Correlations

A Simple Two-Parameter Correlation Model for Aqueous Electrolyte Solutions across a Wide Range of Temperatures^{\dagger}

Xinlei Ge^{‡,§} and Xidong Wang^{*,||}

Department of Physical Chemistry, University of Science and Technology Beijing, 100083, China, Department of Materials Science and Engineering, Royal Institute of Technology, SE 10044, Stockholm, Sweden, and College of Engineering, Peking University, Beijing 100871, China

In this paper, we focused on the correlation of the thermodynamic properties of aqueous solutions across a temperature range from (273.15 to 523.15) K by a simple two-parameter model. This model is based on the modified three-characteristic-parameter correlation (TCPC) model. The two parameters, *b*, distance of closest approach, and *S*, solvation parameter, represent the interactions between ions and ions-molecules, respectively. The results show that it can adequately correlate the activity coefficient and osmotic coefficient of the single electrolyte solutions. The set of two characteristic parameters for many electrolytes was obtained. We also obtained the temperature-dependent parameters for these electrolytes. In over 70 % of the cases, six to eight parameters are necessary for an electrolyte. Compared with the Pitzer model, our model also represented a good performance.

Introduction

In many industrial processes, such as chemical engineering, extraction, and distillation, etc., electrolyte solutions play an important role. The prediction of thermodynamic properties attracts much more attention, and many semiempirical models have been developed in the past century, such as the Bromley¹ model, Pitzer² equations, the hydration theory by Robinson and Stokes,^{3,4} and the NRTL model,^{5,6} etc. Meanwhile, many theories have been put forward based on the statistical mechanics with the rapid development of computer technology, focusing on three aspects, molecular simulation (Monte Carlo and molecular dynamics simulation), integral equation theory (Mean Spherical Approximation based theories,^{7,8} etc.), and perturbation theory (SAFT,9 etc.). Recently, a model without fitted parameters has been proposed,^{10,11} but it is limited in the case of $\gamma \leq 1$, which is not sufficient to describe many strong electrolyte solutions. Although these theories are very useful for understanding the microscopic structure of electrolyte solutions, they have not been used widely for real solutions. The complex computation of a number of models also restricts their application and makes it very difficult to predict phase equilibrium. Moreover, these models usually still need adjustable parameters as the semiempirical models. Thus, it is still of central importance to develop the correlation models.

Lin and Lee¹² proposed a predictive three-characteristicparameter correlation (TCPC) model for strong electrolytes in the low concentration range. Recently, we modified and extended this model to cover strong¹³ and complex¹⁴ aqueous

Figure 1. Linear change of the distance of closest approach parameter, *b*, against the temperature for some electrolytes. The solid lines are the results of linear fit. \Box , CsOH; \bigcirc , MgCl₂; \triangle , KH₂PO₄; \bigtriangledown , K₂HPO₄.

electrolytes at 298.15 K across a wide concentration range, nonaqueous electrolytes at 298.15 K and other temperatures, and in mixed solvent systems.¹⁵ We have showed that¹³ the model with only two parameters (*b*, *S*) is enough to correlate the thermodynamic properties of aqueous solutions, especially for a concentration range that is not very high (generally below 6 mol·kg⁻¹). Since many real processes related with aqueous solutions are carried out at temperatures other than 298.15 K, the work here accounts for the temperature effects of this modified model with two parameters for correlation of mean activity coefficient and osmotic coefficient for aqueous electrolyte solutions. This work does not incorporate pressure effects because of the scarcity of relevant experimental data.

^{*} Corresponding author. Tel.: +86 10 62334926. Fax: +86-10-62327283. E-mail address: xidong@coe.pku.edu.cn.

[†] Part of the special issue "Robin H. Stokes Festschrift".

^{*} University of Science and Technology Beijing.

[§] Royal Institute of Technology.

¹¹ Peking University.

Figure 2. Linear change of the solvation parameter, *S*, against the temperature for some electrolytes. The solid lines are the results of linear fit. \Box , K₂HPO₄; \bigcirc , Na₂HPO₄; \bigcirc , KH₂PO₄; \bigtriangledown , NaH₂PO₄; \doteqdot , (NH₄)₂SO₄.

Two-Parameter Model

An electrolyte molecule dissolved in the solvent would be dissociated into an anion and a cation. If the dissociation is complete, the potential energy of an ion can be simplified by considering the ion—ion interaction and ion—molecule interaction. Thus, the mean activity coefficient for a single salt is combined with the Pitzer long-range term and short-range solvation interaction

$$\ln \gamma_{\pm} = \ln \gamma_{\pm}^{\text{PDH}} + \ln \gamma_{\pm}^{\text{SV}} \tag{1}$$

The expression of the first term is

$$\ln \gamma_{\pm}^{\text{PDH}} = -|z_{\pm}z_{-}|A_{\phi} \left[\frac{l^{1/2}}{1+bl^{1/2}} + \frac{2}{b} \ln(1+bl^{1/2}) \right] \quad (2)$$

$$A_{\phi} = \frac{1}{3} (2\pi L d_{\rm w})^{1/2} \left(\frac{e^2}{DkT}\right)^{3/2} \tag{3}$$

The first term is the Pitzer–Debye–Hückel term, which can represent the ion–ion long-range interaction. Here, A_{ϕ} is the Debye–Hückel constant with a value of 0.392 at 298.15 K and *D* is the static dielectric constant at an absolute temperature *T* in Kelvin. *L* is Avogadro's number; d_w is the density of water; *k* is the Boltzmann constant; and *e* is the electronic charge. z_+ and z_- are the charge numbers of the cation and anion, respectively; $I = 1/2\sum_i m_i z_i^2$ is the ionic strength; and *b* is a distance parameter depending on the closest distance of approach of ions.

The second term is used to represent the solvation effects between ions and solvent molecules. In this model, the specific interaction between ions and molecules is described by Coulomb's law, for a cation

$$\Gamma_{\rm cs} = \frac{h_{\rm cs} z_+ e\mu}{s^2} \tag{4}$$

where *s* is the distance between an ion and a solvent molecule. μ is the dipole moment of solvent, and h_{cs} is a proportional parameter. *s* is assumed to be inversely proportional to the ionic strength of solution

$$s = \beta_+ I^{-n} \tag{5}$$

where β_+ and *n* can be determined from experimental data.

The dimensionless potential is defined as

$$\Phi_{\rm cs} = e\Gamma_{\rm cs}/kT = h_{\rm cs} z_+ \left(\frac{e^2\mu}{\beta_+^2 kT}\right) I^{2n} \tag{6}$$

A similar expression can be obtained for an anion. Then, the charging process can be carried out,¹³ and the final expression of this term is the combination of anion–molecule interaction and cation–molecule interaction

$$\ln \gamma_{\pm}^{\rm SV} = \frac{S}{T} \frac{I^{2n}}{v_{+} + v_{-}} \tag{7}$$

Here, S is defined as the solvation parameter. v_+ and v_- are the stoichiometric coefficients of the cation and anion, respectively.

And, the osmotic coefficient, $\boldsymbol{\Phi},$ can be calculated by

$$\phi = 1 - |z_{+}z_{-}|A_{\phi}\frac{I^{1/2}}{1 + bI^{1/2}} + \frac{S}{T(v_{+} + v_{-})}\frac{2n}{2n+1}I^{2n} \quad (8)$$

The activity of the solvent can be calculated as

$$\ln a_{\rm s} = -(vmM_{\rm s}/1000) \cdot \phi \tag{9}$$

In this model, (b, S, n) are the adjustable parameters. *b* is the distance of the closest approach parameter, which represents the closest distance between ions; *S* is the solvation parameter, which can describe the interactions between ions and solvent molecules including solvation effect or some kind of association effect of ions; and *n* is distance parameter related to the distance between the ion and solvent molecule. We have showed that *n* can be regarded as a constant, 0.645, in the case of a concentration range that is not very high (generally < 6 mol \cdot kg⁻¹). Therefore, the model can be simplified to be a two-parameter model.

The parameters for the electrolyte solutions at different temperatures can be easily regressed from the literature data by the least-squares method with the application of MATLAB software. The objective functions are listed below

$$\delta = \left[\sum_{i} \left(\ln \gamma_{\pm}^{\text{exptl}} - \ln \gamma_{\pm}^{\text{calcd}}\right)^2 / n_p\right]^{1/2} \text{ or}$$
$$\delta = \left[\sum_{i} \left(\phi^{\text{exptl}} - \phi^{\text{calcd}}\right)^2 / n_p\right]^{1/2} (10)$$

After the characteristic parameters (b, S) are obtained, we can consider them to be simple polynomial functions. Then, the temperature-dependent parameters can be obtained.

$$b(T/K) = b_0 + b_1 \cdot (\Delta T/K) + b_2 \cdot (\Delta T/K)^2 + b_3 \cdot (\Delta T/K)^3 + b_4 \cdot (\Delta T/K)^4 (11)$$
$$S(T/K) = S_0 + S_1 \cdot (\Delta T/K) + S_2 \cdot (\Delta T/K)^2 + S_3 \cdot (\Delta T/K)^3 + S_4 \cdot (\Delta T/K)^4 (12)$$

In the above equations, $\Delta T = T - T_r$; $T_r = 298.15$ K; and b_i and S_i are the temperature-dependent parameters.

Results and Discussion

To obtain the parameters across a wide range of temperatures, A_{Φ} should be carefully determined. Pitzer et al.^{16,17} recommended the values across a wide range of temperatures, and we can also calculate the values according to the functions proposed by Spencer et al.¹⁸ and Moller¹⁹ below or above 25 °C, respectively. During the optimization process, the experimental data, usually osmotic coefficient data, were employed to regress the parameters. In some cases, to cover a wider temperature range, the recommended mean activity coefficient data in the literature were used. The data sources are also shown in Tables 1 and 2.

Table 1. Calculated Parameters for 1–1 Type Electrolyte Solutions in a Temperature Range of (273.15 to 523.15) K

T	Mmax						T	Mmax					
K	mol·kg ⁻¹	data	<i>b</i>	S	$100 \cdot \delta$	refs	K	mol·kg ⁻¹	data	b	S	$100 \cdot \delta$	refs
273.15 283.15 293.15 298.15 303.15 313.15 323.15 333.15 343.15	5.551 5.551 5.551 5.551 5.551 5.551 5.551 5.551 5.551 5.551	$\begin{array}{c} \gamma_{\pm} \\ \gamma_{\pm} \end{array}$	HBr 3.8727 3.9613 4.0759 4.1204 4.1583 4.2046 4.2968 4.2759 4.2161 KCl	$\begin{array}{c} 136.1593\\ 138.0095\\ 139.2532\\ 139.8130\\ 140.2200\\ 140.9725\\ 141.5627\\ 142.6964\\ 143.5410 \end{array}$	$\begin{array}{r} 4.65 \\ 4.97 \\ 5.20 \\ 5.29 \\ 5.33 \\ 5.56 \\ 5.75 \\ 5.94 \\ 6.48 \end{array}$	20 20 20 20 20 20 20 20 20 20	273.15 283.15 293.15 303.15 313.15 323.15 343.15 343.15 373.15	17 17 17 17 17 17 17 17 17 5.0	$\frac{\log_{10}}{\log_{10}}$ $\frac{\log_{10}}{\log_{10}}$ $\frac{\log_{10}}{\log_{10}}$ $\frac{\log_{10}}{\log_{10}}$ $\frac{\log_{10}}{\log_{10}}$ $\frac{1}{\ln \gamma \pm}$	NaOH 2.5678 3.0013 3.2269 3.5161 3.7333 3.8769 3.9069 3.8571 3.0885 2.7801	58.4605 57.1262 55.8287 54.1050 52.1232 49.8406 47.3185 44.4792 44.4792 44.4956 29.5707	7.70 8.02 7.31 7.20 7.13 7.11 7.16 7.29 1.29 2.08	36 36 36 36 36 36 36 27 27
273.15 283.15 293.15 298.15 303.15 313.15 323.15 333.15 343.15	$\begin{array}{c} 4.0 \\ 4.0 \\ 4.0 \\ 4.286 \\ 4.286 \\ 4.286 \\ 4.286 \\ 4.286 \\ 4.286 \\ 4.286 \end{array}$	$ \begin{array}{c} \Phi \\ \gamma_{\pm} \\ \gamma_{\pm} \\ \varphi \\ \Phi \\ \Phi$	KC1 2.6809 2.4142 2.5439 2.7588 0.8534 1.1532 1.4285 1.3714 1.0195 LC1	$\begin{array}{c} 2.5679\\ 7.8086\\ 9.5570\\ 7.1139\\ 28.0495\\ 31.7091\\ 29.0971\\ 33.1968\\ 42.1780\end{array}$	$\begin{array}{c} 1.51 \\ 2.29 \\ 2.07 \\ 3.53 \\ 3.24 \\ 3.75 \\ 1.74 \\ 2.17 \\ 2.65 \end{array}$	21 22 22 23 23 23 23 23 23	423.15 473.15 523.15 273.15 298.15 323.15 373.15 423.15 473.15 523 15	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	$ \frac{\ln \gamma_{\pm}}{\ln \gamma_{\pm}} $	2.7801 2.4196 2.0693 KOH 3.3361 3.4777 3.0680 2.6870 2.3456 2.0066	29.5707 11.1331 -7.8281 79.8015 83.6601 78.4521 61.1378 46.9960 37.6203 24.3514	$\begin{array}{c} 2.08\\ 3.24\\ 4.69\\ 0.72\\ 0.97\\ 1.09\\ 1.16\\ 1.88\\ 2.99\\ 4.50\end{array}$	27 27 27 27 27 27 27 27 27 27 27
273.15 298.15 323.15 348.15 373.15 273.15	$ \begin{array}{c} 6.0 \\ 6.0 \\ 6.0 \\ 6.0 \\ 6.0 \\ 6.0 \\ 6.0 \\ \end{array} $	Ф Ф Ф Ф	4.8289 4.9833 4.9539 4.8369 4.6939 NaCl 2.7351	89.8136 90.2852 89.8484 88.3053 86.3223 31.9156	$\begin{array}{c} 0.21 \\ 0.27 \\ 0.35 \\ 0.39 \\ 0.45 \\ 1.65 \\ 0.92 \end{array}$	24 24 24 24 24 24 25	273.15 298.15 323.15 373.15 423.15 473.15	5.0 5.0 5.0 5.0 5.0 5.0 5.0	$ \begin{array}{c} \ln \gamma_{\pm} \\ \ln \gamma_{\pm} \end{array} $	CsOH 4.1316 3.9444 3.7992 3.3019 2.7958 2.3604	80.5086 87.8493 91.3475 89.9786 81.4170 69.3636	4.30 0.96 0.37 0.65 0.97 1.63 2.81	27 27 27 27 27 27 27 27
298.15 323.15 348.15 373.15 398.15 423.15 448.15 473.15	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	Φ Φ Φ Φ Φ Φ Φ	3.4933 3.9455 4.1673 4.2989 4.6409 4.3478 4.2622 4.0767 NaI	37.2231 40.3212 41.5132 41.0540 43.8045 35.9084 31.4942 26.0093	$\begin{array}{c} 0.82 \\ 0.50 \\ 0.52 \\ 0.52 \\ 0.47 \\ 0.53 \\ 0.72 \end{array}$	25 25 25 25 25 25 25 25 25 25	523.15 273.15 298.15 323.15 373.15 423.15 473.15 523 15	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	$ \ln \gamma_{\pm} \\ \ln \gamma_{\pm} \\ h \\ $	1.9885 LiBr 4.6441 3.8479 3.8870 3.9116 3.5892 3.1875 2.8722	57.0392 99.9234 115.0719 120.8577 120.7532 118.2699 113.2435 92 7278	4.37 1.20 0.65 0.55 0.75 0.91 1.28 1.81	27 28 28 28 28 28 28 28 28 28 28
283.15 298.15 303.15 313.15 323.15 333.15 343.15	10 10 8.398 8.398 8.398 8.398 8.398 8.398	Φ Φ Φ Φ Φ Φ Φ Φ	62.4060 50.8194 5.7585 9.3261 13.2722 10.2185 9.0945 NaBr	55.1031 55.5901 64.4666 64.9080 66.1042 68.7137 71.1222	$\begin{array}{c} 0.94 \\ 1.25 \\ 4.82 \\ 4.81 \\ 4.79 \\ 4.57 \\ 4.22 \end{array}$	26 26 23 23 23 23 23 23 23	273.15 298.15 323.15 373.15 423.15 473.15 523.15	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	$ \begin{array}{l} \ln \gamma_{\pm} \\ \ln \gamma_{\pm} \end{array} $	NaBr 2.9122 3.2193 3.5135 3.7005 3.6387 3.6807 3.9538	38.2271 50.8820 58.8024 67.6177 71.1886 69.4628 59.2719	1.64 0.85 0.82 0.99 1.11 1.04 0.61	28 28 28 28 28 28 28 28 28 28 28
283.15 298.15 303.15 313.15 323.15 333.15 343.15	9 7.981 7.981 7.981 7.981 7.981 7.981	Φ Φ Φ Φ Φ Φ Φ Φ	4.5869 5.5285 3.9534 5.5350 8.6743 8.3545 21.7588 KF	43.3425 45.6321 54.9917 52.7238 50.4853 51.1411 47.5182	$1.11 \\ 1.40 \\ 4.72 \\ 3.28 \\ 1.76 \\ 1.62 \\ 2.48$	26 26 23 23 23 23 23 23 23	273.15 298.15 323.15 373.15 423.15 473.15 523.15	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	$ \frac{\ln \gamma_{\pm}}{\ln \gamma_{\pm}} \frac{\ln \gamma_{\pm}}{\ln \gamma_{\pm}} \frac{\ln \gamma_{\pm}}{\ln \gamma_{\pm}} \frac{\ln \gamma_{\pm}}{\ln \gamma_{\pm}} $	KBr 2.4056 2.7140 2.9724 3.2810 3.4593 3.4008 3.0759	9.5572 14.7324 21.1764 29.2771 30.9879 31.0389 29.6979	7.36 1.51 1.13 0.99 0.96 1.12 1.70	28 28 28 28 28 28 28 28 28 28 28
283.15 298.15 323.15 348.15	12 12 12 12 12	$egin{array}{c} \Phi \ \Phi \ \Phi \ \Phi \end{array}$	2.9112 3.7159 4.7513 5.0830 CsI	39.4912 39.2315 36.6802 32.9880	1.05 1.31 1.68 1.75	26 26 26 26	273.15 298.15 323.15 373.15	5.0 5.0 5.0 5.0 5.0		CsBr 1.4277 1.7711 2.0749 2.5368	6.9383 3.8953 4.6337 8.1066	4.24 3.28 2.70 2.12	28 28 28 28 28
303.15 313.15 323.15 333.15 343.15	2.595 2.595 2.595 2.595 2.595 2.595	$egin{array}{c} \Phi \ \Phi \ \Phi \ \Phi \ \Phi \end{array}$	0.3569 5.1994 4.1522 1.8971 2.5754	$\begin{array}{r} 101.1195 \\ -12.9826 \\ -6.1549 \\ 20.6377 \\ 12.6945 \end{array}$	2.07 1.68 1.45 1.34 1.16	23 23 23 23 23 23	423.15 473.15 523.15 383.15	5.0 5.0 5.0 6.0		2.7698 2.7733 2.6129 KH ₂ PO ₄ 1.2417	$ \begin{array}{r} 11.5103 \\ 13.6862 \\ 13.9502 \\ -41.7442 \end{array} $	2.00 2.24 2.81 7.70	28 28 28 29
303.15 313.15 323.15 333.15 343.15	8.590 8.590 8.590 8.590 8.590	$egin{array}{c} \Phi \ \Phi \ \Phi \ \Phi \ \Phi \end{array}$	CsCl 58.4807 23.5146 10.8165 8.8908 5.9827	3.7779 4.2934 4.6792 6.0260 9.3979	9.69 7.20 4.11 3.30 1.81	23 23 23 23 23 23	413.15 443.15 473.15 498.15 523.15	6.0 6.0 6.0 6.0 6.0	$ \begin{array}{l} \ln \gamma_{\pm} \\ \ln \gamma_{\pm} \end{array} $	1.2697 1.3009 1.3123 1.3348 1.3589	-47.0456 -53.2842 -59.3281 -64.2857 -70.6214	8.05 8.58 9.14 8.62 10.47	29 29 29 29 29 29
303.15 313.15 323.15 333.15 343.15	5.648 5.648 5.648 5.648 5.648	$egin{array}{c} \Phi \ \Phi $	K1 0.8024 1.0375 1.0906 1.4450 2.0721 RbCl	36.6254 36.6624 47.1263 44.1605 40.0792	5.44 1.36 2.47 2.44 1.39	23 23 23 23 23 23	383.15 413.15 443.15 473.15 498.15 523.15	$ \begin{array}{r} 6.0 \\ $		NaH ₂ PO ₄ 1.4176 1.3978 1.3727 1.3460 1.3045 1 3211	-34.4091 -41.7036 -49.8951 -58.5478 -64.6999 -71.9751	6.66 7.30 8.07 8.98 9.84 10.72	29 29 29 29 29 29
303.15 313.15 323.15 333.15 343.15	6.949 6.949 6.949 6.949 6.949 6.949	$egin{array}{c} \Phi \ \Phi $	2.0117 2.2731 2.3519 2.4336 2.5335	27.4371 21.5584 18.8883 18.9875 20.1707	2.56 2.11 1.57 1.46 0.99	23 23 23 23 23 23	288.15 298.15 308.15	7.6831 8.3168 8.8454	$\begin{array}{c} \gamma_{\pm} \\ \gamma_{\pm} \\ \gamma_{\pm} \\ \gamma_{\pm} \end{array}$	NaBF ₄ 1.6435 1.7657 2.8150 NaCF ₃ SO ₃	-24.5205 -20.6774 -17.4355	6.78 5.68 4.54	30 30 30
273.15 298.15 323.15 373.15 423.15 473.15 523.15	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	$\begin{array}{l} \ln \gamma_{\pm} \\ \ln \gamma_{\pm} \end{array}$	LiOH 1.7792 1.9026 1.8583 1.6364 1.4363 1.2831 1.1691	$\begin{array}{r} 7.3501 \\ 6.5601 \\ -0.8693 \\ -22.8155 \\ -48.1512 \\ -72.6477 \\ -93.2840 \end{array}$	3.29 2.85 3.07 4.39 6.24 8.27 10.44	27 27 27 27 27 27 27 27 27	298.15 323.15	5.3755 4.3070	Ф Ф	11.1243 8.6415	29.6289 35.6951	1.98 1.26	31 31

The parameters for different electrolytes at various temperatures along with the standard deviation $(100 \cdot \delta)$ are listed in Tables 1 and 2. From these tables, one can see that the obtained parameters can fit the literature data very well, especially for

Table 2. Calculated Parameters for 1-2, 2-1, and 2-2 Type Electrolytes in a Temperature Range of (273.15 to 523.15) K

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Т	Mmax						Т	Mmax					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	K	mol∙kg ⁻¹	data	b	S	$100 \cdot \delta$	refs	K	mol∙kg ⁻¹	data	b	S	$100 \cdot \delta$	refs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				K ₂ HPO ₄							SrCl ₂			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	383.15	6.0	$\ln \gamma$	2.1378	7.7022	4.62	29	273.15	4.0	$\ln \nu$	3.0166	71.9818	1.81	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	413 15	6.0	$\ln \gamma_{\pm}$	2 1748	5 1177	4 81	29	298.15	4.0	$\ln \gamma_{\perp}$	3 1867	76 4230	1.22	34
$ \begin{array}{c} 473 \ is & 60 & in \ y_{\pm} & 21031 & 01277 & 554 & 29 & 373.15 & 40 & in \ y_{\pm} & 32.690 & 72.1944 & 2.41 & 34 \\ 848 \ is & 60 & in \ y_{\pm} & 21706 & -07987 & 606 & 29 & 473.15 & 40 & in \ y_{\pm} & 21616 & 45.357 & 1.85 & 34 \\ 523.15 & 60 & in \ y_{\pm} & 1.980 & -10.5512 & 7.38 & 29 \\ 433.15 & 60 & in \ y_{\pm} & 1.980 & -10.5512 & 7.38 & 29 \\ 433.15 & 60 & in \ y_{\pm} & 1.9960 & -10.5512 & 7.38 & 29 \\ 433.15 & 60 & in \ y_{\pm} & 1.9960 & -10.5512 & 7.38 & 29 \\ 433.15 & 60 & in \ y_{\pm} & 1.9960 & -24.1546 & 9.75 & 29 & 333.15 & 3.340 & \Phi & 21820 & 87.04 & 1.977 & 23 \\ 433.15 & 60 & in \ y_{\pm} & 1.9960 & -24.1546 & 9.75 & 29 & 333.15 & 3.340 & \Phi & 9.1821 & 95.6548 & 400 & 23 \\ 473.15 & 60 & in \ y_{\pm} & 2.0005 & -24.1546 & 9.75 & 29 & 333.15 & 3.340 & \Phi & 66655 & 99.5800 & 2.96 & 23 \\ 523.15 & 60 & in \ \gamma_{\pm} & 2.0005 & -24.1546 & 9.75 & 29 & 333.15 & 3.340 & \Phi & 66655 & 99.580 & 1.94 & 23 \\ 523.15 & 60 & in \ \gamma_{\pm} & 2.0005 & -24.1546 & 9.75 & 29 & 333.15 & 3.340 & \Phi & 11.2082 & 96.5980 & 1.94 & 23 \\ 523.15 & 6.0 & \Phi & 2.5663 & -3.5112 & 8.54 & 32 & 313.15 & 4.156 & \Phi & 53.8657 & 99.860 & 1.94 & 23 \\ 523.15 & 6.0 & \Phi & 2.7530 & -7.2722 & 2.62 & 32 & 333.15 & 4.156 & \Phi & 138.971 & 98.0 & 1.99 & 23 \\ 333.15 & 6.0 & \Phi & 2.7519 & -59349 & 8.40 & 32 & 333.15 & 4.156 & \Phi & 138.971 & 98.0 & 1.99 & 23 \\ 333.15 & 6.0 & \Phi & 2.7534 & 7.5931 & 5.47 & 33 & 278.15 & 4.0 & in \ y_{\pm} & 3.5408 & 109.7150 & 0.64 & 34 \\ 323.15 & 3.00 & \Phi & 2.7554 & 12.3828 & 4.83 & 33 & 298.15 & 4.0 & in \ y_{\pm} & 3.5408 & 100.7150 & 0.64 & 34 \\ 323.15 & 3.00 & \Phi & 2.5661 & 7.5931 & 5.47 & 33 & 773.15 & 4.0 & in \ y_{\pm} & 3.2644 & 10.7484 & 1.08 & 34 \\ 323.15 & 3.00 & \Phi & 2.7554 & 12.3828 & 4.83 & 33 & 278.15 & 4.0 & in \ y_{\pm} & 3.5408 & 100.7150 & 0.64 & 34 \\ 323.15 & 3.00 & \Phi & 2.5666 & 7.7521 & 2.752 & 2.754 & 2.8728 & 1.2472 & 2.74.808 & 7.844 & 1.08 & 34 \\ 323.15 & 3.00 & \Phi & 2.5661 & 7.5931 & 5.40 & 3.73.15 & 4.0 & in \ y_{\pm} & 3.5408 & 10.0725 & 0.79 & 34 \\ 323.15 & 3.00 & \Phi & 2.5666 & 7.7521 & 2.752 & 3.33.15 & 3.398 & \Phi & 3.496 & 5.$	443 15	6.0	$\ln \gamma_{\pm}$	2 1447	2 9577	5.28	29	323 15	4.0	$\ln \gamma_{\pm}$	3 2768	77 6442	1.65	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	473.15	6.0	$\ln \gamma \pm \ln \gamma$	2 1031	0 1277	5.20	20	373.15	4.0	$\ln \gamma_{\pm}$	3 2600	72 1904	2.41	3/
$ \begin{array}{c} 428.13 \\ 252.15 \\ 252.$	408 15	6.0	$\frac{11}{12}$	2.1706	-0.7087	6.06	20	422.15	4.0	$\frac{11}{10}$ $\gamma \pm$	2 1142	50 7810	2.71	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	490.13	6.0	$\frac{111}{10}$ γ_{\pm}	2.1700	-0.7967	6.00	29	423.13	4.0	$\lim_{n \to \infty} \gamma_{\pm}$	2.0161	15 2527	2.20	24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	525.15	0.0	III γ_{\pm}	2.2217	-2.7911	0.50	29	4/5.15	4.0	$\lim_{n \to \infty} \gamma_{\pm}$	2.9101	43.3327	1.65	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202.15	6.0		$Na_2 \Pi PO_4$	10 5510	7.00	20	525.15	4.0	III γ_{\pm}	2.7324	33.9882	1.34	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	383.15	6.0	$\ln \gamma_{\pm}$	1.9560	-10.5512	7.38	29				SrBr ₂			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	413.15	6.0	$\ln \gamma_{\pm}$	1.9803	-14.4053	7.74	29	303.15	3.340	Φ	55.1553	87.2	14.27	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	443.15	6.0	$\ln \gamma_{\pm}$	1.9742	-18.0717	8.36	29	313.15	3.340	Φ	22.9308	88.7044	7.97	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	473.15	6.0	$\ln \gamma_{\pm}$	1.9696	-21.4245	9.16	29	323.15	3.340	Φ	9.1821	95.6548	4.00	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	498.15	6.0	$\ln \gamma_{\pm}$	2.0005	-24.1546	9.75	29	333.15	3.340	Φ	6.6655	99.5809	2.96	23
$ \begin{array}{c} 273.15 \\ 273.15 \\ 6.0 \\ 2.530 \\ 2.530 \\ -2.782 \\ -2.782 \\ 298.15 \\ 232.15 \\ 6.0 \\ 0 \\ 2.713 \\ 232.15 \\ 6.0 \\ 0 \\ 2.7519 \\ -5.9349 \\ 8.40 \\ 2.7519 \\ -5.9349 \\ 8.40 \\ 2.333.15 \\ 4.156 \\ 0 \\ 2.7519 \\ -5.9349 \\ 8.40 \\ 32 \\ 333.15 \\ 4.156 \\ 0 \\ 1.3159 \\ 1.56 \\ 0 \\ 1.3159 \\ 10.00764 \\ 10.972 \\ 0 \\ 1.3559 \\ 10.0074 \\ 10.972 \\ 0.1721 $	523.15	6.0	$\ln \gamma_+$	2.0435	-29.1891	9.66	29	343.15	3.340	Φ	11.2082	96.5980	1.94	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$(NH_4)_2SO_4$							SrI ₂			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273.15	6.0	Φ	2.3530	-2.7826	9.19	32	303.15	4.156	Φ	274.268	98.1	2.45	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.15	6.0	Φ	2.5663	-3.5112	8.54	32	313.15	4.156	Φ	138.971	98.0	1.99	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323.15	6.0	Φ	2.7133	-4.6322	8.26	32	323.15	4.156	Φ	53.8657	99.4666	1.48	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	348.15	6.0	Φ	2.7519	-5.9349	8.40	32	333.15	4.156	Φ	17.6510	103.0764	1.82	23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	373.15	6.0	Φ	2.6950	-7.1232	9.02	32	343.15	4.156	Φ	13.3159	107.0393	2.55	23
$\begin{array}{c} 298.15 & 3.1082 & \Phi & 2.5461 & 7.5931 & 5.47 & 33 & 273.15 & 4.0 & \ln \gamma_{\pm} & 3.5408 & 109.7150 & 0.64 & 34 \\ 323.15 & 3.5095 & \Phi & 2.7554 & 12.3828 & 4.83 & 33 & 298.15 & 4.0 & \ln \gamma_{\pm} & 3.5159 & 110.9725 & 0.79 & 34 \\ 323.15 & 2.048 & \Phi & 2.7200 & -17.2628 & 5.18 & 33 & 373.15 & 4.0 & \ln \gamma_{\pm} & 3.4535 & 110.2694 & 1.01 & 34 \\ 323.15 & 3.0 & \Phi & 2.6891 & -2.6365 & 5.40 & 33 & 423.15 & 4.0 & \ln \gamma_{\pm} & 3.0764 & 101.721 & 1.39 & 34 \\ 323.15 & 1.5 & \Phi & 1.9984 & -45.8561 & 3.07 & 21 & & & & & & & & & \\ H_8SO_4 & & & & & & & & & & & & & & & & & & &$				Cs_2SO_4							MgCl ₂			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.15	3.1082	Φ	2.5461	7.5931	5.47	33	273.15	4.0	$\ln \nu$	3.5408	109.7150	0.64	34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	323.15	3.5095	Φ	2.7554	12.3828	4.83	33	298.15	4.0	$\ln \nu_{\perp}$	3.5159	110.9725	0.79	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Rb ₂ SO ₄				323.15	4.0	$\ln \gamma$	3,4535	110.2694	1.01	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298 15	2 048	Φ	2 7200	-172628	5 18	33	373 15	4.0	$\ln \gamma_{\pm}$	3 2694	107 4684	1.08	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	323 15	3.0	ā.	2.6891	-2 6365	5.40	33	423.15	4.0	$\ln \gamma \pm \ln \gamma$	3.0764	101 7271	1 39	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	525.15	5.0		Na-SO	2.0505	5.10	55	523.15	4.0	$\ln \gamma_{\pm}$	2 7150	75 8845	2.80	34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	273 15	15	Ф	1 008/	-45 8561	3.07	21	020.10	1.0	$m_{\ell} \pm$	BaCl	75.0015	2.00	51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	275.15	1.5	Ψ	H SO	+5.6501	5.07	21	273 15	4.0	ln v	3 2272	27 4805	4.60	34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	272 15	10.0	Ф	$n_2 S O_4$	28 4027	6 10	21	273.13	4.0	$\lim_{n \to \infty} \gamma_{\pm}$	3.2212	27.4603	4.09	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	275.15	10.0	Ψ	2.0955	28.4057	0.18	21	296.15	4.0	$\lim_{n \to \infty} \gamma_{\pm}$	2.3737	24.0957	5.10	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202.15	6.010	æ	$CaCl_2$	76 2022	7.51	22	323.15	4.0	$\ln \gamma_{\pm}$	3.4279	34.9857	5.52	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	6.019	Φ	11.1224	76.3032	/.51	23	3/3.15	4.0	$\ln \gamma_{\pm}$	3.3644	31.1592	4.66	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313.15	6.019	Φ	26.0450	73.2034	6.98	23	423.15	4.0	$\ln \gamma_{\pm}$	3.1464	22.7540	3.31	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323.15	6.019	Φ	36.4503	/1.08/6	6.85	23	473.15	4.0	$\ln \gamma_{\pm}$	2.8728	12.3727	2.18	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	333.15	6.019	Φ	24.7423	69.8590	6.50	23	523.15	4.0	$\ln \gamma_{\pm}$	2.6566	4.2732	2.02	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	343.15	6.019	Φ	25.5616	67.7451	6.05	23				$BaBr_2$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				CaBr ₂				303.15	3.398	Φ	34.96	51.8	4.34	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	4.596	Φ	189.352	95.8806	3.90	23	313.15	3.398	Φ	13.6920	55.3570	1.70	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313.15	4.596	Φ	58.7089	95.8565	3.15	23	323.15	3.398	Φ	6.6658	61.2786	2.17	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323.15	4.596	Φ	16.6999	96.5706	3.67	23	333.15	3.398	Φ	5.9960	63.5930	2.71	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	333.15	4.596	Φ	10.1975	97.3547	3.36	23	343.15	3.398	Φ	8.6009	59.5986	2.83	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	343.15	4.596	Φ	6.8508	99.3077	2.94	23				$Ca(NO_3)_2$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				CaL				273.15	20	ln v	7.3638	9.8998	15.14	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	2.915	Φ	$11.\dot{4}604$	74.5559	5.51	23	298.15	20	$\ln \gamma$	10.1583	9,7236	13.65	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313.15	2.915	Φ.	3,7236	89,1967	3.80	23	323.15	$\bar{20}$	$\ln \gamma \pm$	11.8637	9,2353	12.76	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323 15	2 915	ф.	3 1165	93 7986	3 70	23	348.15	20	$\ln \gamma \pm \ln \gamma$	11 9277	8 5124	12.70	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	333 15	2.915	т Ф	2 0588	97.0670	2.85	23	373 15	20	$\frac{11}{\ln v}$	10 0057	7 60/0	11 75	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/3 15	2.915	т Ф	2.9300	08 0513	2.05	23	303.15	20	$ln \gamma_{\pm}$	0 7/72	7.0740	11.75	35
γ_{10304} 773 15 3.0 Φ 24807 15 5310 5.47 21	545.15	2.715	Ψ	2.7472	70.7515	2.15	23	373.13	20	mγ _±		7.0784	11.55	55
								273 15	3.0	Φ	2,4807	15,5310	5 47	21

1-1 type electrolytes in Table 1. However, some relative large deviations also can be found, such as NaOH, KH₂PO₄, and NaH₂PO₄ in Table 1, and Na₂HPO₄ and Ca(NO₃)₂ in Table 2. In our opinion, these deviations can be attributed to the following aspects:

First, this work is based on the species being the stoichiometric composition. For some salts, a number of complex ions can exist in the solution simultaneously, such as $H_2PO_4^-$, HPO_4^{2-} , PO_4^{3-} , $H_4P_2O_8^{2-}$, etc., in NaH₂PO₄, KH₂PO₄, Na₂HPO₄, and K₂HPO₄. The present model is limited to describe the very complicated systems.

Second, the calculated standard deviations for asymmetric electrolytes shown in Table 2 are worse than 1-1 type electrolytes. As well-known, in PDH term, the electric potential of a charged cation in a uniform electric field is described by the Boltzmann distribution. The solvation term is also established on the Coulomb force between spherical particles. But for some asymmetric electrolytes, the size difference of its anion and cation could be very large, and the shape is highly nonspherical that the charge density of ions in the solution can no longer be described by the Boltzmann distribution. Thus, some large deviations may be obtained.

Finally, the assumption of complete dissociation of this model is accurate for strong electrolyte solutions or the solutions with low concentration. Thus, good results are obtained for 1–1 electrolytes. However, for the weak electrolytes or the solution with high ionic strength, it is less accurate due to incomplete dissociation of electrolyte molecules or the association of ions. This is the situation for Ca(NO₃)₂ ($I = 60 \text{ mol} \cdot \text{kg}^{-1}$). For LiCl, we found the deviation is over 25 % for a concentration up to 18.5 mol $\cdot \text{kg}^{-1}$, but for a concentration below 6 mol $\cdot \text{kg}^{-1}$, the correlation is very good, as shown in Table 1.

According to eqs 11 and 12, the temperature-dependent parameters for these electrolyte solutions, along with the corresponding correlation coefficients, can be obtained, as listed in Table 3. The fitting temperature range is the same as shown in Tables 1 and 2. The absence of a parameter value indicates that it is not important.

From Table 3, in 70 % of the cases, the change of (b, S) can be represented by a 2- or 3-order polynomial, which means six or eight parameters are sufficient to predict the thermodynamic properties of an electrolyte solution across a temperature range of (273.15 to 523.15) K in a concentration range of (0 to 20) mol·kg⁻¹. Furthermore, the distance of the closest approach

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tempe	rature-Deper	ndent Parameters	of the Simple Two	o-Parameter Mode								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		b_0	b_1	b_2	b_3	b_4	R	S_0	S_1	S_2	S_3	S_4	R
812 2.02-10 ⁻¹ 1.1100-10 ⁻¹ 8.416-10 ⁻⁷ 0.0000 1.139 -1.030-10 ⁻¹ -1.170-10 ⁻¹ -1.1		1397	$9.36 \cdot 10^{-2}$	$-6.3022 \cdot 10^{-5}$	$-2.06821 \cdot 10^{-6}$		0.99117	139.78067	$9.454 \cdot 10^{-2}$	$-1.35 \cdot 10^{-3}$	$2.52303 \cdot 10^{-5}$		0.99867
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	8132	$2.02 \cdot 10^{-3}$	$-1.41109 \cdot 10^{-4}$	$8.416 \cdot 10^{-7}$		0.99968	90.24089	$-1.48 \cdot 10^{-3}$	$-6.87486 \cdot 10^{-4}$			0.99694
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ľ.	5857	$5.279 \cdot 10^{-2}$	$1.99 \cdot 10^{-3}$			1.00000	7.1139	$-7.9008 \cdot 10^{-1}$	$-6.565 \cdot 10^{-2}$	$-1.07 \cdot 10^{-3}$		1.00000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.	$151 \cdot 10^{-1}$	$2.935 \cdot 10^{-2}$	$5.20946 \cdot 10^{-4}$			0.99260	15.76	3.59526	$-2.6144 \cdot 10^{-1}$	$0.71 \cdot 10^{-2}$	$-6.17229 \cdot 10^{-5}$	1.00000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1479	$2.078 \cdot 10^{-2}$	$-9.8779 \cdot 10^{-5}$			0.97139	36.98427	$1.7062 \cdot 10^{-1}$	$-1.35 \cdot 10^{-3}$			0.94524
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	3152	-1.88306	$2.0332 \cdot 10^{-1}$	$-6.67 \cdot 10^{-3}$	$6.79492 \cdot 10^{-5}$	1.00000	64.40706	$-1.981 \cdot 10^{-2}$	$3.82 \cdot 10^{-3}$			0.99476
35 $1.386 \cdot 0^{-1}$ 1.00^{-1} $2.516 \cdot 0.0^{-2}$ $1.3333 \cdot 0.0^{-1}$ $1.3235 \cdot 0.0^{-3}$ $1.399 \cdot 0.0^{-3}$	÷.	848	-2.51339	$2.4429 \cdot 10 - 1$	$-8.24 \cdot 10 - 3$	$9.25 \cdot 10^{-5}$	1.00000	52.49666	$9.6496 \cdot 10^{-1}$	$-1.1126 \cdot 10^{-1}$	$3.82 \cdot 10^{-3}$	$-4.18246 \cdot 10^{-5}$	1.00000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	35	$1.3186 \cdot 10^{-1}$	$1.01 \cdot 10^{-3}$	$-5.03166 \cdot 10^{-5}$		0.99899	52.7238	$-1.3254 \cdot 10^{-1}$	$1.42 \cdot 10^{-3}$	$1.19093 \cdot 10^{-5}$		0.99760
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N.	8114	1.48055	$-6.196 \cdot 10^{-2}$	$7.35258 \cdot 10^{-4}$		0.99971	221.81111	-29.64033	1.13883	$-1.297 \cdot 10^{-2}$		0.99634
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	8091	-6.8449	$1.9881 \cdot 10^{-1}$	$-1.94 \cdot 10^{-3}$		1.00000	3.13829	$1.6701 \cdot 10^{-1}$	$-8.7 \cdot 10^{-3}$	$1.79567 \cdot 10^{-4}$		1.00000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$228 \cdot 10^{-1}$	$4.887 \cdot 10^{-2}$	$-2.07 \cdot 10^{-3}$	$3.78917 \cdot 10^{-5}$		0.99617	57.86263	-6.6409	0.55509	$-1.603 \cdot 10^{-2}$	$1.50712 \cdot 10^{-4}$	1.0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ç	80334	$4.916 \cdot 10^{-2}$	$-1.48 \cdot 10^{-3}$	$1.67333 \cdot 10^{-5}$		0.99736	32.07407	-1.04613	$2.535 \cdot 10^{-2}$	$-1.7705 \cdot 10^{-4}$		0.9995
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ω,	8813	$1.2 \cdot 10^{-3}$	$-1.0014 \cdot 10^{-4}$	$6.44442 \cdot 10^{-7}$	$-1.27278 \cdot 10^{-9}$	0.99863	3.85717	$-3.3424 \cdot 10^{-1}$	$-4.84953 \cdot 10^{-4}$			0.9929
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	41	50344	$2.405 \cdot 10^{-2}$	$-5.74077 \cdot 10^{-4}$	$3.50262 \cdot 10^{-6}$	$-6.89876 \cdot 10^{-9}$	0.96952	54.63047	$-1.3264 \cdot 10^{-1}$	$-6.39214 \cdot 10^{-4}$			0.9936
4898 $87, 10^3$ $2.2366, 10^4$ $2.62294, 10^6$ $5.97146, 10^ 0.99011$ $87, 6475$ $2.005, 10^ 5.2366, 10^-6$ 1.0816 86271 $1.192, 10^-2$ $-1.0821; 0.0^4$ $2.62294, 10^-5$ $3.06138, 10^-7$ $1.182, 10^-2$ $4.53479, 10^{-3}$ $1.5377, 10^{-6}$ 1.0816 7773 $1.122, 10^-2$ $-4.2077, 10^{-3}$ $3.06138, 10^-7$ $3.06138, 10^-7$ $2.36168, 10^-2$ $1.38162, 10^-2$ $2.466, 10^-1 - 1.17, 10^{-3}$ $1.5577, 10^{-6}$ $1.2385, 10^{-3}$ 7773 $1.22, 10^{-2}$ $-4.2077, 10^{-3}$ $1.5301, 10^{-2}$ $2.446, 10^{-3}$ $1.17, 10^{-3}$ $1.5777, 10^{-5}$ $2.2305, 10^{-3}$ 0.0577 $-2.941, 10^{-3}$ $-2.2043, 10^{-3}$ $1.27806, -2.72, 10^{-4}$ $1.097, 10^{-3}$ $1.2777, 10^{-5}$ $2.2305, 10^{-1}$ 0.0577 $-2.981, 10^{-2}$ $3.2176, 10^{-4}$ $1.5501, 0^{-4}$ $2.0492, 10^{-1}$ $1.2778, 10^{-4}$ 0.00000 $-2.687, 10^{-4}$ $0.09906, -2.73816, -2.4089, 10^{-3}$ $1.2778, 10^{-2}$ $2.746, 10^{-1}$ 0.1786 -1.110104 $-2.6944, 10^{-3}$ $1.2778, 10^{-4}$ 1.00000 $2.2657, 10^{-4}$ 0.0000 -2.6873 $-2.442, 10^{-3}$ $1.237, 10^{-3}$ $2.7426, 10^{-3}$ 0.110^{-3} $-2.4442, 10^{-3}$ $-7.438, 10^{-3}$ $0.9997, 10^{-3}$ 0.110^{-3} $-2.4424, 10^{-3}$ $-1.17, 10^{-3}$ $2.474, 10^{-3}$ 0.110^{-3} $-2.4424, 10^{-3}$ $-2.4424, 10^{-3}$ $-2.4264, 10^{-3}$ $0.124, 10^{-3}$ $-2.32426, 10^{-3}$	_√.	16454	$6.83455 \cdot 10^{-4}$	$-8.2197 \cdot 10^{-5}$	$2.26049 \cdot 10^{-7}$		0.99038	80.6128	$-1.1321 \cdot 10^{-1}$	$-1.85 \cdot 10^{-3}$	$5.61517 \cdot 10^{-6}$		0066.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	94898	$-8.87 \cdot 10^{-3}$				0.99719	87.64795	2.0796	$-2.72 \cdot 10^{-3}$	$5.29566 \cdot 10^{-6}$		0.9998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	٠.	98803	$-1.422 \cdot 10^{-2}$	$3.29266 \cdot 10^{-4}$	$-2.62294 \cdot 10^{-6}$	$5.97146 \cdot 10^{-9}$	0.99001	114.83386	$3.8989 \cdot 10^{-1}$	$-0.69 \cdot 10^{-2}$	$4.53479 \cdot 10^{-5}$	$-1.08168 \cdot 10^{-7}$	0.9996
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		26271	$1.192 \cdot 10^{-2}$	$-1.0821 \cdot 10^{-4}$	$3.06138 \cdot 10^{-7}$		0.99508	49.51086	$3.5412 \cdot 10^{-1}$	-1.38810^{-3}			0.9908
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•••	71075	$1.12 \cdot 10^{-2}$	$-4.22973 \cdot 10^{-5}$			0.99771	15.81624	$2.4606 \cdot 10^{-1}$	$-1.17 \cdot 10^{-3}$	$1.55773 \cdot 10^{-6}$		0.9941
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	<i>6LLL</i>	$1.314 \cdot 10^{-2}$	$-4.20176 \cdot 10^{-5}$			0.99967	4.32642	$-4.089 \cdot 10^{-2}$	$1.97 \cdot 10^{-3}$	$-1.21395 \cdot 10^{-5}$	$2.23058 \cdot 10^{-8}$	0.9958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	7633	$-8.04554 \cdot 10^{-4}$				0.99006	-23.78166	$-2.0489 \cdot 10^{-1}$				CT66.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ч.	10057	$-2.941 \cdot 10^{-2}$	$3.21762 \cdot 10^{-4}$	$-1.53901 \cdot 10^{-6}$	$2.64501 \cdot 10^{-9}$	0.99086	-11.10104	$-2.6944 \cdot 10^{-1}$				0.0093
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	657	$5.858 \cdot 10^{-2}$	$4.64 \cdot 10^{-3}$			1.00000	-20.8778	$3.5425 \cdot 10^{-1}$				0.99880
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ξ.	243	$-9.931 \cdot 10^{-2}$				1.00000	29.6289	$2.4265 \cdot 10^{-1}$				1.0000
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-	0158	$4.58416 \cdot 10^{-4}$,			0.77805	13.76789	$-7.438 \cdot 10^{-2}$				0.9961
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ų į	645	$9.01 \cdot 10^{-3}$	$-6.44643 \cdot 10^{-5}$	$1.50799 \cdot 10^{-7}$		0.99002	$4.261 \cdot 10^{-1}$	$-1.2736 \cdot 10^{-1}$				0.9956
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	57528	$7.19 \cdot 10^{-3}$	$-7.41486 \cdot 10^{-5}$			0.99879	-3.68633	$-4.442 \cdot 10^{-2}$				0.9907
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	۹÷	5461	$8.37 \cdot 10^{-3}$				1.00000	7.5931	$1.9159 \cdot 10^{-1}$				1.0000
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5	72	$-1.24 \cdot 10^{-3}$,		1.00000	-17.2628	$5.8505 \cdot 10^{-1}$				1.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	74931	-4.53065	$5.7734 \cdot 10^{-1}$	$-2.034 \cdot 10^{-2}$	$2.17652 \cdot 10^{-4}$	1.00000	77.62272	$-3.0671 \cdot 10^{-1}$	$2.04 \cdot 10^{-3}$			0.9909
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ų į	5896	-25.42994	$7.4145 \cdot 10^{-1}$	$-7.12 \cdot 10^{-3}$		0.99974	96.12755	$-6.02 \cdot 10^{-2}$	$2.87 \cdot 10^{-3}$			0.9922
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	12209	-3.93924	$1.0719 \cdot 10^{-1}$	$-9.13925 \cdot 10^{-4}$		0.99944	51.83715	$-2.0293 \cdot 10^{-1}$	$4.084 \cdot 10^{-2}$	$-7.22783 \cdot 10^{-4}$		0.9982
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	∞.	0094	-4.06897	$6.055 \cdot 10^{-2}$			0.99183	89.82275	$-8.5515 \cdot 10^{-1}$	$6.865 \cdot 10^{-2}$	$-1.03 \cdot 10^{-3}$		0.9973
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	7474	-17.53276	$2.2201 \cdot 10^{-1}$			0.99923	98.51508	$-1.372 \cdot 10^{-1}$	$7.33 \cdot 10^{-3}$			0.9962
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×.	3374	-2.7114	$1.4288 \cdot 10^{-1}$	$-3.24 \cdot 10^{-3}$	$2.65708 \cdot 10^{-5}$	1.00000	63.26001	2.63251	$-7.327 \cdot 10^{-2}$	$7.21233 \cdot 10^{-4}$		0.9971
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		8463	$5.01 \cdot 10^{-3}$	$-6.13325 \cdot 10^{-5}$	$1.35848 \cdot 10^{-7}$		0.99969	76.52916	$1.1223 \cdot 10^{-1}$	$-2.76 \cdot 10^{-3}$	$6.32137 \cdot 10^{-6}$		0.99999
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	i,	0524	$-3.44 \cdot 10^{-3}$				0.99105	110.65789	$2.132 \cdot 10^{-2}$	$7.79084 \cdot 10^{-4}$			0.9991
$[4301 8.493 \cdot 10^{-2} -9.5258 \cdot 10^{-4} 0.99124 9.65305 -1.518 \cdot 10^{-2} -1.32317 \cdot 10^{-4}$	· · ·	36987	$3.92 \cdot 10^{-3}$	$-6.36047 \cdot 10^{-5}$	$1.42601 \cdot 10^{-7}$		0.99989	32.96984	$1.3662 \cdot 10^{-1}$	$-2.48 \cdot 10^{-3}$	$5.80477 \cdot 10^{-6}$		0.9986
		14301	$8.493 \cdot 10^{-2}$	$-9.55258 \cdot 10^{-4}$			0.99124	9.65305	$-1.518 \cdot 10 - 2$	$-1.32317 \cdot 10^{-4}$			0.9966

^a Temperature range of 273.15 K to 298.15 K. ^b Temperature range of 303.15 K to 343.15 K.

ruble in Stundard Deviations from the Shipte 1 no rubleter frou	4. Standard Deviations from the S	Simple Two-Parameter Mode
---	-----------------------------------	---------------------------

	Mmax	temperature range		Mmax	temperature range		
system	$mol \cdot kg^{-1}$	К	present $100 \cdot \delta$	mol•kg ⁻¹	К	Pitzer 100 $\cdot\delta$	M-Pitzer 100 $\cdot \delta$
HBr	5.551	273.15 to 343.15	5.49	1.000	273.15 to 333.15	1.5	3.2
KCl	5.1776	273.15 to 343.15	2.33	4.000	273.15 to 313.15	1.7	0.78
NaCl	6.000	273.15 to 473.15	0.78	4.000	273.15 to 473.15	2.0	0.25
NaI	10.000	283.15 to 343.15	3.91	8.398	298.15 to 343.15	1.1	3.2
NaBr	9.000	283.15 to 343.15	2.49	7.981	298.15 to 498.15	2.9	2.6
KF	12.000	283.15 to 348.15	1.48				
CsI	2.595	303.15 to 343.15	1.57	2.595	298.15 to 343.15	3.0	3.0
CsCl	8.590	303.15 to 343.15	5.95	8.590	298.15 to 343.15	5.2	8.7
KI	5.648	303.15 to 343.15	1.62	5.648	298.15 to 343.15	3.8	5.3
RbCl	6.949	303.15 to 343.15	1.82	6.949	298.15 to 343.15	3.0	3.0
LiOH	5.0	273.15 to 523.15	5.92	7.219	298.15 to 473.15	0.28	3.5
NaOH	17.0	273.15 to 523.15	6.91	7.298	273.15 to 623.15	7.8	7.2
KOH	5.0	273.15 to 523.15	2.24	17.000	273.15 to 623.15	27.0	25.0
CsOH	5.0	273.15 to 523.15	2.10	5.921	298.15 to 473.15	4.1	4.2
LiBr	5.0	273.15 to 523.15	0.97	5.387	298.15 to 473.15	2.4	5.4
LiCl	6.0	273.15 to 373.15	0.34				
NaBr	5.0	273.15 to 523.15	0.79	7.981	298.15 to 498.15	2.9	2.6
KBr	5.0	273.15 to 523.15	3.02	7.434	273.15 to 498.15	7.3	7.1
CsBr	5.0	273.15 to 523.15	2.02	8.277	273.15 to 523.15	2.3	1.7
KH_2PO_4	6.0	383.15 to 523.15	8.81				
NaH_2PO_4	6.0	383.15 to 523.15	7.72				
$NaBF_4$	8.8454	288.15 to 308.15	5.72				
NaCF ₃ SO ₃	5.3755	298.15 to 323.15	1.66				
K_2HPO_4	6.0	383.15 to 523.15	5.51				
Na ₂ HPO ₄	6.0	383.15 to 523.15	8.72				
$(NH_4)_2SO_4$	6.0	273.15 to 373.15	7.93				
Cs_2SO_4	3.5095	298.15 to 323.15	5.15				
Rb_2SO_4	3.0	298.15 to 323.15	5.30				
CaI ₂	2.915	303.15 to 343.15	3.85	2.915	298.15 to 343.15	7.2	6.2
SrCl ₂	4.000	273.15 to 523.15	1.86	3.203	298.15 to 343.15	7.0	6.9
MgCl ₂	4.000	273.15 to 523.15	1.47	4.801	298.15 to 573.15	17.0	5.0
BaCl ₂	4.000	273.15 to 523.15	4.12	1.500	298.15 to 333.15	7.2	2.2
$Ca(NO_3)_2$	20.000	273.15 to 393.15	12.87	20.000	273.15 to 393.15	14.0	4.7
CaCl ₂	6.019	303.15 to 343.15	6.80	7.031	298.15 to 343.15	7.3	7.3
CaBr ₂	4.596	303.15 to 343.15	3.42	4.596	298.15 to 343.15	6.3	3.9
BaBr ₂	3.398	303.15 to 343.15	2.89	3.398	298.15 to 343.15	3.1	3.7
SrBr ₂	3.340	303.15 to 343.15	7.69	3.340	298.15 to 343.15	9.1	6.5
SrI ₂	4.156	303.15 to 343.15	2.10	4.156	298.15 to 343.15	3.1	4.5

^a Deviations from Pitzer and modified Pitzer models are from ref 37.

Figure 3. Relative deviations of calculated osmotic coefficient for NaCl at different temperatures by using the temperature-dependent parameters. \bigcirc , 273.15 K; \bigcirc , 298.15 K; \triangle , 323.15 K; \blacktriangle , 348.15 K; \square , 373.15 K; \blacksquare , 398.15 K; \bigtriangledown , 423.15 K; \blacktriangledown , 448.15 K; \diamondsuit , 473.15 K.

parameter, b, or solvation parameter, S, for some electrolytes represents a simple linear change against temperature, such as CsOH, KH₂PO₄, MgCl₂, etc., as shown in Figures 1 and 2.

We also compared our model to the Pitzer equations. Perez-Villaseñor et al.³⁷ have established the temperature dependence of a modified Pitzer model and the original one. By using the temperature-dependent parameters in Table 3, we obtained the standard deviations for each electrolyte system and listed them

Figure 4. Relative deviations of calculated mean activity coefficient for KBr at different temperatures by using the temperature-dependent parameters. \Box , 273.15 K; \blacksquare , 298.15 K; \triangle , 323.15 K; \blacktriangle , 373.15 K; \bigtriangledown , 423.15 K; \checkmark , 473.15 K; \diamond , 523.15 K.

in Table 4, along with the results obtained by Pērez-Villaseñor et al.³⁷ For all the same systems in Table 4, the average standard deviation is 3.6 % from our model, 5.9 % from the original Pitzer model, and 5.1 % from the modified one. In about 80 % of the cases, the performance of our model is better than the Pitzer model. For some 2-1 type electrolytes with the same data source, such as CaCl₂, CaBr₂, SrCl₂, and BaBr₂, etc., the performance of our model is better. It should be noted that the

Figure 5. Relative deviations of calculated mean activity coefficient for SrCl₂ at different temperatures by using the temperature-dependent parameters. \Box , 273.15 K; \blacksquare , 298.15 K; \triangle , 323.15 K; \blacktriangle , 373.15 K; \bigtriangledown , 423.15 K; \checkmark , 473.15 K; \diamond , 523.15 K.

number of parameters of the original Pitzer model used for these systems in their work is eight to ten parameters. Thus, we may have the conclusion that the performance of our model is fairly good for these systems.

Figures 3 to 5 show the distributions of the relative deviations against the concentration for NaCl, KBr, and $SrCl_2$ at a temperature range of (273.15 to 523.15) K by using the temperature-dependent parameters. From these figures, one can see that most of the realtive errors are within 10 %. The range of deviations for NaCl and KBr is smaller than that of $SrCl_2$. Another finding is that the relative large deviations always can be found at a higher temperature.

Conclusions

A simple model with two characteristic parameters, distance of closest approach parameter, *b*, and solvation parameter, *S*, was proposed to correlate the mean activity coefficient and osmotic coefficient for many aqueous electrolyte solutions across a temperature range of (273.15 to 523.15) K in a concentration range of (0 to 20) mol·kg⁻¹. We obtained the characteristic parameters for these electrolytes at different temperatures. The temperature-dependent parameters for some electrolytes are also obtained in this work. Generally, six to eight parameters are enough to describe the properties of the electrolytes across a wide temperature range. This model also showed a good performance when compared with the Pitzer equations, which means it is a good alternative for calculating the thermodynamic properties of electrolyte solutions.

Literature Cited

- Bromley, L. A. Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions. *AIChE J.* **1973**, *19*, 313–320.
 Pitzer, K. S.; Mayogra, G. Thermodynamics of Electrolytes. I.
- (2) Pitzer, K. S.; Mayogra, G. Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations. J. Phys. Chem. 1973, 77, 268–277.
- (3) Robinson, R. A.; Stokes, R. H. *Electrolyte Solutions*, 2nd ed.; London: Butterworth, 1959.
- (4) Stokes, R. H.; Robinson, R. A. Solvation Equilibria in Very Concentrated Electrolyte Solutions. J. Solution Chem. 1973, 2, 173–182.
- (5) Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B. Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. *AIChE J.* 1982, 28, 588–596.
- (6) Chen, C. C.; Evans, L. B. A Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. AIChE J. 1986, 32, 444–454.
- (7) Lu, J. F.; Yu, Y. X.; Li, Y. G. Modification and Application of the Mean Spherical Approximation Method. *Fluid Phase Equilib.* 1996, 85, 81–100.

- (8) Salimi, H. R.; Taghikhani, V.; Ghotbi, C. Application of the GV-MSA Model to the Electrolyte Solutions Containing Mixed Salts and Mixed solvents. *Fluid Phase Equilib.* 2005, 231, 67–76.
- (9) Huang, S. H.; Radosz, M. Equation of state for small, large, poly, disperse, and associating molecules. *Ind. Eng. Chem. Res.* 1990, 29, 2284–2294.
- (10) Moggia, E.; Bianco, B. Mean Activity Coefficient of Electrolyte Solutions. J. Phys. Chem. B 2007, 111, 3183–3191.
- (11) Moggia, E. Osmotic Coefficient of Electrolyte Solutions. J. Phys. Chem. B 2008, 112, 1212–1217.
- (12) Lin, C. L.; Tseng, H. C.; Lee, L. S. A three-characteristic-parameter correlation model for strong electrolyte solutions. *Fluid Phase Equilib.* **1998**, *152*, 169–185.
- (13) Ge, X. L.; Wang, X. D.; Zhang, M.; Seetharaman, S. Correlation and Prediction of Activity and Osmotic Coefficients of Aqueous Electrolytes at 298.15 K by the Modified TCPC Model. *J. Chem. Eng. Data* 2007, *52*, 538–547.
- (14) Ge, X. L.; Zhang, M.; Guo, M.; Wang, X. D. Correlation and Prediction of Thermodynamic Properties of Non-aqueous Electrolytes by the Modified TCPC Model. J. Chem. Eng. Data 2008, 53, 149–159.
- (15) Ge, X. L.; Zhang, M.; Guo, M.; Wang, X. D. Correlation and Prediction of Thermodynamic Properties of Some Complex Aqueous Electrolytes by the Modified Three-Characteristic-Parameter Correlation Model. *J. Chem. Eng. Data* **2008**, *53*, 950–958.
- (16) Silvester, L. F.; Pitzer, K. S. Thermodynamic of Electrolytes. 8. High-Temperature Properties, Including Enthalpy and Heat Capacity, with Application to Sodium Chloride. J. Phys. Chem. 1977, 81, 1822–1828.
- (17) Bradley, D. J.; Pitzer, K. S. Thermodynamic of Electrolytes. 12. Dielectric Properties of Water and Debye-Huckel Parameters to 350 °C and 1 kbar. J. Phys. Chem. 1979, 83, 1599–1603.
- (18) Spencer, R. J.; Moller, N.; Weare, J. H. The Prediction of Mineral Solubilities in Natural Waters: A Chemical Equilibrium Model for the Na-K-Ca-Mg-Cl-SO₄-H₂O System at Temperatures Below 25°C. *Geochim. Cosmochim. Acta* **1990**, *54*, 575–590.
- (19) Moller, N. The Prediction of Mineral Solubilities in Natural Waters: A Chemical Equilibrium Model for the Na-Ca-Cl-SO₄-H₂O System, to High Temperature and Concentration. *Geochim. Cosmochim. Acta* **1988**, *52*, 821–837.
- (20) Faita, G.; Mussini, T.; Oggioni, R. Thermodynamic Functions of Aqueous Hydrobromic Acid at Various Concentrations and Temperatures. J. Chem. Eng. Data 1966, 11, 162–165.
- (21) Platford, R. F. Osmotic Coefficients of Aqueous Solutions of Seven Compounds at 0°C. J. Chem. Eng. Data **1973**, 18, 215–217.
- (22) Harned, H. S.; Cook, M. A. The Thermodynamics of Aqueous Potassium Chloride Solutions from Electromotive Force Measurements. J. Am. Chem. Soc. 1937, 59, 1290–1292.
- (23) Patil, K. R.; Tripathl, A. D.; Pathak, G.; Kattl, S. S. Thermodynamic Properties of Aqueous Electrolyte Solutions.2. Vapor Pressure of Aqueous Solutions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CsBr, CsI, MgCl₂, CaCl₂, CaBr₂, CaI₂, SrCl₂, SrBr₂, SrI₂, BaCl₂, and BaBr₂. *J. Chem. Eng. Data* **1991**, *36*, 225–230.
 (24) Frank, G. H., Jr.; Scatchard, G. Liquid-Vapor Equilibrium of Aqueous
- (24) Frank, G. H., Jr.; Scatchard, G. Liquid-Vapor Equilibrium of Aqueous Lithium Chloride, from 25 to 100 °C and from 1.0 to 18.5 Molal, and Related Properties. J. Chem. Eng. Data 1973, 18, 293–298.
- (25) Gibbard, H. F., Jr.; Scatchard, G.; Rousseau, R. A.; Creek, J. L. Liquid–Vapor Equilibrium of Aqueous Sodium Chloride, from 298 to 373K and from 1 to 6 mol kg⁻¹, and Related Properties. *J. Chem. Eng. Data* **1974**, *19*, 281–288.
- (26) Jakli, G.; Alexander, V. H. W. Osmotic Coefficients of Aqueous Solutions of NaBr, NaI, KF, and CaCl₂ Between 0 ° and 90 °C. *J. Chem. Eng. Data* **1972**, *17*, 348–355.
- (27) Holmes, H. F.; Mesmer, R. E. Isopiestic Molalities for Aqueous Solutions of the Alkali Metal Hydroxides at Elevated Temperatures. *J. Chem. Thermodyn.* **1998**, *30*, 311–326.
- (28) Holmes, H. F.; Mesmer, R. E. An Isopiestic Study of Aqueous Solutions of the Alkali Metal Bromides at Elevated Temperatures. *J. Chem. Thermodyn.* **1998**, *30*, 723–741.
- (29) Holmes, H. F.; Simonson, J. M.; Mesmer, R. E. Aqueous Solutions of the Mono- and Di-hydrogenphosphate Salts of Sodium and Potassium at Elevated Temperatures. Isopiestic Results. J. Chem. Thermodyn. 2000, 32, 77–96.
- (30) Galleguillos, H. R.; Hernandez-Luis, F.; Graber, T. A.; Morales, J. W. Activity Coefficients of NaBF₄ in Aqueous Solution. *J. Chem. Thermodyn.* 2007, *39*, 1632–1636.
- (31) Rard, J. A.; Palmer, D. A.; Albright, J. G. Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous Sodium Trifluoromethanesulfonate at 298.15 K and 323.15K, and Representation with an Extended Ion-Interaction (Pitzer) Model. J. Chem. Eng. Data 2003, 48, 158–166.
- (32) Clegg, S. L.; Milioto, S.; Palmer, D. A. Osmotic and Activity Coefficients of Aqueous (NH₄)₂SO₄ as a Function of Temperature, and Aqueous (NH₄)₂SO₄-H₂SO₄ Mixtures at 298.15 and 323.15 K. *J. Chem. Eng. Data* **1996**, *41*, 455–467.

- (33) Palmer, D. A.; Rard, J. A.; Clegg, S. L. Isopiestic Determination of the Osmotic and Activity Coefficients of Rb₂SO₄(aq) and Cs₂SO₄(aq) at *T*=(298.15 and 323.15) K, and Representation with an Extended Ion-interaction (Pitzer) Model. *J. Chem. Thermodyn.* **2002**, *34*, 63– 102.
- (34) Holmes, H. F.; Mesmer, R. E. Aqueous Solutions of the Alkalineearth Metal Chlorides at Elevated Temperatures. Isopiestic Molalities and Thermodynamic Properties. J. Chem. Thermodyn. 1996, 28, 1325– 1358.
- (35) Oakes, C. S.; Felmy, A. R.; Sterner, S. M. Thermodynamic Properties of Aqueous Calcium Nitrate {Ca(NO₃)₂} to the Temperature 373 K Including New Enthalpy of Dilution Data. *J. Chem. Thermodyn.* 2000, 32, 29–54.
- (36) Akerlof, G.; Kegeles, G. Thermodynamics of Concentrated Aqueous Solutions of Sodium Hydroxide. J. Am. Chem. Soc. 1940, 62, 620– 640.
- (37) Pērez-Villaseñor, F.; Iglesias-Silva, G. A.; Hall, K. R. Temperature Dependence of a Modified Pitzer Equation for Strong Electrolytes Systems. *Ind. Eng. Chem. Res.* 2003, 42, 6962–6969.

Received for review June 30, 2008. Accepted September 22, 2008. This work was financially supported by the National Natural Science Foundation of China (No. 50425415) and National Basic Research Program of China (973 Program: 2007CB613608).

JE800483Q