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Liquid-liquid equilibrium data were measured and correlated for the ternary systems acetonitrile + water
+ heptanoic acid and acetonitrile + water + nonanol at 323.15 K and 1 atm. The liquid-liquid equilibrium
data were measured using the direct analytical method in a double-walled glass cell. The binodal curve was
correlated using a modified Hlavatý equation, a � function, and a log γ equation. The experimental tie lines
were correlated using the NRTL and UNIQUAC activity coefficient models. Fitting of both activity coefficient
models was undertaken by nonlinear least-squares regression of the data. The tie-line data were used to
derive the selectivity values for solvent separation efficiency.

Introduction

Mixtures of acetonitrile and water are produced by several
processes in the chemical industry. Acetonitrile is primarily used
as an extractive solvent for unsaturated hydrocarbons and as a
general purpose solvent for many compounds due to its selective
miscibility. However, it is not possible to separate acetonitrile
from water by common distillation, as these components form
a minimum boiling point azeotrope.1 This study therefore
involved the selection of a suitable solvent (preferably a heavy
carboxylic acid or alcohol) to separate acetonitrile from water.
Hence, ternary liquid-liquid equilibrium measurements of
acetonitrile and water with heptanoic acid and nonanol were
undertaken at 323.15 K and 1 atm. The data presented have
never been reported previously in the open literature.

Experimental

Chemicals. All chemicals used in this research were pur-
chased from Merck, except for water which was distilled in our
laboratory. The chemicals were used without further purification
as gas chromatographic (GC) analysis revealed no significant
impurities. Table 1 shows the mass percentage of the chemicals
as provided by the supplier, as well as the peak area percentages
obtained from GC analysis and the measured refractive indices.
The R, Q, and Q′ UNIQUAC parameters are listed in Table 2.

Equipment. The liquid-liquid equilibrium measurements
were undertaken using a direct analytical double-walled glass
cell with flat bladed impellers for agitation of the contents. The
cell design and full description is given by Ndlovu and others,2-4

and a schematic of the cell is shown in Figure 1.
A Pt-100 temperature sensor, which was placed in a thermo-

well in the cell, was used to measure the temperature of the
cell with a precision of 0.02 °C. Water was circulated through
the cell wall and lid from a constant temperature bath. The
experimental procedure was performed using the method
described by Alders.5 For each measurement, the contents of
the cell were agitated for approximately one hour at low speed
to prevent emulsification.

The samples were analyzed by gas chromatography using a
Chrompack 9000 GC which was fitted with a thermal conduc-

tivity detector. A 2 m × 1/8′′ stainless steel tenax TA 80/100
packed column was used for the analysis. Helium was used as
the carrier gas. The estimated precision of the mole fraction
composition was within 1 ·10-4.

Data Correlation

Binodal CurWe. The liquid-liquid binodal curve was cor-
related using three equations presented in the work of Hlavatý:6

1) The Hlavatý equation with coefficients Ai

x3 )A1xA ln xA +A2xB ln xB +A3xAxB (1)

2) The � function equation7 with coefficients Bi

x3 )B1(1- xA)B2xA
B3 (2)

3) The log γ equation8 with coefficients Ci

x3 )C1(-ln xA)C2xA
C3 (3)

with

xA ) (x2 + 0.5x3 - x2
0) ⁄ (x22

0 - x2
0) (4)

xB ) (x22
0 - x2 - 0.5x3) ⁄ (x22

0 - x2
0) (5)

In all the above equations x2 refers to the mole fraction
composition of water; x3 refers to the mole fraction composition* To whom correspondence should be addressed: ramjuger@ukzn.ac.za.

Table 1. Chemical Purity

chemical
gc analysis

(peak area %)
minimum

puritya (mass %)

measured
refractive
indices

refractive
indices16

acetonitrile 99.90 99.9 1.3441 1.3442
heptanoic acid 99.32 99 1.4175 1.4170
1-nonanol 99.14 98 1.4322 1.4340
waterb 99.80 - 1.3330 1.3328

a Stated by supplier. b Electrical conductivity of 0.0015 Siemens ·m-1.

Table 2. Structural Parameters for the UNIQUAC Model

acetonitrile heptanoic acid 1-nonanol water

Ra 1.87 6.71 6.62 0.92
Qa 1.72 6.31 5.83 1.40
(Q′)a 1.72 6.31 5.83 1.00

a Ref 13.
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of acetonitrile; and x2
0 and x22

0 are the values of x2 on the binodal
curve which cuts the x3 ) 0 axis.

The � function equation was proposed by Letcher et al.7 and
the log γ equation by Letcher et al.8 For both these equations,
the choice of independent variables avoids the problem of the
variables being highly intercorrelated. Equations 1 to 3 were
fitted to the binodal curves with the standard deviations σ defined
as

σ) {∑
k)1

n

[x3(calc)- x3(exp)]k
2 ⁄ (n- 3)} 1 ⁄ 2

(6)

where n is the number of data points and 3 is the number of
estimated coefficients.9

Tie-Line Correlation. The thermodynamic criterion for
liquid-liquid phase equilibrium (from equality of the fugacities)
is

(xiγi)
I ) (xiγi)

II (7)

where x is the liquid phase mole fraction; γ is the liquid phase
activity coefficient; and I and II denote the respective equilib-
rium phases.

The tie-lines of the measured liquid-liquid equilibrium data
were correlated using the NRTL10 and UNIQUAC11 activity
coefficient models. The algorithm used for the calculation of
the compositions in both phases was based on the method
suggested by Walas.12 The minimization of a nonlinear least-
squares objective function was chosen over the maximum
likelihood function. The former is more attractive and is
suggested by Novak et al.13 with the following objective function

S)∑
i)1

n

{[∆x1,i
I ]2 + [∆x2,i

I ]2 + [∆x1,i
II ]2 + [∆x2,i

II ]2} (8)

∆x1,i
I ) x1,i(exp)

I - x1,i(calc)
I

∆x2,i
I ) x2,i(exp)

I - x2,i(calc)
I , etc.

where n is the number of experimental points; x is the mole
fraction composition; subscripts 1 and 2 denote components 1
and 2, respectively; (exp) and (calc) denote the experimen-
tal and calculated mole fraction compositions, respectively; and
I and II denote the two phases in equilibrium.

The nonrandomness parameter, Rij, in the NRTL model, was
set to the same value for all three binary pairs and fixed at either
0.20, 0.25, 0.30, 0.35, or 0.40 (as suggested in Walas12) in the
optimization algorithm. Hence, the number of regression
parameters was reduced from nine to six. The root-mean-square
deviation (rmsd) gave an indication of the “degree of fit” of
the correlation

rmsd) { ∑
a

∑
b

∑
c

{xabc(exp)- xabc(calc)}2

6k
} 1 ⁄ 2

(9)

where x is the mole fraction; k is the number of experimental
points; and the subscripts a, b, and c denote the component,
phase, and tie-line, respectively.

Results

The experimental liquid-liquid equilibrium data for the
acetonitrile + heptanoic acid + water and acetonitrile + nonanol
+ water systems are presented graphically in Figures 2 and 3
and tabulated in Tables 3 and 4, respectively. The coefficients
from the binodal curve correlations and the standard deviations
are provided in Table 5. The correlated NRTL and UNIQUAC
model parameters are presented in Table 6.

Figure 1. Schematic diagram of the LLE cell.2 A, sample point for denser
liquid phase; B, Pt-100 temperature sensor in a thermo-well; C, ethylene
glycol solution into the LLE cell jacket; D, ethylene glycol solution away
from the LLE cell; E, Teflon bushing; F, sample point for lighter liquid
phase; G, stirrer driven by DC motor.

Figure 2. Liquid-liquid equilibrium for the system heptanoic acid (1) +
water (2) + acetonitrile (3) at 323.15 K and 1 atm: b, experimental.

Figure 3. Liquid-liquid equilibrium for the system nonanol (1) + water
(2) + acetonitrile (3) at 323.15 K and 1 atm: b, experimental.
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It can be seen from the liquid-liquid equilibrium data for
both systems that the solvent (heptanoic acid or nonanol) is only
partially soluble in water (0.0016 mol fraction for heptanoic
acid and 0.0035 mol fraction for nonanol). The shape of the
binodal curve for the system heptanoic acid + water +
acetonitrile curves sharply toward the water-rich region for small
amounts of acetonitrile but decreases in sharpness for larger
amounts of acetonitrile. This phenomenon was also observed
by Garcia et al.14 who investigated the effect of using heptanoic
acid to separate water from ethanol. The nonanol + water +
acetonitrile system displays a smooth binodal curve, typical of
a type I system.15

The standard deviations shown in Table 5 indicate that the
binodal curve for each system was best described by the �

function equation. The rmsd values listed in Table 6 indicate
that the tie-lines were best described by the UNIQUAC model.

The effectiveness of a solvent can be expressed by the
selectivity (ω) of the solvent. The selectivity of the solvent
(heptanoic acid or nonanol), which is a measure of the ability
of a solvent to separate acetonitrile from water, is given by

ω)
(x3)

II ⁄ (x3)
I

(x2)
II ⁄ (x2)

I
(10)

where the subscripts 2 and 3 represents water and acetonitrile,
respectively, and I and II represent the water-rich phase and
solvent-rich phases, respectively.

Representative values of selectivity for the measured tie-lines
in the middle of the triangular plot were 9.5 and 9.7 for
heptanoic acid and nonanol, respectively. For effective separa-
tion, ω must significantly exceed a value of one. It can thus be
concluded that the separation of water from acetonitrile by
extraction using either heptanoic acid or nonanol is feasible.

Conclusion

This investigation involved the selection of a suitable solvent
(preferably a heavy carboxylic acid or alcohol) to separate
acetonitrile from water. New liquid-liquid equilibrium data
were measured, and the data were correlated for the ternary
systems, heptanoic acid + water + acetonitrile and nonanol +
water + acetonitrile at 323.15 K and 1 atm. It was found that
the separation of acetonitrile from water with either heptanoic
acid or nonanol is feasible. The binodal curves were correlated
using three equations: the Hlavatý equation, a � function
equation, and a log γ equation. For both systems, the � function
equation was found to provide the best correlation. The tie-line
data were regressed using the NRTL and UNIQUAC liquid
phase activity coefficient models. From this analysis, it was
found that the UNIQUAC model described both ternary systems
very well.
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