V_{ϕ}^{0}	A_{V}	$10^{3} \cdot B_{\text {MX }}^{V}$	$10^{6} \cdot C_{\text {MX }}^{V}$
(MPa)	$\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{~kg}^{1 / 2}\right)$	$\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{MPa}^{-1}\right)$	$\left(\mathrm{kg}^{2} \cdot \mathrm{~mol}^{-2} \cdot \mathrm{MPa}^{-1}\right)$
$T=298.15 \mathrm{~K}$				
0.1	4.644	22.435	0.375	32.02
5	6.985	18.482	0.411	7.85
10	8.987	15.826	0.446	4.91
15	10.600	14.209	0.446	1.53
20	12.554	11.138	0.574	1.10
25	14.010	9.615	0.614	0.72
30	15.454	7.900	0.686	0.58
35	16.854	6.222	0.763	0.52
40	18.219	4.545	0.846	0.55

of solutes. ${ }^{15,16} \mathrm{Eq} 3$ combines the long-range Coulombic potential with the hard sphere (short-range) potential. Pitzer's model takes into account the size of the ions in the Coulombic part of the ion-ion potential, and as a consequence, the electrostatic part (second term in eq 3) differs from the Debye-Hückel equation. Pitzer's eq 3 describes quite well

Figure 8. Apparent molar volumes of CaCl_{2} in ethanol at infinite dilution as a function of temperature (left) at three selected isobars and as a function of pressure (right) at various temperatures. -, smothed curves.

Figure 9. Comparison of the present results for the limiting Debye-Hückel slope for the apparent molar volume A_{V} with the values calculated from eq 4 at temperatures of (298.15 and 313.15) K. © , this work (derived from apparent molar volumes); ----, smothed curves; - , calculated from eq 4. 1, 313.15 K; 2, 298.15 K (calculated from eq 4); 3, 313.15 K; 4, 298.15 K (from derived apparent molar volumes).
(standard deviations for each isotherm-isobar are varied within $0.8 \cdot 10^{6}$ to $1.2 \cdot 10^{6}$) the present apparent molar volume data over a wide range of temperature, pressure, and concentration, if one assumes that the coefficients $\beta^{(0)}, \beta^{(1)}$, and C^{v} are functions of pressure and temperature. As a rule, eq 3 is applied at fixed pressure p and temperature T. The derived values of the parameters of the Pitzer model for selected fixed temperature (298.15 K) and various pressures are given in Table 3. The infinite-dilution values of V_{ϕ} (or partial molar volumes V_{2}^{∞}) as a function of temperature (left) and pressure (right) are presented in Figure 8 along three selected pressures $(0.1,20$, and 40$) \mathrm{MPa}$ and selected temperatures (298.15, 348.15, and 373.15) K. Note that V_{ϕ} and V_{ϕ}^{0} (see Figures 5 to 8 and Tables 3 and 4) are slightly changed at low temperatures (below 350 K) and then sharply go to negative values, especially at low pressures. At high pressure (above 25 MPa), the values of apparent molar volumes are almost independent of temperature and positive. At low pressures (below 10 MPa) and high temperatures (above 348 K), the values of apparent molar volumes are negative. At high pressures (above 25 MPa) and at any measured temperatures (up to 398 K), the derived values of apparent molar volumes are almost constant (see Figure 6).

The values of the Debye-Hückel slope for the osmotic coefficient A_{ϕ} and apparent molar volume A_{V} can be calculated

Table 4. Apparent Molar Volume of $\mathbf{C a C l}_{\mathbf{2}}$ in Ethanol at Infinite Dilution as a Function of Temperature at Three Selected Pressures

T / K		$V_{\phi}^{0} / \mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$
	$p=0.1 \mathrm{MPa}$	
298.15		4.644
323.15		2.503
348.15		-6.118
373.15		-32.63
398.15		
		12.55
298.15		1.14
323.15		4.078
348.15		5.987
373.15		1.577
398.15		18.312
		17.557
298.15		12.851
323.15		16.604
348.15		14.721

from the isothermal compressibility, k_{T}, and pressure dependency of the dielectric constant of pure ethanol as

$$
\begin{align*}
& A_{V}=6 R T A_{\phi}\left[\left(\frac{\partial \ln D}{\partial p}\right)_{T}-\frac{k_{T}}{3}\right] \text { and } \\
& A_{\phi}=\frac{1}{3}\left(2 \pi N_{\mathrm{A}} \rho_{0}\right)^{1 / 2}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} D k T}\right)^{3 / 2} \tag{4}
\end{align*}
$$

where $N_{\mathrm{A}}=6.0222045 \cdot 10^{23} \mathrm{~mol}^{-1}$ is the Avogadro number; $e=1.60217653 \cdot 10^{-19} ; C$ is the charge of the electron; $k=$ $1.3806505 \cdot 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$ is the Boltzmann constant; and $\varepsilon_{0}=$ $8.854188 \cdot 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~N} \cdot \mathrm{~m}^{-2}$ is the permittivity of the vaccum. The values of the dielectric constant D and pressure derivative $(\partial \ln D / \partial p)_{T}$ as a function of pressure were calculated using the Tait-type equation by Srinivasan and Kay ${ }^{19}$

$$
\begin{align*}
& D=\frac{D_{0}}{1-A \ln [(B+p) /(B+1)]} \text { and } \\
& \qquad\left(\frac{\partial \ln D}{\partial p}\right)_{T}=A D /(B+p) D_{0} \tag{5}
\end{align*}
$$

where D_{0} is the dielectric constant of ethanol at 0.1 MPa . The pure ethanol properties (density, ρ_{0}, and isothermal compressibility, k_{T}) were calculated with the fundamental equation of state by Dillon and Penoncello. ${ }^{13}$ The calculated results for the limiting Debye-Hückel slope for the apparent molar volume A_{V} were compared with the values derived from eq 3 by direct fitting to the present apparent molar volumes. As one can see from Figure 9, the agreement between the present results derived from measured molar volumes and the theoretical values is good (within (2 to 5) \%) at at 0.1 MPa ; however, at high pressures, the differences are very large. Parameter A_{V} is the limiting slope (at $m \rightarrow 0$, dilute solution) of the $V_{\phi}-m$ dependence along the isobar-isotherm. The present measurements mostly cover a higher concentration range. Therefore, the large differences between the present values of A_{V} and the theoretical prediction are caused by extrapolating our results to low concentration. The uncertainty of the extrapolating procedure is large because at low concetrations $V_{\phi}-m$ curves sharply change; i.e., small changes in concentration cause large changes in V_{ϕ} (see Figure 7). The values of the fitting parameters $\left(V_{\phi}^{0}, A_{V}, B_{\mathrm{MX}}^{V}, C_{\mathrm{MX}}^{V}\right)$ in eq 3 considerably depend on the concentration range where the experimental data are available. Thus, to accurately calculate the values of limiting slope A_{V}, the detailed measurements at low concentrations are needed (for dilute solutions, see for

Figure 10. Percentage deviations, $\delta \rho=100\left(\rho-\rho^{\text {calcd }} / \rho\right)$, of the present experimental densities for the $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions from the values calculated with eq 6 as a function of pressure for various temperatures. \diamond, $m=0 ; \Delta, m=0.09327 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \square, m=0.17427 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \bullet, m=$ $0.43788 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \boldsymbol{\Delta}, m=0.68992 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ; \star, m=0.98955 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$; ■, $m=1.26564 \mathrm{~mol} \cdot \mathrm{~kg}^{-1} ;{ }^{*}, m=1.55045 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$.

Figure 11. Isothermal compressibility, k, of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions as a function of pressure p along various isotherms at a selected molality of $m=0.98955 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ calculated with eq $6.1,298.15 \mathrm{~K} ; 2,323.15 \mathrm{~K}$; $3,348.15 \mathrm{~K} ; 4,373.15 \mathrm{~K} ; 5,398.15 \mathrm{~K}$.
example, ref 4). Unfortunately, theory cannot accurately predict the range where eq 3 is valid. This is one of the reasons why the difference between A_{V} reported by various authors sometimes is large, although the agreement between the measured apparent molar volumes is within their uncertainties (see Figure 7). We tried to recalculate the values of fitting parameters $\left(V_{\phi}^{0}, B_{\mathrm{MX}}^{V}\right.$, C_{MX}^{V}) at fixed A_{V} (by using theoretical values from eq 4). We found that the accuracies of the representation of the present experimental apparent molar volumes with eq 3 are nearly the same. Therefore, this confirms that the present derived apparent molar volumes of CaCl_{2} in ethanol are in good agreement with Pitzer's theory. Our result for A_{V} at 298.15 K and 0.1 MPa , $22.435 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{~kg}^{1 / 2}$, is in good agreement with the value $23.873 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{~kg}^{1 / 2}$ reported by Sardroodi and ZafaraniMoattar ${ }^{4}$ (derived from density measurements). Marcus and $\operatorname{Hefter}^{20}$ also reported the value $\left(26.17 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{~kg}^{1 / 2}\right)$ of A_{V} at 298.15 K and 0.1 MPa which was calculated from the dielectric constant measurement data using the relation 4 . We examined how the adjustable parameters ($V_{\phi}^{0}, A_{V}, B_{\mathrm{MX}}^{V}, C_{\mathrm{MX}}^{V}$) of eq 3 depend on the fitting range. We found that if the fitting range is reduced, the value of the A_{V} is within 27.705 $\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-3 / 2} \cdot \mathrm{~kg}^{1 / 2}$, which is close to the value reported by Marcus and Hefter. ${ }^{20}$ The values of A_{V} calculated with eq 4 also depend on the accuracy of the measured values of the dielectric constant, density, and isothermal compressibility of ethanol. Therefore, the reported values of A_{V} are in

Figure 12. Thermal expansibilities, α, of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solutions as a function of pressure p along various isotherms at selected molality of $m=$ $0.68992 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ calculated with eq $6.1,298.15 \mathrm{~K} ; 2,323.15 \mathrm{~K} ; 3,348.15$ K; 4, $373.15 \mathrm{~K} ; 5,398.15 \mathrm{~K}$.

Table 5. Values of the Coefficients a_{j}, b_{j}, and c_{i} in Equation 6

a_{i}	b_{i}	c_{j}
$a_{1}=-2.290444 \cdot 10^{0}$	$b_{1}=2.613913 \cdot 10^{0}$	$c_{1}=0.269527 \cdot 10^{-2}$
$a_{2}=-0.029549 \cdot 10^{0}$	$b_{2}=-2.223418 \cdot 10^{0}$	$c_{2}=0.271793 \cdot 10^{-2}$
$a_{3}=0.392926 \cdot 10^{0}$		
$a_{4}=0.655136 \cdot 10^{-2}$		
$a_{5}=-0.724853 \cdot 10^{-3}$		
$a_{6}=-0.383747 \cdot 10^{-5}$		

reasonable agreement with measured and predicted values reported in the literature.
Equation of State. Measured densities of $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ were fitted to the equation of state

$$
\begin{equation*}
p=A \rho^{2}+B \rho^{8}+C \rho^{12} \tag{6}
\end{equation*}
$$

where A, B, and C are the functions of temperature and molalities. The best description of the present density data for $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution was achieved for the functions

$$
\begin{gathered}
A=\left(a_{1}+a_{2} m+a_{3} m^{2}\right) T+\left(a_{4}+a_{5} m^{2}\right) T^{2}+a_{6} T^{3} \\
B=\left(b_{1}+b_{2} m\right) T \\
C=\left(c_{1}+c_{2} m\right) T^{2}
\end{gathered}
$$

The derived values of the coefficients a_{i}, b_{j}, and c_{i} are given in Table 5. This equation was successfully used previously to represent measured densities for other binary solutions ${ }^{1,2,17,18}$ and pure fluids. ${ }^{8}$ Equation 6 reproduced our measured values of density for $\mathrm{CaCl}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution in the temperature range from (298 to 398) K and at molalities from (0 to 1.55045) $\mathrm{mol} \cdot \mathrm{kg}^{-1}$ for the pressures up to 40 MPa with an $\mathrm{AAD}=0.05$ $\%$. The deviation plot is shown in Figure 10. The calculated values of the density together with experimental values are also presented in Figures 1 to 3. Equation 6 can be used to calculate the derived properties such as isothermal compressibility, $k=$ $(1 / \rho)(\partial p / \partial \rho)_{T, \mathrm{~m}}^{-1}$, and thermal expansion coefficient, $\alpha=(1 / \rho)(\partial p /$ $\partial T)_{\rho, \mathrm{m}}(\partial p / \partial \rho)_{T, \mathrm{~m}}^{-1}$. The calculated values of the isothermal compressibilities k and thermal expansibilities α are shown in Figures 11 and 12 as a function of pressure for various isotherms at selected composition.

Conclusion

New density measurements (p, ρ, T data) and derived properties such as apparent molar volumes V_{ϕ} of CaCl_{2} in
ethanol at $T=(298.15$ to 398.15$) \mathrm{K}$, pressures up to $p=40$ MPa, and molalities $m=(0.09327,0.17427,0.43788,0.68992$, $0.98955,1.26564$, and 1.55045$) \mathrm{mol} \cdot \mathrm{kg}^{-1}$ of calcium chloride are reported. Measured densities were used to develop an accurate equation of state. The thermal expansivity, isothermal compressibility of solutions, and apparent molar volume of CaCl_{2} in ethanol were calculated using the developed equation of state. The derived apparent molar volumes V_{ϕ} were used to calculate the apparent molar volumes (or partial molar volumes) at infinite dilution, V_{ϕ}^{0}. Derived values of V_{ϕ} and V_{ϕ}^{0} do not vary significantly at low temperatures (below 350 K) and then sharply go to negative values at high temperatures. At high pressure, the values of apparent molar volumes (above 25 MPa) were almost independent of temperature and positive. At low pressures (below 10 MPa) and high temperatures (below 348 K), the values of apparent molar volumes are negative.

Acknowledgment

I. M. Abdulagatov thanks the Physical and Chemical Properties Division at the National Institute of Standards and Technology for the opportunity to work as a Guest Researcher at NIST during the course of this research. J. T. Safarov thanks the Alexander von Humboldt Foundation for his research period at the University of Rostock, Germany.

Literature Cited

(1) Ihmels, E. C.; Safarov, J.; Hassel, E.; Gmehling, J. (p, ρ, T) properties, and apparent molar volumes V_{ϕ} of ZnBr_{2} in methanol at $T=(298.15$ to 398.15) K and pressures up to $p=40 \mathrm{MPa}$. J. Chem. Thermodyn. 2005, 37, 1318-1326.
(2) Ihmels, E. C.; Safarov, J.; Hassel, E.; Gmehling, J. (p, ρ, T) properties, and apparent molar volumes V_{ϕ} of CaCl_{2} in methanol at $T=(298.15$ to 398.15) K and pressures up to $p=40 \mathrm{MPa}$. J. Chem. Thermodyn. 2006, 38, 224-229.
(3) Tashima, Y.; Arai, Y. Densities of Some Alcohols and Water Containing Calcium Chloride in the Region $20-70^{\circ} \mathrm{C}$. Relation With Salt Effect On Vapor-Liquid Equilibria. Mem. Fac. Eng., Kyushu Univ. 1981, 41, 217-232.
(4) Sardroodi, J. J.; Zafarani-Moattar, M. T. Apparent molal volumes of the solutions of CaCl_{2} and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in ethanol at 298.15: experimental data and correlation by local composition models. Fluid Phase Equilib. 2005, 231, 61-66.
(5) Abdulagatov, I. M.; Tekin, A.; Safarov, J.; Shahverdiyev, A.; Hassel, E. Densities, excess, apparent, and partial molar volumes of binary mixtures of ethanol $+[\mathrm{BMIM}]\left[\mathrm{BF}_{4}\right]$ as a function of temperature, pressure, and concentration. Int. J. Thermophys. 2008, 29, 505-533.
(6) Abdulagatov, I. M.; Tekin, A.; Safarov, J.; Shahverdiyev, A.; Hassel, E. High-pressure densities and derived volumetric properties (excess, apparent, and partial molar volumes) of binary mixtures of methanol $+\left[\mathrm{BMIM}^{2}\right]\left[\mathrm{PF}_{6}\right]$. J. Solution Chem. 2008, 37, 801-833.
(7) Abdulagatov, I. M.; Tekin, A.; Safarov, J.; Shahverdiyev, A.; Hassel, E. Experimental study of the volumetric properties (density, apparent, partial, and excess molar volumes) of binary mixtures of Methanol $+\left[\mathrm{BMIM}^{2}\right]\left[\mathrm{BF}_{4}\right]$. J. Chem. Thermodyn. 2008, in press.
(8) Abdulagatov, I. M.; Safarov, J.; Aliyev, F.; Talibov, M.; Shahverdiyev, A.; Hassel, E. Experimental densities and derived properties of liquid propan-1-ol at temperatures from 298 to 423 K and at pressures up to 40 MPa . Fluid Phase Equilib. 2008, 268, 21-33.
(9) Wagner, W.; Pru β, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 2002, 31, 387-535.
(10) de Reuck, K. M.; Craven, R. J. B. Methanol. International Thermodynamic Tables of the Fluid State-12; Blackwell Scientific: Oxford, 1993.
(11) Kratky, O.; Leopold, H.; Stabinger, H. H. Dichtemessungen an Flüssigkeiten und Gasen auf $10^{-6} \mathrm{~g} / \mathrm{cm}^{3}$ bei $0.6 \mathrm{~cm}^{3}$ Präparatvolumen. Z. Angew. Phys. 1969, 27, 273-277.
(12) Gates, J. A.; Wood, R. H. Density of aqueous solutions of NaCl , $\mathrm{MgCl}_{2}, \mathrm{KCl}, \mathrm{NaBr}, \mathrm{LiCl}$, and CaCl_{2} from 0.05 to $5.0 \mathrm{~mol} / \mathrm{kg}$ and 0.1013 to 40 MPa at 298.15 K. J. Chem. Eng. Data 1985, 30, 44-49.
(13) Dillon, H. E.; Penoncello, S. G. A Fundamental equation for calculation of the thermodynamic properties of ethanol. Int. J. Thermophys. 2004, 25, 321-335, 2.
(14) Abdulagatov, I. M.; Azizov, N. D. PVTx measurements and partial molar volumes for aqueous $\mathrm{Li}_{2} \mathrm{SO}_{4}$ solutions at temperatures from

297 to 573 K and pressures up to 40 MPa . Int. J. Thermophys. 2003, 24, 1581-1610.
(15) Pitzer, K. S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268-277.
(16) Bradley, D. J.; Pitzer, K. S. Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hueckel parameters to 350 ${ }^{\circ} \mathrm{C}$ and 1 kbar. J. Phys. Chem. 1979, 83, 1599-1603.
(17) Safarov, J. T. The investigation of the (p, ρ, T) and $\left(p_{\mathrm{s}}, \rho_{\mathrm{s}}, \mathrm{T}_{\mathrm{s}}\right)$ properties of $\left\{(1-\mathrm{x}) \mathrm{CH}_{3} \mathrm{OH}+\mathrm{xLiBr}\right\}$ for the application in absorption refrigeration machines and heat pumps. J. Chem. Thermodyn. 2003, 35, 1929-1937.
(18) Safarov, J. T.; Najafov, G. N.; Shahverdiyev, A. N.; Hassel, E. (p, ρ, $T)$ and $\left(p_{\mathrm{s}}, \rho_{\mathrm{s}}, T_{\mathrm{s}}\right)$ properties, and apparent molar volumes V_{ϕ} of LiNO_{3}
(aq) in the 298.15-398.15 K temperature range and pressures to $p=60$ MPa. J. Mol. Liq. 2005, 116, 157-163.
(19) Srinivasan, K. R.; Kay, R. L. Structural considerations from dielectruc measurements on the aliphatic alcohols. J. Solution Chem. 1975, 4, 299-310.
(20) Marcus, Y.; Hefter, G. On the pressure and electrical filed dependencies of the relative permittivity of liquids. J. Solution Chem. 1999, 28, 575-592.

Received for review April 2, 2008. Accepted July 14, 2008.
JE800234H

[^0]: * To whom correspondence should be addressed. E-mail: ilmutdin@ boulder.nist.gov.
 ${ }^{\dagger}$ Part of the special issue "Robin H. Stokes Festschrift".
 ${ }^{*}$ Present address: Physical and Chemical Properties Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305.
 ${ }^{\text {§ }}$ Universität Rostock.
 ${ }^{\text {" }}$ Azerbaijan Technical University.

