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Development of the Ionic Lattice Model Theory for Concentrated Aqueous

Electrolytes’

Moonis R. Ally*

Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

In their landmark paper published in 1948, Stokes and Robinson (J. Am. Chem. Soc. 1948, 70, 1870—1878)
proposed a modified form of the Brunauer—Emmett—Teller (BET) adsorption isotherm to explain the water
activity of various concentrated 1:1 and 2:1 aqueous electrolytes. Their pioneering idea of viewing such
solutions as an irregular ionic lattice structure inspired much of the author’s work from the mid 1980s to
the present time. This paper, written in celebration of Prof. Stokes’ 90th birthday anniversary, briefly describes
the author’s contribution toward further development of the theory, its capabilities, and future directions.

Introduction

The author’s career at Oak Ridge National Laboratory began
at a time when there was renewed interest in waste heat recovery
from industrial processes using physisorption and chemisorption
processes. After partially successful attempts to extend existing
theories of dilute aqueous solutions to higher concentrations of
practical interest, the author began to wonder why the region
of extremely high concentration remained so intractable. Mau-
rice Abraham' also pondered along similar lines when he stated
that one major reason why concentrated aqueous electrolytes
had been less studied than dilute solutions could be due to the
difficulties of extending concepts from dilute solutions to
concentrated ones. Gradually, researchers realized that more
progress in understanding concentrated aqueous electrolytes
could come from studying molten salts which may be considered
an extreme case of very concentrated aqueous electrolytes. First,
it is important to establish the link between the BET? model
and what Stokes and Robinson may have contemplated in their
earlier work published in 1948, before describing subsequent
progress.

The interesting questions concerning Stokes and Robinson’s
idea of treating concentrated aqueous electrolytes as an irregular
ionic-lattice structure (supported by X-ray data) were as follows:
Besides the BET-type of equation for the water activity, could
the same theory yield a similar BET-type of equation for the
solute activity as well? What other thermodynamic properties
could be obtained? What is the minimum information required
to predict the properties of concentrated solutions? What would
be the limits of concentrations over which this theory is valid?
How could multicomponent systems be handled? Substantial
progress has been made since the preliminary work of Stokes
and Robinson' as shown in some of the author’s work* done in
the 1990s.

Modified BET Adsorption Isotherm

The typical form of the BET adsorption isotherm depicting
the multilayer adsorption of a gas (e.g., water) onto active sites
on a solid substrate is given by
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where v is the total volume of gases (e.g., water) adsorbed on
all layers; v,, is the volume of water adsorbed when the surface
is covered by a complete monolayer; and c is a measure of the
adsorption energy of bound water to the adsorption site.

Factoring p°® from the left-hand side of eq 1 with the water
activity, a,, = p/p° (by definition, assuming ideal gas behavior),
and rearranging gives
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where n, and n,, are the total number of moles of water and
those adsorbed in a monolayer, respectively, and 7, is the partial
molar volume of water.

In the Stokes—Robinson model, all water is either bonded
(monolayer adsorption) to adsorption sites provided by the
electrolyte or piled on top of the bonded water molecules in
multilayer adsorption. The number, n,,, of water molecules that
can be adsorbed to form a complete monolayer is proportional
to the number of adsorption sites, n,, provided by the electrolyte;
thus, n,, = an,, where ng corresponds to the moles of electrolyte
and o is a proportionality constant. Therefore, the last term of
eq 3 may be rewritten as
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where m is molality (mol-kg™") of the electrolyte in aqueous
solution. Substituting eq 4 in eq 2 gives a, /(1 — a,,) = (55.51/
omce) + (55.51/oum)[c — 1/cla,, which on further rearrangement
yields
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where @ = r is the average number of adsorption sites per
moleculeof electrolyte.
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Equation 5 is the familiar Stokes—Robinson modification of
the BET adsorption isotherm as represented in ref 3.

Stokes and Robinson observed a surprisingly good fit of eq
5 to data on 1:1 and 2:1 electrolytes but noted an “unsatisfac-
tory” feature in eq 5 in that it demanded nonintegral r values.
They further commented that, “These can scarcely correspond
to any physical reality, and have more likely arisen as a result
of approximations in the BET theory and its application to this
case. The most drastic of these approximations is that of treating
all water molecules beyond the first layer as held by ordinary
liquid forces, with a heat of liquefaction E;.” The parameter ¢
which represents the liquefaction energy is defined as ¢ = exp[(E
— E)/RT] where E is the energy of adsorption released when
a water molecule adheres to a site on the electrolyte in
monolayer adsorption; E; is the energy of liquefaction of pure
water; and R and T are the universal gas constant and absolute
temperature, respectively. Though Stokes and Robinson® utilized
a further modification of the BET equation deduced by
Anderson® to take into account the diminishing adsorption
energy with additional layers of water beyond the first, this only
extended the applicability of the modified BET model up to a,,
= 0.5. In the author’s development of the theory of multilayer
adsorption, the influence of successively diminishing adsorption
energy with additional layers of adsorbed water has been
ignored.

Statistical Mechanical View of the BET Adsorption
Isotherm

If the irregular ionic lattice model can yield an expression
for the water activity of concentrated electrolyte solutions in
the form of a BET-type equation, then it should also be possible
to obtain a BET-type equation for the solute activity from the
same model. In fact, the entire thermodynamics of concentrated
aqueous electrolytes could be formulated from this viewpoint.

Hydrated melts such as CaCl,+2H,0 yield a molality of m
= 27.7 mol+-kg ™' corresponding to an ionic molality of 3m =
3(27.7 mol-kg ") = 83.1 mol-kg ', or 0.668 water molecules
per ion. Evidently, at such a high molality, there is insufficient
water to satisfy the hydration needs of the individual ions, and
the basic assumptions of the Debye—Hiickel based electrostatic
models become invalid. Stokes and Robinson' reasoned that
highly concentrated aqueous salt solutions might be treated as
a somewhat irregular ionic lattice in which water is distributed
in a manner such that some ions have multiple layers of water,
some have complete or incomplete hydration shells, and some
have unbound or “free” water molecules. Hence, some adsorp-
tion sites have multilayer adsorption and some have monolayer
adsorption, while others are vacant. A highly concentrated
aqueous solution will have more vacant and monolayer sites
and fewer sites with multilayer adsorption because of low water
content than solutions that are dilute. Imagine a “string”
arbitrarily run through seven random sites in this irregular lattice
as shown in Figure 1. Those seven sites along with their
arbitrarily assigned 13 adsorbed water particles are shown
separately to the right in Figure 1. The dashed horizontal line
demarcates water particles in monolayer adsorption from those
in multilayer adsorption. This arrangement is not unique. Instead,
these same seven adsorption sites with 13 adsorbed water
particles could have many different distributions of which only
three possible distributions are shown in Figure 2. How many
possible distributions can there be for the 13 particles, nine of
which are “free” (i.e., unbound) and four are adsorbed as
monolayers (bound) among seven available sites? All water
particles are considered indistinguishable, and so are the salt
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Figure 1. Irregular ionic lattice model of concentrated aqueous electrolytes
with monolayer and multilayer adsorption.

sites. In other words, there are no preferred adsorption sites.
Under these circumstances, the total number of distinguishable
arrangements are (9 + 3)!/9!13! = 220, of which only three
possible distributions are shown in Figure 2. In an aqueous
electrolyte, the numbers of adsorption sites, particles in mono-
layer adsorption, and those of “free” (unbound) water are of
the order of Avogadro’s number, and therefore, the number of
arrangements are very, very large but nonetheless may be
computed as in the simpler example described above.

If the number of electrolyte (undissociated salt, for example)
particles are designated by s, with r sites per particle, then the
total number of available sites for adsorption are (rs). Let the
total number of water particles in the aqueous electrolyte
solution be designated by A, of which x particles partake in
monolayer adsorption. Then, the free or unbound water particles
are (h — x) and the number of vacant sites where no adsorption
occurs is given by (rs — x). Under this scenario, the total number
of distinguishable arrangements of (x) bound water particles on
(rs) available sites are

_(rs)(rs — D)(rs —2)(rs — 3).......... (rs—x+1)

monolayer X!

Q

(rs)!
= 6
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and the total number of distinguishable arrangements of the (7
— x) “free” water particles on x bound (monolayer) occupied

sites is given by
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which reduces to
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The combinatorial statistics of multilayer adsorption of water
molecules on solute sites is given by
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The entropy of the mixture of solute and water may be written
as

Q=Q

.
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The energy accompanying adsorption is
U=xe (10)

where ¢ = (U — U)); U is the (negative) internal energy of
monolayer adsorption of water on to the salt; and U, is the



(negative) internal energy of liquefaction of pure water. Since
U and U, are negative and |Ul > |U|l, ¢ is negative for monolayer
adsorption and abruptly becomes zero for adsorption of water
beyond the first layer, further emphasizing that the diminishing
adsorption energy with additional layers of water beyond the
first is ignored. Thus, the model described here is a two-state
model, with water molecules either on a salt sorption site
(“bound”; first layer) or in contact with other water molecules
only (“free”, second layer and beyond). The excess internal
energy of a “bound” water molecule relative to the internal
energy of a “free” molecule is denoted by ¢. Before adsorption
occurs, all the water (h particles) is present as pure liquid.
Similarly, all the salt particles are considered present as a molten
mass (hypothetical state). The standard states are pure liquid
water and molten salt, the latter clearly being a hypothetical
state unrealizable in practice under ordinary conditions. The
internal energies of the two (water and molten salt) standard
states are arbitrarily assigned a value of zero, and eq 10 only
considers the change in internal energy occurring on account
of monolayer adsorption. The differences in internal energy and
enthalpy are also considered negligible for the condensed phases.
Maximizing the entropy of the system given by eq 9 under the
energy constraint specified by eq 10 is carried out in the usual
manner'*° to ultimately yield (after extensive algebra) the most
probable distribution of the “bound” and “free” water as

2
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with water and electrolyte activities a,, and a, given by
—(h—x)
= 12
a, = (12)
a,= (u)’ (13)
rs

In eqs 12 and 13, we see a simple interpretation of the water
activity as the ratio of the “free” water to the total water and of
the salt activity as a function of the ratio of the number of sites
on which multilayer adsorption occurs to the total number of
available sites offered by the salt.

Solving eqs 11 and 12 simultaneously, with rearrangement
and some algebraic manipulation yields the expression for the
BET adsorption isotherm

ma,,

1, (=D
55.51(1 —ay) rc + e S
where eq 14 is the same as eq 5 if oo = r.

Similarly, solving eqs 11 and 13 with rearrangement and
manipulation yields the expression for the BET adsorption
isotherm in terms of the salt activity a, and mole fraction x, of
solute’
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where 1 = a """,
Equations 14 and 15 embody the BET-type adsorption
isotherms for the solvent (water) and solute (salt).

Mixed Electrolytes

When applying eqs 14 and 15 to mixed electrolyte solutions,
the BET parameters r and ¢ pertain to the specific proportion
of mixed electrolytes used in the aqueous solution under
investigation.” Another aqueous solution of the same molality
and containing the same salts, but in different proportions, will
yield a different set of the BET parameters. Realizing that in
practical applications there may be a need to obtain water
activity data for mixed electrolytes not yet studied experimen-
tally, Ally and Braunstein® generalized the additivity rules
proposed by Sangster® and Abraham' for two-salt mixtures with
a common ion and tested it for two- and three-salt mixtures
with a common ion. The r and & parameters for mixed salts are
related empirically to their pure component parameters by

Iy = Z rX; (16)

where i represents each salt component in the mixed salt; r,, is
the parameter for the mixed salt; r; is the parameter r for salt
component i in the mixed salt (not the same as the mole fraction
of salt component i in solution). The mixing rule to evaluate
the parameter ¢ for mixed salts is

Em— z x{(rg)/ Ty (17

Both r,, and ¢, retain the same physical significance as their
parent terms r and &, respectively. When applying eq 15 to a
salt mixture, it should be noted that the value of the salt activity
obtained from it represents some averaged value for the mixed
salts and that the nature of the averaging remains unknown.
Subsequently, Ally and Braunstein* showed that explicit analyti-
cal expressions for the activities of individual species in a mixed
electrolyte system can be developed from the statistical me-
chanical viewpoint, thus showing that there is no fundamental
restriction of this treatment or the interpretation of the species
activity to multiple-electrolyte systems. The major hurdle in the
statistical mechanical treatment of multiple electrolytes is the
complexity of the expression for the most probable configuration
and the degree of algebra that is involved.

Electrolyte Activity Coefficients from the BET Model

For comparisons of the electrolyte activity coefficients based
on the BET model against experimental data, it is essential to
take into consideration the differences in standard states. In the
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Figure 2. Three of several possible distributions of 13 water particles on seven discrete adsorption sites.
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dilute solution, the reference state is an infinitely dilute solution
of the electrolyte in water so that the standard states are pure
liquid water and, for the electrolyte, the hypothetical ideal
solution of the electrolyte at unit molality. In the BET model,
however, the reference state is the pure anhydrous liquid
(hypothetical) electrolyte. For the component water, the standard
state is pure liquid water, as for dilute solutions, so there is no
difficulty in comparing water activities or the water activity
coefficients. For the electrolyte component, however, compari-
son of activity coefficients requires a knowledge of the
hypothetical free energy of transfer of electrolyte from anhy-
drous liquid electrolyte (molten salt:hypothetical) to the hypo-
thetical ideal solution at unit activity. Ideally, the required
experimental data would be activity measurements over the
complete range of concentrations between pure water and pure
molten salt, but such data are difficult to come by. Ally and
Braunstein'® developed a method to overcome this difficulty.
The procedure adopted was to designate a range of concentra-
tions (arbitrarily between molalities of (6 and 10) mol-kg ")
where the BET model would reasonably apply. By comparing
the mean ionic activity coefficients calculated from the BET
model and from experimental data at any one molality between
(6 and 10) mol-kg™', the proportionality factor between the
activity coefficients on the two scales can be determined over
the entire concentration range (except at the two extremes of
nearly pure water and nearly pure electrolyte) from which the
predictions at different molalities can be made to check against
experimental data.

The chemical potential, uPF" of the electrolyte (solute) in
the BET model at mole fraction x, and temperature 7 may be
written as

alx,T)

* lig

a; (x,=1,7)
(18)

w1 =pu ", =1,7)+ RTIn

where, 4, is the chemical potential of solute in the hypothetical
pure liquid standard state at the same temperature. The solute
mole fraction x, is defined on an undissociated electrolyte basis
with a, and a,"" = 1, the solute activities at mole fraction x,
and in the standard state (hypothetical), respectively. For
experimental data on the molality scale, the chemical potential
of the solute at molality m is given by

w(m, T) = u(m® T)+ RT In(y.)" + RT In(v"v" " ym”
(19)

where u(m,T) is the chemical potential of solute at molality m
and u®(m®,T) is the chemical potential of solute in the standard
state (hypothetical ideal solution at m = 1 mol-kg™'; y, is the
usual mean ionic activity coefficient; m is the mean ionic
molality of solute (m = m_); and v = v, + v_ is the number
of moles of ions per mole of salt. Since the chemical potential
of solute at any given concentration must be independent of
the standard states, equating eqs 18 and 19 and rearranging gives
an expression (defined as @) that is a measure of the difference
in the chemical potentials of the respective standard states. Note
that @ is not to be confused with osmotic coefficient.
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where Q = (Vv )V,
The technique of calculating ® is discussed extensively by
Ally and Braunstein'® and tested against experimental data for

NaOH, HCI, KOH, CaCl,, and Ca (NOj), Comparisons of
experimental mean ionic activity coefficients of CaCl,, LiBr,
LiCl, HCI, NaOH and KOH with those predicted by the BET
model have also been shown'®!! to be in very good agreement
over the range of validity of the BET model. Here it suffices to
mention that the measure of the validity of the BET model is
indicated by the constancy of ® over the concentration range
in question as shown in Figure 3. A discussion on mean ionic
activity coefficients calculated from the BET model by selecting
different molalities, m for the reference state are discussed in
detail elsewhere.'®

Excess and Molar Properties of Concentrated Aqueous
Electrolytes

Recognizing the simplicity of the BET model and the fact
that closed form equations for the water and electrolyte activities
may be obtained from the statistical mechanical viewpoint, Ally
and Braunstein® applied the general relationships of thermody-
namics to show how partial molar excess volumes, partial molar
excess enthalpies, the molar volume, and integral enthalpies of
solution may be obtained for multicomponent salt mixtures and
solid—liquid equilibria in single salt solutions. Further evidence
of the viability of this theory was independently confirmed by
Abraham who successfully applied it to nitrate + water systems
from fused salts to dilute solution'? and to explain properties
of bridging electrolyte solutions.'* The equations describing the
partial molar, excess, and integral properties are too extensive
to present here, but the usefulness of the technique for predicting
the liquidus curve, eutectics, and metastable phases is presented
briefly for which the equations for the partial molar excess
enthalpies are needed and shall be presented in closed form.

Liquidus Curves

The differential equation governing solid—liquid equilibria
developed from first principles in an earlier paper® given as

RIn ad, == Lgyy (1) + HI(T) + H(T)ld(1/T) (21)

is exact at the melting temperature of the particular hydrate.
HE and HE are the partial molar excess enthalpies of water and
of salt, respectively, as defined by eqs 22 and 23. Water and
solute activities are denoted by a,, and by a, respectively. The
notation for the jth solid hydrate of a salt S is S+jH,O with j =
0,1,2,3,... for the zeroth hydrate (anhydrous salt) or j > 0O for
successive hydrates. Fractional hydrates are represented by
fractional values of j (j = 1/2, 7/2, 1/3,..., etc.).8 For eq 21 to
be exact over the entire temperature range in the integration, it

0 5 10 15 20 25 30 35
m/molkg™

Figure 3. Constancy in the difference of chemical potentials at the two
discrete standard states, represented as —In @ = In[u®m® 1) — .M (x,
= 1,D]/(RT), is a measure of the applicability of the BET model over
molalities m greater than about 5 mol-kg™'. <, NaOH; O,HCI; A, CaCl,;x,
Ca(NO5),.
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Figure 4. Some crystalline phases in the CaCl, + H,O system as a function
of the mole fraction of water, x,,: —, prediction of stable phases from the
BET model; - - -, prediction of metastable phases from the BET model.
Symbols represent experimental data. Redrawn from ref 15.

would be necessary to incorporate the temperature dependence
of the heat of fusion, via the heat capacities. Since the variation
in enthalpy of fusion with temperature is not well-known, they
are omitted with nominal loss of accuracy over the limited
temperature range over which the hydrate exists (in the stable
or in the metastable form). The partial molar excess enthalpy
terms required in eq 21 were originally derived by Ally and
Braunstein.® The partial molar excess enthalpy of water relative
to pure liquid water as the standard state is

. —ce(l —rs—ay)
Y e(l—rs)—2a,(c—1)—2

(22)

The partial molar excess enthalpy of the undissociated salt
relative to anhydrous liquid salt (hypothetical) as the standard
state is

E _ —cer[rs(A— 1)+ 1]
S [rs(c—2)+2rs(1 —c)—c]

Integrating eq 21 between the limits 7;
points) gives®

(23)

x;, and T, x (the liquidus

Rn ag(T, x,)a (T, x,) = R In ag(T;, ), (T}, x;) = [Lgy
HY(T, x) — jHUT, x)NT; ' —T7'] (24)

where Ly, is the enthalpy of fusion of the jth hydrate at its
melting temperature T; and HE and Hs are the partial molar
excess enthalpies of water and of solute in the hydrate melt, to
be evaluated from eqs 22 and 23, respectively. Examination of
eqs 22 and 23 shows that the adsorption theory of electrolytes
quantifies the excess enthalpy terms in terms of palpable
variables, r, ¢, and s, which have a clear physical meaning.
The methodology of using eq 24 in conjunction with eqs 14,
15, and 22 are described in detail® and used extensively to
predict the liquidus curve for NaNOs,'* of CaCl,,"* LiNO5(aq),'®
NH,NO,(aq),"” and calculation of liquidus temperatures of
common-ion binary salt hydrate mixtures.'®'? Figure 4 shows
the phase diagram of the binary CaCl, + H,O system including
the eutectic point and stable and metastable phases from the
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melting point of ice to the melting point of pure anhydrous
CaCl, exemplifying the capability of this two-parameter model.

Discussion

Application of the general properties of solutions to extensions
of the Stokes—Robinson applications of the BET adsorption
isotherm has led to a comprehensive treatment of moderately
to highly concentrated (up to molten salt regime) aqueous
electrolytes with as few as two parameters. Multicomponent
aqueous solutions may be treated as a pseudobinary if desired,
by invoking the proposed mixing rules. If the configurational
entropy of multicomponent electrolytes can be constructed, then
in principle the activities of individual species can be obtained
in closed-form expression, obviating the need for treating such
a system as a pseudobinary. The statistical mechanical approach
has enabled extensions of the original approach of Stokes and
Robinson in ways that were not fully anticipated about a decade
ago. The real advantage of the method lies in the use of a
minimal number of parameters to represent a wide variety of
thermodynamic properties with reasonable accuracy over rela-
tively wide temperature and composition ranges. Of special use
is the ability to predict properties of solutions for which no data
exist (especially at high concentrations and temperatures).
Among other applications, this model has been used to calculate
the thermodynamic activities and osmotic coefficients of
supersaturated solutions of (NH,),SO,(aq) and NaCl(aq) which
are among manmade aerosols of atmospheric importance.?® The
range of concentrations, temperatures, and salt species for which
this two-parameter model can provide an adequate description
testifies for its viability and breadth of applications.

Future Research

Extension of the ionic lattice theory by the statistical
mechanical approach paves the way for examining, explaining,
predicting, and extending the information on the properties of
multicomponent concentrated aqueous electrolytes with sparse
data. It has been shown that there is no fundamental restriction
in the number of solutes and solvents that may be considered
in the statistical mechanical approach, if the degree of algebra
can be tolerated. The present state of development allows
treatment of electrolytes with common anions or common
cations but does not yet include reciprocal salt mixtures. The
framework for a unified theory of adsorption has been laid down
by the statistical mechanical approach. Since the Langmuir
adsorption (monolayer) isotherm is a subset of the BET
adsorption (multilayer), the approach described here may
potentially provide a common theoretical framework of other
types of adsorption (Freundlich, Tempkin) as well as providing
a common approach to the theory of adsorption and concentrated
aqueous electrolytes.
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