Thermophysical Properties of Isoamyl Acetate or Methyl Benzoate + Hydrocarbon Binary Mixtures, at (303.15 and 313.15) K^\dagger

Manapragada V. Rathnam,*,* Sudhir Mohite,* and Manapragada S. Kumar[§]

Department of Chemistry, B.N. Bandodkar College of Science Thane - 400 601, India, and Zulal Bhilajirao Patil College, Dhule - 424 002, India

Densities, viscosities, and refractive indices have been measured for the binary liquid mixtures of isoamyl acetate or methyl benzoate with (o-, m-, and p-) xylenes and ethylbenzene over the entire composition range at (303.15 and 313.15) K. From the experimental data, the values of viscosity deviations $\Delta \eta$ and deviation in molar refraction ΔR have been determined. The values of $\Delta \eta$ and ΔR have been fitted to the Redlich–Kister polynomial equation to determine the binary coefficients and the standard deviation. The predictive ability of several one-, two-, and three-parameter viscosity models was also tested. It was observed that the viscosities were best correlated with the McAllister equation.

Introduction

Considerable scientific and practical interest has been stimulated by investigation of organic liquid mixtures by viscosity and refractive index measurements. The thermodynamic behavior and physical properties of several esters in their binary mixtures are already reported.¹⁻⁸ However, studies in regard to the determination of densities, viscosities, and refractive indices of the binary liquid mixtures of isoamyl acetate and methyl benzoate at (303.15 and 313.15) K are still lacking. Isoamyl acetate and methyl benzoate are used in a variety of applications in industrial sectors. Isoamyl acetate is used as solvent for old oil colors, perfuming, shoe polish, metallic paints, and in photographic films, while methyl benzoate is a polar, nonprotogenic selective solvent with important application in purification of reagents. The interactions of these esters with hydrocarbons such as xylenes and ethylbenzene are important to enable analysis of the effect of their dissimilar geometric structures on the mixture properties. In this work, which is a part of our research^{9,10} on the thermophysical properties of binary mixtures, we present the densities, viscosities, and refractive indices of binary systems (isoamyl acetate + o-xylene, *m*-xylene, *p*-xylene, or ethylbenzene) and (methyl benzoate +o-xylene, m-xylene, p-xylene, or ethylbenzene) at (303.15 and 313.15) K and atmospheric pressure. The experimental viscosities were used to test the applicability of the equations proposed by Hind et al.,¹¹ Heric,¹² Auslander,¹³ and McAllister¹⁴ (assuming three-body and four-body interactions).

Experimental Section

Materials. High purity analytical reagent grade (BDH, AR) samples of *o*-xylene, *m*-xylene, and *p*-xylene were purified as per the standard procedure given by Riddick et al.¹⁵ Ethyl benzene, isoamyl acetate, and methyl benzoate, all (Fluka, AG) with a reported purity of > 99 %, on a mole fraction basis were used without further treatment. The purity of these liquids was verified by measuring their density, viscosity, and refractive

[§] Zulal Bhilajirao Patil Čollege.

Table 1.	Comparison	of Experimen	ntal Densiti	es (ρ), Viscosi	ties (η) ,
and Refr	active Indices	$(n_{\rm D})$ of Pure	Liquids wi	ith Literature	Values
at 303.15	K				

	Т	$ ho/kg \cdot m^{-3}$		η/n	nPa•s	n _D		
liquid	Κ	exptl	lit.	exptl	lit.	exptl	lit.	
isoamyl acetate	303.15	862.3	861.9 ¹⁵	0.741	0.747^{15}	1.3959	1.3957 ¹⁵	
•	313.15	852.8		0.649		1.3945		
methyl benzoate	303.15	1078.8	1079.015	1.679	1.67315	1.5127	1.512315	
•	313.15	1069.2		1.414		1.5083		
o-xylene	303.15	871.5	871.6 ¹⁷	0.695	0.69317	1.5001	1.5000^{15}	
2	313.15	863.3	863.218	0.621		1.4981		
<i>m</i> -xylene	303.15	855.3	855.8 ¹⁵	0.557	0.558^{16}	1.4920	1.4919 ¹⁵	
•	313.15	847.1	846.7 ¹⁸	0.508		1.4901		
p-xylene	303.15	852.1	852.315	0.566	0.568^{15}	1.4911	1.490515	
	313.15	843.5	843.6 ¹⁸	0.517		1.4902		
ethylbenzene	303.15	857.6	858.3 ¹⁷	0.597	0.590^{15}	1.4910	1.4907^{15}	
-	313.15	849.2	849.4 ¹⁸	0.538		1.4891		

index. Table 1 lists the densities, viscosities, and refractive indices measured for the pure components at (303.15 and 313.15) K along with a comparison of these values with the literature values¹⁵⁻¹⁸ at 303.15 K.

Methods. Binary mixtures were prepared by mass in 25 cm³ flasks. Mass measurements accurate to \pm 0.01 mg were performed on a digital electronic balance (Mettler, AE.240, Switzerland). To prevent the samples from preferential evaporation, the mixtures were prepared by transferring aliquots via syringe into stoppered flasks. The mixtures were completely miscible over the whole composition range. A set of nine to ten compositions were prepared for each binary system. The possible uncertainty in the mole fraction was estimated to be less than $\pm 2 \cdot 10^{-4}$.

Densities were determined with a pycnometer as reported earlier,¹⁰ in a transparent glass-walled water bath having a thermal stability. The uncertainty in the temperature during the measurements is \pm 0.01 K because Pt 100 measuring sensors were used. Thus, the uncertainty in the density measurements was within \pm 0.2 kg·m⁻³.

Kinematic viscosities (ν) were measured using an Ubbelohde viscometer, calibrated with conductivity water. An electronic digital stopwatch with an uncertainty of \pm 0.01 s was used for flow time measurements. At least three repetitions of each

10.1021/je800325d CCC: \$40.75 © 2009 American Chemical Society Published on Web 11/26/2008

^{*} Corresponding author. E-mail: mvrathnam58@yahoo.co.in.

[†] Part of the special issue "Robin H. Stokes Festschrift".

^{*} B.N. Bandodkar College of Science Thane.

Table 2.	Densities (o).	Dvnamic	Viscosities	(n), and	Refractive	Indices	$(n_{\rm D})$ f	for the	Binarv	Mixtures
				(-,),			······································			

	ρ	η		ρ	η			ρ	η		ρ	η	
<i>x</i> ₁	kg∙m ⁻³	mPa•s	n _D	kg∙m ⁻³	mPa•s	$n_{\rm D}$	x_1	kg∙m ⁻³	mPa•s	$n_{\rm D}$	kg∙m ⁻³	mPa•s	$n_{\rm D}$
					Isoamy	l Acetate (1) + o-Xy	lene (2)					
	Т	= 303.15	K	Т	= 313.15 k	K		Т	= 303.15 1	K	Т	= 313.15 H	K
0.0856	869.7	0.705	1.4903	861.4	0.622	1.4880	0.5481	866.0	0.718	1.4436	856.7	0.627	1.4375
0.1739	869.5	0.707	1.4806	860.8	0.623	1.4779	0.6564	865.0 864.1	0.722	1.4319	855.8	0.631	1.4258
0.3538	867.8	0.712	1.4721	859.1	0.623	1.4580	0.8542	863.7	0.720	1.4113	854.7	0.640	1.4157
0.4450	867.4	0.714	1.4530	858.4	0.625	1.4486	0.9538	863.2	0.738	1.4018	853.9	0.646	1.3961
					Isoamyl	Acetate (1) + m-Xy	lene (2)					
	Т	= 303.15 I	K	Т	= 313.15 k	K		Т	= 303.15 H	K	Т	= 313.15 H	K
0.0877	855.8	0.561	1.4830	847.3	0.502	1.4811	0.6570	859.3	0.666	1.4297	850.3	0.587	1.4248
0.1726	856.5	0.572	1.4745	848.2	0.510	1.4724	0.7478	860.1	0.687	1.4207	851.1	0.603	1.4157
0.3730	858.4	0.605	1.4349	849.5 849.6	0.538	1.4520	0.8301	861.0	0.708	1.4101	852.8	0.625	1.4030
0.5478	858.8	0.643	1.4398	849.8	0.568	1.4350	0.9105	001.9	0.727	1.1011	052.0	0.050	1.5705
	Isoamyl acetate $(1) + p$ -Xylene (2)												
	Т	= 303.15 I	K	Т	= 313.15 k	K		Т	= 303.15 H	ζ	Т	= 313.15 H	K
0.0960	852.4	0.573	1.4821	844.8	0.517	1.4811	0.5438	858.1	0.645	1.4397	849.6	0.570	1.4356
0.1713	853.6	0.584	1.4749	845.9 846.3	0.525	1.4740	0.6472	858.7	0.664	1.4293	850.1	0.584	1.4248
0.2823	856.7	0.600	1.4045	840.5 847.5	0.537	1.4621	0.7407	860.1	0.084	1.4195	851.3	0.600	1.4147
0.4503	857.8	0.628	1.4495	848.7	0.556	1.4454	0.9398	861.0	0.722	1.4017	851.6	0.634	1.3984
	Isoamyl Acetate (1) + Ethylbenzene (2)												
	Т	= 303.15 I	K	Т	= 313.15 k	K		Т	= 303.15 H	Κ	Т	= 313.15 H	K
0.0851	856.9	0.597	1.4802	848.8	0.533	1.4781	0.5380	860.1	0.649	1.4291	851.3	0.575	1.4276
0.1684	858.0 858.4	0.605	1.4701	849.1 849.7	0.541	1.4676	0.6532	861.1 861.6	0.666	1.41//	851.0 851.8	0.588	1.4168
0.2013	859.0	0.629	1.4471	850.3	0.559	1.4425	0.8475	862.0	0.703	1.4041	852.1	0.619	1.4035
0.4584	859.6	0.639	1.4376	850.9	0.567	1.4342	0.9401	862.3	0.726	1.3983	852.3	0.638	1.3965
					Methyl	Benzoate ((1) + o-Xy	elene (2)					
	Т	= 303.15 I	K	Т	= 313.15 k	Κ		Т	= 303.15 H	ζ	Т	= 313.15 H	Κ
0.0879	890.4	0.757	1.5006	882.3	0.664	1.4970	0.5939	991.7	1.160	1.5022	983.0	0.992	1.5017
0.1997	911.4	0.842	1.5007	902.1	0.720	1.4971	0.6852	1009.5	1.252	1.5055	1000.7	1.070	1.5038
0.3008	951.5	0.908	1.5010	922.8	0.785	1.4980	0.7980	1051.0	1.395	1.5085	1022.5	1.1/1	1.5062
0.4928	970.9	1.060	1.5012	962.4	0.910	1.5002	0.9485	1056.3	1.593	1.5115	1046.7	1.351	1.5101
					Methyl	Benzoate (1) + m-Xy	lene (2)					
	Т	= 303.15 I	K	Т	= 313.15 k	X		Т	= 303.15 H	ζ	Т	= 313.15 H	K
0.1071	878.7	0.609	1.4933	870.6	0.544	1.4911	0.5978	985.7	1.023	1.5004	977.1	0.892	1.4960
0.2030	900.2	0.672	1.4943	891.9	0.598	1.4919	0.6867	1004.6	1.134	1.5033	995.8	0.978	1.4987
0.3034	922.3	0.739	1.4954	914.2	0.654	1.4927	0.8125	1029.6	1.316	1.5069	1021.9	1.122	1.5020
0.3924	962.7	0.824	1.4902	955.2 954.4	0.729	1.4933	0.8734	1043.8	1.403	1.5107	1054.8	1.317	1.5040
					Methyl	Benzoate ((1) + p-Xy	elene (2)					
	Т	= 303.15 I	K	Т	= 313.15 k	K		Т	= 303.15 H	ζ	Т	= 313.15 H	K
0.0958	873.0	0.616	1.4920	864.7	0.551	1.4913	0.5988	984.4	1.033	1.4982	975.7	0.889	1.4961
0.2055	898.1	0.693	1.4939	889.5	0.609	1.4922	0.6973	1006.2	1.152	1.5012	1000.4	0.992	1.4989
0.3011	919.3	0.759	1.4947	911.1	0.670	1.4932	0.7846	1024.4	1.269	1.5055	1013.0	1.093	1.5014
0.3990	940.9 961.9	0.839	1.4959	952.5 953.1	0.728	1.4945	0.9027	1056.0	1.450	1.5122	1047.3	1.255	1.5088
					Methyl Be	enzoate (1)	+ Ethylbo	enzene (2)					
	Т	= 303.15 I	K	Т	= 313.15 k	ζ	-	Т	= 303.15 H	K	Т	= 313.15 H	K
0.1033	877.9	0.656	1.4911	870.2	0.583	1.4888	0.5866	982.3	1.043	1.4978	973.7	0.925	1.4955
0.1927	898.9	0.701	1.4933	890.3	0.641	1.4900	0.6963	1000.3	1.170	1.5022	992.0	1.048	1.4985
0.2952	921.6 0/3.6	0.784	1.4945	912.7	0.687	1.4918	0.7953	1023.3	1.308	1.5054	1010.3	1.165	1.5014
0.4947	963.3	0.947	1.4968	954.1	0.824	1.4937	0.9510	1056.8	1.566	1.5092	1047.4	1.346	1.5064

composition reproducible to ± 0.05 s were obtained, and the results were averaged. Then, the dynamic viscosities were calculated as ($\eta = \nu \rho$). The uncertainties in dynamic viscosities are of the order of ± 0.005 mPa·s.

Refractive indices were measured using a thermostatted Abbe's refractometer (model R-8, India) which works with the wavelength corresponding to the D line of sodium. The instrument calibration was carried out with doubly distilled water. An average of three measurements was taken for each sample mixture. The uncertainty of the refractive indices thus estimated was less than $\pm 2 \cdot 10^{-4}$.

Results and Discussion

The experimental values of densities ρ , viscosities η , and refractive indices n_D for binary mixtures of isoamyl acetate with (*o*-, *m*-, and *p*-) xylenes or ethylbenzene at (303.15 and 313.15) K were listed in Table 2. From viscosity results, the deviation in the viscosity was calculated as

$$\Delta \eta = \eta - (x_1 \eta_1 + x_2 \eta_2) \tag{1}$$

where η_1 , η_2 , and η are, respectively, the viscosities of pure components (1 and 2) and the mixture.

Figure 1. Deviations in viscosity $\Delta \eta$ vs mole fraction x_1 of isoamyl acetate $+ \bigcirc$, *o*-xylene; $+ \square$, *m*-xylene; $+ \triangle$, *p*-xylene; $+ \diamondsuit$, ethylbenzene, respectively, at 303.15 K and isoamyl acetate $+ \blacklozenge$, *o*-xylene; $+ \blacksquare$, *m*-xylene; $+ \blacktriangle$, *p*-xylene; $+ \blacklozenge$, ethylbenzene, respectively at 313.15 K.

Figure 2. Deviations in viscosity $\Delta \eta$ vs mole fraction x_1 of methyl benzoate $+ \bigcirc$, *o*-xylene; $+ \square$, *m*-xylene; $+ \triangle$, *p*-xylene; $+ \diamondsuit$, ethylbenzene, respectively, at 303.15 K and methyl benzoate $+ \blacklozenge$, *o*-xylene; $+ \blacksquare$, *m*-xylene; $+ \blacklozenge$, *p*-xylene; $+ \blacklozenge$, ethylbenzene, respectively at 313.15 K.

The refractive index values have been used to calculate the Lorentz–Lorentz¹⁹ molar refraction, and deviations in the molar refraction have been calculated as

$$\Delta R = R_{\rm m} - (R_1 x_1 + R_2 x_2) \tag{2}$$

where $R_{\rm m}$ is the molar refractivity of mixtures and R_1 and R_2 are the molar refractivities of pure components 1 and 2. All of the quantities ($\Delta \eta$ and ΔR) have been fitted to the Redlich–Kister²⁰ polynomial equation by the method of leastsquares to derive binary coefficients A_0 , A_1 , and A_2 .

$$\Delta y = x_1 x_2 [A_0 + A_1 (x_1 - x_2) + A_2 (x_1 - x_2)^2]$$
(3)

The variation in standard deviation (σ) was calculated using the relation

$$\sigma(y) = \left[\sum (y_{obs} - y_{cal})^2 / (n - m)\right]^{1/2}$$
(4)

where *n* represents the number of data points and *m* is the number of coefficients. The calculated values of A_0 , A_1 , and A_2 along with the standard deviations (σ) are given in Table 3. The predictive ability of the following viscosity models such as the one-parameter Hind et al.,¹¹ two-parameter Heric,¹² and three-parameter Auslander,¹³ McAllister¹⁴ (four body interaction) was tested. The equations of these models applied to binary mixtures are as follows

Hind:

$$\eta = x_1^2 \eta_1 + x_2^2 \eta_2 + 2x_1 x_2 \eta_{12}$$
(5)

Heric:

$$\ln(\eta) = x_1 \ln(\eta_1) + x_2 \ln(\eta_2) + x_1 \ln(M_1) + x_2 \ln(M_2) - \ln(x_1M_1 + x_2M_2) + x_1x_2(\gamma_{12} + \gamma_{21}(x_1 - x_2))$$
(6)

Auslander:

$$\eta = \frac{\eta_1 x_1 (x_1 + B_{12} x_2) + \eta_2 (A_{21} x_2 (B_{21} x_1 + x_2))}{x_1 (x_1 + B_{12} x_2) + (A_{21} x_2) (B_{21} x_1 + x_2)}$$
(7)

McAllister (four body interaction model)

$$\ln v = x_1^4 \ln v_1 + 4x_1^3 x_2 \ln v_{1112} + 6x_1^2 x_2^2 \ln v_{1122} + 4x_1 x_2^3 \ln v_{2221} + x_2^4 \ln v_2 - \ln[x_1 + (x_2 M_2 / M_1)] + 4x_1^3 x_2 \ln[\{3 + (M_2 / M_1)\}/4] + 6x_1^2 x_2^2 \ln[\{1 + (M_2 / M_1)\}/2] + 4x_1 x_2^3 \ln[\{1 + (3M_2 / M_1)\}/4] + x_2^4 \ln(M_2 / M_1)]$$
(8)

where ν_{1112} , ν_{1122} , and ν_{2221} represent the interaction parameters between unlike molecules. The average absolute deviations for all the binary systems were obtained by using the following relation.

$$AAD = \frac{1}{N} \sum_{i=1}^{N} \frac{|(\eta_{cal} - \eta_{expt})|}{\eta_{expt}}$$
(9)

The one-parameter Hind, two-parameter Heric, and threeparameter Auslander equations were employed to correlate the

Figure 3. Deviations in molar refraction ΔR vs mole fraction x_1 of isoamyl acetate $+ \bigcirc$, *o*-xylene; $+ \square$, *m*-xylene; $+ \triangle$, *p*-xylene; $+ \diamondsuit$, ethylbenzene, respectively, at 303.15 K and isoamyl acetate $+ \blacklozenge$, *o*-xylene; $+ \blacksquare$, *m*-xylene; $+ \blacktriangle$, *p*-xylene; $+ \blacklozenge$, ethylbenzene, respectively, at 313.15 K.

Table 3. Derived Parameters of Equation 3 for Various Functionsand Standard Deviation of the Binary Mixture at (303.15 and313.15) K

function	<i>T</i> /K	A _o	A_1	A_2	σ
	Is	soamyl Acetat	te + o-Xylend	9	
$\Delta \eta$	303.15	-0.0104	-0.0482	0.0438	0.002
	313.15	-0.0375	-0.0273	0.0303	0.002
ΔR	303.15	1.2819	0.6373	1.3887	0.118
	313.15	1.0166	-1.5919	-3.5043	0.153
	Is	oamyl Acetat	e + m-Xylen	e	
$\Delta \eta$	303.15	-0.0963	-0.0203	0.0551	0.009
	313.15	-0.0751	0.0907	-0.0785	0.002
ΔR	303.15	1.5901	0.5655	0.0176	0.045
	313.15	0.9598	-0.8389	-0.7922	0.044
	Is	soamyl Acetat	te + p -Xylene	9	
$\Delta \eta$	303.15	-0.0506	0.0002	-0.1124	0.003
	313.15	-0.0717	-0.0148	-0.0849	0.002
ΔR	303.15	1.2704	-0.1858	1.3009	0.101
	313.15	0.6441	-1.3593	-0.0150	0.050
	Isoa	amyl Acetate	+ Ethylbenze	ene	
$\Delta \eta$	303.15	-0.1000	0.0065	-0.0420	0.002
	313.15	-0.0912	0.0184	-0.0428	0.003
ΔR	303.15	-1.0354	-1.4181	-1.1225	0.096
	313.15	-1.2034	-0.8662	-1.1195	0.144
	Μ	lethyl Benzoa	te $+ o$ -Xylen	e	
$\Delta \eta$	303.15	-0.4605	-0.2546	-0.0529	0.009
	313.15	-0.4184	-0.1020	0.0478	0.005
ΔR	303.15	-0.9908	1.1646	6.8052	0.246
	313.15	-0.9333	2.2581	8.7367	0.377
	М	ethyl Benzoa	te + m -Xylen	ie	
$\Delta \eta$	303.15	-0.7640	-0.2935	-0.3246	0.007
,	313.15	-0.5882	-0.2191	-0.3926	0.006
ΔR	303.15	-0.8115	1.3632	4.5433	0.119
	313.15	-1.0138	0.9293	4.3512	0.140
	Μ	lethyl Benzoa	te + p -Xylen	e	
Δn	303.15	-0.7566	-0.3550	-0.2870	0.008
,	313.15	-0.6153	-0.1647	-0.1833	0.005
ΔR	303.15	-0.9482	0.7309	4.2016	0.137
	313.15	-1.1637	1.0865	6.2707	0.254
	Met	hvl Benzoate	+ Ethylbenz	ene	
Δn	303.15	-0.7192	-0.3383	-0.2889	0.009
,	313.15	-0.5273	-0.0066	0.0809	0.010
ΔR	303.15	-0.5355	1.3350	3.5155	0.138
	313.15	-0.6176	1.9292	4.3197	0.179
	010.10	0.0170			0.1.7

dynamic viscosities, while the three-parameter McAllister (4 body) equation was employed to correlate the kinematic viscosities. Table 4 summarizes the results obtained. Comparison of these values indicates that the McAllister equation correlates the viscosities excellently. However, the application of the Auslander equation has yielded 100AAD values ranging from 0.01 to 0.12.

The results of variation in viscosity deviations of binary systems consisting of isoamyl acetate at (303.15 and 313.15) K as displayed in Figure 1 show negative deviations over the entire composition range except for the system isoamyl acetate + o-xylene which exhibits both positive and negative deviation at 303.15 K. It may be noted that the absolute deviation values increase with an increase in temperature for the systems isoamyl acetate + o-xylene and isoamyl acetate + p-xylene. Further, the viscosity deviations at 313.15 K for these systems are more negative than at 303.15 K indicating that these values are smaller at higher temperature. On the other hand, an opposite trend is observed for isoamyl acetate + m-xylene and isoamyl acetate + ethylbenzene systems. Figure 2 displays the dependence of $\Delta \eta$ on x_1 at (303.15 and 313.15) K for the binary systems of methyl benzoate. Here, it is observed that the behavior of all the systems is identical with large negative deviation over the entire composition range at both the temperatures investigated. The $\Delta \eta$ increases systematically with an increase in temperature. The negative values of $\Delta \eta$ were attributed to the dispersion, induction, and dipolar forces.

The results of ΔR vs x_1 at (303.15 and 313.15) K for the systems of isoamyl acetate are shown in Figure 3. Here the systems isoamyl acetate + *o*-xylene, + *m*-xylene, and + *p*-xylene exihibit a positive deviation at 303.15 K. However, on increasing the temperature to 313.15 K, these systems show a negative deviation at the higher concentration of ester, whereas for isoamyl acetate + ethylbenzene the ΔR values are completely negative at both the temperatures studied. Figure 4 displays the dependence of ΔR on x_1 for the methyl benzoate systems. Here all the systems show both positive and negative

Table 4. Adjustable Parameters and Average Absolute Deviation (AAD) of Several Correlations for the Absolute and Kinematic Viscosities of Binary Systems

		Hind		Heric			Aus	slander		McA	McAllister (4 body interaction)			
T/K	η_{12}	100 AAD	γ ₁₂	γ_{21}	100 AAD	B ₁₂	A_{21}	B ₂₁	100 AAD	ν_{1112}	ν_{1122}	ν_{2221}	100 AAD	
					Isoa	myl Acetate	e + o-Xyl	ene						
303.15	0.718	0.10	0.0175	-0.0554	0.02	-0.6027	0.6324	4.6327	0.12	0.8424	0.8121	0.8776	0.01	
313.15	0.635	0.09	-0.0314	-0.0242	0.01	2.5614	0.9740	-0.6946	0.01	0.7435	0.7176	0.7716	0.01	
	Isoamyl Acetate $+ m$ -Xylene													
303.15	0.647	0.20	-0.0543	0.1094	0.03	1.2578	0.7779	0.7974	0.01	0.7991	0.7506	0.6909	0.01	
313.15	0.579	0.26	-0.1027	0.1663	0.05	1.2889	0.7266	0.8278	0.03	0.7021	0.6908	0.6008	0.02	
	Isoamyl Acetate $+ p$ -Xylene													
303.15	0.653	0.21	-0.0537	0.0213	0.02	0.9812	0.8807	1.0332	0.02	0.7853	0.7566	0.7183	0.01	
313.15	0.583	0.03	-0.1014	0.0264	0.04	0.9440	0.8508	1.0811	0.04	0.6875	0.6857	0.6395	0.02	
					Isoam	yl Acetate -	+ Ethylbe	nzene						
303.15	0.669	0.32	-0.1171	-0.0060	0.03	0.0514	1.3065	1.4533	0.02	0.7733	0.7627	0.7368	0.02	
313.15	0.594	0.31	-0.1281	0.0176	0.04	-0.0976	1.3205	1.5602	0.03	0.6902	0.6862	0.6572	0.03	
					Meth	nyl Benzoat	e + o-Xy	ene						
303.15	1.187	0.78	-0.0008	-0.1249	0.04	0.6988	1.0166	0.7597	0.05	1.2890	1.0671	1.0410	0.04	
313.15	1.018	0.70	-0.0623	-0.0198	0.06	0.5303	1.1062	1.1061	0.03	1.1072	0.9396	0.8749	0.03	
					Meth	yl Benzoat	e + m-Xy	lene						
303.15	1.116	1.23	-0.1800	-0.0285	0.07	0.2506	2.3297	0.3968	0.05	1.1290	1.0175	0.7791	0.04	
313.15	0.961	0.30	-0.1969	0.0036	0.08	0.2031	2.8051	0.3657	0.04	0.9594	0.9338	0.6767	0.04	
					Meth	nyl Benzoat	e + p-Xy	ene						
303.15	1.123	1.37	-0.1705	-0.1172	0.04	0.3045	2.0418	0.3786	0.05	1.1224	1.0040	0.8247	0.05	
313.15	0.966	1.35	-0.2119	0.0046	0.03	0.3254	1.3755	0.8252	0.03	1.0038	0.8581	0.7234	0.03	
					Methy	Benzoate	+ Ethylbe	nzene						
303.15	1.138	1.14	-0.1785	-0.0636	0.06	0.2975	1.9033	0.5178	0.05	1.1739	1.0055	0.8506	0.06	
313.15	0.976	0.92	-0.1000	-0.1497	0.06	1.3230	0.5473	-0.8750	0.06	1.1801	0.7913	0.7936	0.10	

Figure 4. Deviations in molar refraction ΔR vs mole fraction x_1 of methyl benzoate $+ \bigcirc$, *o*-xylene; $+ \square$, *m*-xylene; $+ \triangle$, *p*-xylene; $+ \diamondsuit$, ethylbenzene, respectively, at 303.15 K and methyl benzoate $+ \blacklozenge$, *o*-xylene; $+ \blacksquare$, *m*-xylen; $+ \blacktriangle$, *p*-xylene; $+ \blacklozenge$, ethylbenzene, respectively, at 313.15 K.

deviations. The curves are more or less sigmoidal. From these variations of ΔR , it is found that the effect of temperature on ΔR is considerable in all the binary mixtures investigated. The positive deviations in ΔR values on a mole fraction dependence are considered due to the presence of significant interactions in the mixtures, whereas negative deviations in ΔR values indicate weak interactions between the components of the mixture.²¹ In all of the figures, the points represent data calculated from eqs 1 and 2, while smooth curves are drawn from the best fitted data calculated from eq 4.

Literature Cited

- Trenzado, J. L.; Matos, J. S.; Segade, L.; Carballo, E. Densities, Viscosities, and Related properties of some (Methyl Ester + Alkane) Binary Mixtures in the Temperature Range from 283.15 to 313.15 K. J. Chem. Eng. Data 2001, 46, 974–983.
- (2) Baragi, J. G.; Aralaguppi, M. I.; Aminabhavi, T. M.; Kariduraganavar, M. Y.; Kittur, A. S. Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15 and 308.15) K. J. Chem. Eng. Data 2005, 50, 910–916.
- (3) Diwedi, A.; Singh, M. Densities, Viscosities, Viscosity deviations and excess thermodynamic properties of binary liquid mixtures of diethyl oxalate and dimethyl malonate with polar and non-polar solvents at 303.15 K. *Indian J. Chem.* **2007**, *46A*, 789–794.
- (4) Nikam, P. S.; Kharat, S. J. Density and Viscosity Studies of Binary Mixtures of N, N-Dimethylformamide with Toluene and Methyl

Benzoate at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 2005, 50, 455–459.

- (5) Lien, P. J.; Wu, S. T.; Lee, M. J.; Lin, H. M. Excess Molar Enthalpies for Dimethyl Carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene, or Ethyl Benzoate at 298.15 K and 10.2 MPa. *J. Chem. Eng. Data* **2003**, *48*, 632–636.
- (6) Lien, P. J.; Lin, H. M.; Lee, M. J.; Venkatesu, P. Excess molar enthalpies of Dimethyl carbonate with o-Xylene, m-Xylene, p-Xylene, Ethylbenzene, or Ethyl benzoate at 298.15 K. *Fluid Phase Equilib.* 2003, 206, 105–115.
- (7) Garcia, B.; Alcalde, R.; Aparicio, S.; Leal, J. M. Volumetric properties, Viscosities and Refractive indices of binary mixed solvents containing methyl benzoate. *Phys. Chem. Chem. Phys.* **2002**, *4*, 5833–5840.
- (8) Garcia, B.; Alcalde, R.; Aparicio, S.; Leal, J. M. Thermophysical Behavior of Methyl benzoate + n-Alkanes Mixed Solvents. Application of Cubic Equations of State and Viscosity Models. *Ind. Eng. Chem. Res.* 2002, *41*, 4399–4408.
- (9) Rathnam, M. V.; Singh, R. K.; Kumar, M. S. S. Excess Volumes of Binary Solutions of Methyl Formate, Ethyl Formate, Propyl Formate, and Benzyl Acetate with Bromo-, Chloro-, and Nitrobenzenes at (303.15, 308.15 and 313.15) K. J. Chem. Eng. Data 2008, 53, 265– 270.
- (10) Rathnam, M. V.; Mohite, S.; Kumar, M. S. S. Viscosity, Density and Refractive Index of some (Ester + Hydrocarbon) Binary Mixtures at 303.15 and 313.15 K. J. Chem. Eng. Data 2005, 50, 325–329.
- (11) Hind, R. K.; McLaughlin, E.; Ubbelohde, A. R. Structure and Viscosity of liquids-Camphor and Pyrene Mixtures. *Trans. Faraday Soc.* **1960**, 56, 328–334.
- (12) Heric, E. L. On the Viscosity of Ternary mixtures. J. Chem. Eng. Data 1966, 11, 66–68.
- (13) Auslander, G. Calculating the properties of multicomponent mixtures. *Br. Chem. Eng.* **1965**, *10*, 196.
- (14) McAllister, R. A. The Viscosity of Liquid Mixtures. *AIChE J.* **1960**, *6*, 427–431.
- (15) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Physical Properties and Methods of Purifications; Wiley-Interscience: New York, 1986; Vol. 2.
- (16) Timmermanns, J. The Physico-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1965; Vol. 2.
- (17) TRC Thermodynamic Tables, TRC Databases for Chemistry and Engineering; The Texas A&M University System: TX, 1998.
- (18) George, J.; Šastry, N. V. Densities, Excess Molar Volumes, Viscosities, Speed of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for C_mH_{2m+1} (OCH₂CH₂)_nOH (m = 1 or 2 or 4 and n = 1) + Benzene, + Toluene, + (o-, m- and p-) Xylenes, + Ethylbenzene, and + Cyclohexane. J. Chem. Eng. Data **2003**, 48, 977– 989.
- (19) Glasstone, S. *Textbook of Physical chemistry*, 2nd ed.; D Van Nostrand Company: London, 1949.
- (20) Redlich, O.; Kister, A. T. Algebraic representation of Thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (21) Brocos, P.; Pineiro, A.; Bravo, R.; Amigo, A. Refractive indices, molar volumes and molar refractions of binary liquid mixtures: Concepts and Correlations. *Phys. Chem. Chem. Phys.* **2003**, *5*, 550–557.

Received for review May 7, 2008. Accepted October 6, 2008.

JE800325D