Solubilities of Palmitic Acid in Pure Solvents and Its Mixtures

Beatriz Calvo, Idoia Collado, and Emilio A. Cepeda*

Departamento de Ingeniería Química, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Álava, Spain

The solubility of palmitic acid has been measured in ethanol, 2-propanol, acetone, heptane, hexane, and trichloroethylene and in the azeotropic mixtures of the solvents (ethanol-heptane; hexane-ethanol; ethanol-trichloroethylene; acetone-heptane; heptane-2-propanol; acetone-hexane; hexane-2-propanol; 2-propanol-trichloroethylene), by a dynamic method, from (290 to 325) K. Solubility data in pure solvents were fitted by the Wilson, NRTL, and UNIQUAC equations and the solubility of palmitic acid in azeotropic mixtures with the NIBS/Redlich-Kister equation. For all calculated results, the root-mean-square deviations of solubility temperatures vary from (0.2 to 0.82) K, depending on the equation used. The solubility in pure solvents decreased in the order: trichloroethylene > 2-propanol > hexane > heptane > acetone > ethanol. The solubility of the palmitic acid increased in azeotropic mixtures compared to the pure solvents, except for the ethanol-trichloroethylene mixture where the solubility was similar to the one in pure trichloroethylene.

Introduction

Palmitic acid (*n*-hexadecanoic acid) is a fatty acid obtained by the hydrolysis of triglycerides of kernel palm, palm, tallow, or coconut oil. It is used in the manufacture of soaps, cosmetic formulations, lube oils, as metallic palpitates as an additive to vegetable oil that can substitute mineral oil as a base fluid in grease making,¹ nondrying oil (surface coatings), and as a phase change material (PCM) for low-temperature latent heat thermal energy storage.² The purification and separation of mixtures of saturated fatty acids is carried out by crystallization, so the solubility in solvents is the essential data for designing and controlling the process. In this respect, some studies about its solubility in organic solvents were made.

Solubility data of palmitic acid in some solvents were reported a long time ago using impure products.³ In relation with the separation of fatty acids by fractional crystallization at low temperatures, Kolb and Brown⁴ determined the palmitic acid solubility from (-30 to 10) °C in several solvents. Maeda et al.⁵ determined its solubility in ethanol and acetone at four temperatures in the study of the acid precipitation using water as antisolvent. However, it was found that no experimental solubility data of palmitic acid in other solvents were available in the literature over a wide interval of temperatures, so an additional study is needed and also with solvent mixtures searching a synergetic effect on the solubility.

The aim of this work was to study the solid–liquid equilibrium of palmitic acid in pure solvents and in its mixtures, continuing the study on the solubility of fatty acids.⁶ The selected solvents have been permitted under the Spanish laws for fats:⁷ ethanol, 2-propanol, acetone, heptane, hexane, and trichloroethylene. The mixtures of solvents were chosen at the azeotropic concentration because they are easily regenerated by distillation with a constant composition. The azeotropic mixtures (101.325 kPa) chosen were: ethanol–heptane; hexane–ethanol; ethanol–trichloroethylene; acetone–heptane; heptane–2-propanol; acetone–hexane; hexane–2-propanol; and 2-propanol–

Table 1.	Azeotropic	Composition	of the	Binary	Solvent	Systems	in
Mole Fra	ction						

solvent 1	solvent 2	<i>T</i> /K	x_1	ref
ethanol	heptane	344.89	0.6180	19
hexane	ethanol	331.65	0.6590	20
acetone	hexane	322.75	0.6300	21
acetone	heptane	328.25	0.9000	22
hexane	2-propanol	338.95	0.8429	23
heptane	2-propanol	357.25	0.5450	24
ethanol	trichloroethylene	343.85	0.5259	25
2-propanol	trichloroethylene	348.65	0.4837	26

trichloroethylene. The activity coefficients calculated from the solubility data were fitted with the usual thermodynamic models.

Experimental Procedure

Palmitic acid (Panreac, Spain > 0.97 mass fraction) was crystallized three times from acetone. Its purity checked by gas chromatography (8700 Perkin-Elmer) was 0.998 mass fraction. The experimental melting temperature (335.8 K) of palmitic acid was 0.1 K from the reported⁸ value. When the calculations were made, a value of 53 711 J·mol⁻¹ was used for the fusion enthalpy of palmitic acid.⁸

All solvents (Panreac, analytical grade) were dried over 4 Å molecular sieves. The purity, checked by GC, was higher than 0.999 mass fraction. The compositions of the azeotropic mixtures of solvents (101.325 kPa) used in this work are given in Table 1.

The solubility was measured using a dynamic method. Details of the apparatus and its operation have been described elsewhere.⁶ Briefly, a mixture of solute and solvent with a fixed composition was first heated quickly to achieve one phase, and then, after being cooled to obtain the acid crystallization in the solvent, the sample was heated again very slowly (less than 0.1 K every 30 min) with continuous stirring inside a Pyrex glass cell immersed in a glass thermostat. The temperature at which the last crystal disappeared was detected visually, and it was taken as the solid—liquid equilibrium temperature at the fixed composition. All experiments were made at least three

* Corresponding author. Fax: 34 945 013014. E-mail: emilio.cepeda@ehu.es.

Table 2. Palmitic Acid Solubility in Pure Solvents

	acetone			ethanol		heptane			
<i>T</i> /K	γ_1	<i>x</i> ₁	<i>T</i> /K	γ_1	<i>x</i> ₁	<i>T</i> /K	γ_1	<i>x</i> ₁	
292.85	3.4236	0.0119	292.15	5.7609	0.0128	294.55	4.6133	0.0145	
297.25	2.8237	0.02	295.35	4.7826	0.0170	300.05	3.3161	0.0302	
301.65	2.3640	0.0328	297.85	4.2671	0.0232	303.05	2.5691	0.0483	
304.05	2.1403	0.0429	302.75	3.3731	0.0393	306.55	2.0628	0.0767	
306.55	1.9291	0.0566	304.15	3.0492	0.0454	308.65	1.7958	0.1016	
310.25	1.6324	0.086	306.25	2.7657	0.0565	312.05	1.5526	0.1477	
312.05	1.4444	0.1096	307.65	2.5332	0.0679	313.75	1.3705	0.1872	
315.45	1.2000	0.1649	310.05	2.1783	0.0929	315.65	1.2895	0.2252	
317.95	1.0466	0.2221	312.35	1.9497	0.1210	318.25	1.1726	0.2927	
321.05	0.9080	0.3115	313.75	1.8156	0.1425	320.55	1.1039	0.3596	
322.95	0.9015	0.3768	315.15	1.7266	0.1642	322.25	1.0637	0.4151	
			317.05	1.5614	0.2053				
			319.25	1.4679	0.2513				
			321.55	1.3154	0.3241				
			323.65	1.2296	0.3950				
	hexane		2	-propano	ol	trich	loroethy	lene	

				1 1			2	
<i>T</i> /K	γ_1	x_1	<i>T</i> /K	γ_1	x_1	<i>T</i> /K	γ_1	x_1
293.75	4.0862	0.0154	291.75	2.0135	0.0270	294.20	0.8071	0.0816
297.15	3.1613	0.0257	293.65	1.9294	0.0325	297.10	0.8136	0.1003
299.95	2.6220	0.0379	296.25	1.8278	0.0416	300.30	0.8204	0.1254
304.15	2.0184	0.0663	299.95	1.7124	0.0581	303.50	0.8263	0.1562
306.75	1.6938	0.0947	304.25	1.5163	0.0889	305.50	0.8288	0.1809
309.55	1.5102	0.1284	306.65	1.4032	0.1135	309.20	0.8411	0.2272
311.35	1.3202	0.1658	309.85	1.2979	0.1525	313.10	0.8593	0.2885
314.25	1.2045	0.2200	313.85	1.2274	0.2103	316.55	0.8813	0.3522
317.05	1.1168	0.2846	316.75	1.1911	0.2617	319.55	0.9094	0.4134
319.65	1.0534	0.3561	319.35	1.1617	0.3168	321.45	0.9218	0.4596
322.75	1.0388	0.4384	321.75	1.1259	0.3801	323.75	0.9362	0.522

times, and the results were averaged. The uncertainties of the method were \pm 0.1 K and \pm 0.0005 mol fraction for the equilibrium temperature and concentration, respectively.

Results and Discussion

Experimental results of the solid-liquid equilibria in pure solvents are listed in Table 2. The experimental solubilities of palmitic acid in acetone and ethanol show slight discrepancies at low temperatures with the values reported by Maeda et al.⁵ (Figure 1).

The activity α_i of the *i*th component in the solid–liquid equilibrium can be calculated⁹ by the following equation

Figure 1. Discrepancy between experimental and reported data for the palmitic acid solubility. In acetone: \bigcirc , experimental; \bigcirc , Maeda (1997). In ethanol: \Box , experimental; \blacksquare , Maeda (1997).

$$\ln(\alpha_i) = \ln(\gamma_i x_i) = -\frac{\Delta H_{\rm tp}}{R T_{\rm tp}} \left[\frac{T_{\rm tp}}{T} - 1 \right] + \frac{\Delta C_p}{R} \left[\frac{T_{\rm tp}}{T} - 1 \right] - \frac{\Delta C_p}{R} \ln \frac{T_{\rm tp}}{T}$$
(1)

where x_i is the mole fraction solubility and γ_i is the activity coefficient of the *i*th component at temperature *T*, respectively. ΔH_{tp} is the molar enthalpy of fusion of the *i*th solute at the triple-point temperature (T_{tp}) , and ΔC_p is the difference in solute heat capacity between the solid and liquid at the triple point. The temperature and the enthalpy of fusion (ΔH_{tp}) at the triple point can be substituted in eq 1 by the atmospheric melting points (T_f) and the enthalpy of fusion ΔH_f at T_f , respectively, because its values present little difference. The contributions of the second and third terms are often minor and negligible. The solubility equation becomes

$$\ln(\gamma_i x_i) = -\frac{\Delta H_f}{RT_f} \left[\frac{T_f}{T} - 1 \right]$$
(2)

The activity coefficients of palmitic acid in pure solvents are shown in Table 2. Positive deviations of the ideality were found $(\gamma > 1)$ except for trichloroethylene that presents solubility higher than the ideal (Figure 2). This result supports the fact that there is a breaking up of palmitic acid dimers by addition of trichloroethylene that may be due to mutual loss of dipolar associations due to similar dipole moments $(2.56 \cdot 10^{-30}/\text{C} \cdot \text{m})$ trichloroethylene; $2.40 \cdot 10^{-30}$ /C·m palmitic acid) and probably to the complexation solute-solvent. A similar result was found with stearic acid.⁶ The activity coefficients of palmitic acid in hexane and heptane are high at low temperatures (Table 2) because they were calculated with eq 2, without considering that the palmitic acid dissolves in linear hydrocarbons as a dimer.^{6,10-12} The palmitic acid solubilities in ethanol and acetone are lower due to the self-association of the solvent because its molecules would much rather be attracted to each other than to palmitic acid.

The accuracy of experimental data for a small temperature interval can be checked supposing that $\Delta H_{\rm f}$ in eq 2 was constant, then the Van't Hoff equation can be applied.^{13,14} A log plot of the solute solubility as a mole fraction in pure solvents versus

Figure 2. Solubility of palmitic acid in pure solvents: \bullet , acetone; \bigcirc , ethanol; \blacksquare , heptane; \Box , hexane; \blacklozenge , 2-propanol; \diamondsuit , trichloroethylene. The symbols represent the experimental data and the lines (-) the Van't Hoff correlation for each solvent. The line (-) represents the calculated ideal solubility (eq 2).

Table 3. Parameters and Root-Mean-Square Deviation of Wilson, NRTL, and UNIQUAC Correlation Equations for the Palmitic Acid-Pure Solvent Systems

	Wilson				NRTL^{a}			UNIQUAC				
system	Λ_1	Λ_2	$\sigma_{\rm w}/{\rm K}$	A_1	A_2	$\sigma_{\rm N}/{\rm K}$	<i>a</i> ₁₂	a_{21}	b_1	b_{21}	$\sigma_{\rm U}/{\rm K}$	
acetone	0.0565	2.3571	0.92	-3720.00	9086.72	0.55	2554.25	-342.100	-7.2350	0.5369	0.38	
ethanol	0.1218	1.5200	0.58	-2111.40	6427.06	0.82	691.98	33.068	-1.2702	-0.5086	0.34	
heptane	1.6983	0.9411	0.17	1528.94	2470.25	0.20	44.8634	57.473	0.1304	0.4415	0.21	
hexane	1.2634	1.4612	0.23	459.63	1235.75	0.25	56.9038	63.527	0.116	1.1253	0.31	
2-propanol	0.2038	1.7796	0.47	2423.96	5140.82	0.54	317.205	125.800	0.1174	0.8992	0.26	
trichloroethylene	1.3939	0.9202	0.10	-3632.00	5260.30	0.06	-145.96	-309.439	0.1586	1.6517	0.04	

 $^{\it a}$ Calculated with the third nonrandomness parameter $\alpha=0.3.$

Table 4. Palmitic Acid Solubility in Azeotropic Mixtures

	ethanol-heptane			hexane—ethanol			ethanol-trichloroethylene		
<i>T</i> /K	γ_1	<i>x</i> ₁	<i>T</i> /K	γ_1	<i>x</i> ₁	T/K	γ_1	<i>x</i> ₁	
292.25	1.0390	0.0543	293.05	0.8837	0.0678	292.05	0.6857	0.0810	
295.45	1.0455	0.0685	295.65	0.9067	0.0802	293.75	0.7206	0.0876	
298.85	1.0447	0.0880	298.85	0.9224	0.0996	297.95	0.7730	0.1114	
300.95	1.0818	0.0988	300.65	0.9251	0.1130	301.05	0.7848	0.1371	
304.45	1.0974	0.1246	304.45	0.9380	0.1458	304.95	0.8455	0.1675	
308.35	1.1050	0.1619	306.65	0.9494	0.1677	308.65	0.8803	0.2073	
311.55	1.1437	0.1939	310.75	0.9835	0.2138	311.55	0.9091	0.2440	
314.65	1.1287	0.2410	314.25	0.9639	0.2750	314.95	0.9451	0.2936	
318.65	1.1436	0.3078	317.45	0.9483	0.3438	317.65	0.9560	0.3455	
320.65	1.1072	0.3608	320.95	0.9680	0.4205	320.45	0.9883	0.3992	
323.45	1.1159	0.4262	323.35	0.9966	0.4743	322.65	0.9969	0.4541	
	acetone-heptane	e	ł	neptane-2-propar	nol		acetone-hexane		
<i>T</i> /K	γ_1	<i>x</i> ₁	<i>T</i> /K	γ_1	<i>x</i> ₁	<i>T</i> /K	γ_1	<i>x</i> ₁	
291.45	2.7976	0.0190	292.55	0.8112	0.0711	293.15	1.3938	0.0433	
294.05	2.6316	0.0245	294.65	0.8275	0.0816	294.75	1.3656	0.0498	
298.25	0.4225	0.0363	296.85	0.8358	0.0950	298.15	1.3737	0.0636	
301.55	0.2639	0.0493	300.85	0.8643	0.1227	301.25	1.3371	0.0816	
305.65	1.9541	0.0761	304.45	0.8838	0.1547	305.05	1.2351	0.1154	
310.65	1.6941	0.1233	308.15	0.9119	0.1935	307.75	1.1720	0.1465	
313.55	1.4784	0.1712	311.65	0.9553	0.2337	311.65	1.1382	0.1962	
316.45	1.4011	0.2182	314.35	0.9516	0.2803	314.75	1.0752	0.2547	
318.85	1.2725	0.2802	317.15	0.9651	0.3314	318.05	1.0797	0.3138	
321.25	1.1991	0.3459	320.05	0.9796	0.3927	320.45	1.0516	0.3751	
322.65	1.1604	0.3901	322.85	1.0218	0.4485	322.75	1.0636	0.4282	

	hexanol-2-propand	ol	2-рі	ropanol-trichloroeth	ylene
T/K	γ_1	<i>x</i> ₁	T/K	γ_1	<i>x</i> ₁
292.95	0.8746	0.0680	294.05	0.6042	0.1069
295.05	0.8766	0.0793	296.85	0.6502	0.1222
299.75	0.9202	0.1065	301.35	0.7298	0.1506
303.85	0.9333	0.1405	305.95	0.7807	0.1944
307.35	0.9676	0.1727	310.25	0.8322	0.2443
310.35	0.9629	0.2126	313.15	0.8687	0.2838
314.25	0.9626	0.2753	315.85	0.9825	0.3295
316.85	0.9782	0.3207	318.45	0.9146	0.3800
319.25	0.9794	0.3734	320.55	0.9285	0.4276
321.45	1.0047	0.4181	322.25	0.9502	0.4646
323.05	1.0194	0.4552	323.55	0.9484	0.5046

Table 5.	Parameters and	Root-Mean-Square	Deviation of the	e NIBS-Redlich	–Kister	Correlation	Equation for	the Paln	itic Acid-	-Azeotropic
Mixture S	Systems									

	NIBS-Redlich-Kister									
system	a_1	b_1	$c_1 \cdot 10^4$	a_2	b_2	$c_{2} \cdot 10^{4}$	<i>a</i> ₃	b_3	$c_{3} \cdot 10^{4}$	<i>σ</i> /K
ethanol-heptane	82.5680	-2.2878	26.2360	1055.87	1.5886	4.5910	15.8944	-0.0332	1.3890	0.00008
hexane-ethanol	-912.553	-2.5335	0.6383	5647.86	0.1480	1.4270	0.0090	-0.0032	648.917	0.00016
ethanol-trichloroethylene	105.621	-0.0183	16.5550	-385.736	-7.5110	-234.400	0.0090	-0.0033	0.6706	0.00013
acetone-heptane	13.2013	0.0033	-144.470	27.2843	-0.0012	0.3993	0.1046	-0.0016	219.964	0.00081
heptane-2-propanol	62.1922	-0.1946	0.3901	6.2456	-0.0151	-3.3991	0.0090	-0.3292	3.7303	0.00015
acetone-hexane	-75.4102	0.7495	0.3517	-38.0819	-0.1330	-4.2142	0.0090	-0.0033	-241.077	0.00014
hexane-2-propanol	69.5672	-0.3491	0.3934	82.6808	-0.1381	-0.3490	0.0900	-0.0033	3.6020	0.00013
2-propanol-trichloroethylene	12.1925	0.0069	-1.3727	9.0229	-0.0242	0.0212	1.9026	3.2590	-0.6739	0.00014

1/T should be linear. The corresponding plots are shown in Figure 2. Correlation coefficients of the straight lines are higher than 0.993.

The Wilson, NTRL, and UNIQUAC models were used for the correlation of the activity coefficients of the systems palmitic acid-pure solvent. The exact mathematical forms of the

Figure 3. Solubility of palmitic acid in azeotropic mixtures: ○, acetone-heptane; ●, acetone-hexane; ■, ethanol-heptane; □, hexane-2-propanol; ▽, heptane-2-propanol; ◆, ethanol-trichloroethylene; ◇, 2-propanol-trichloroethylene. The lines (- -) represent the Van't Hoff correlation for each mixture. The line (-) represents the calculated ideal solubility (eq 2).

equations were shown in our previous paper.⁶ In the UNIQUAC model, the values of R_k and Q_k were taken from Hansen et al.¹⁵

The parameters of the equations were calculated using Marquardt's maximum neighbor method of minimization of the objective function Ω

$$\Omega = \sum \left[T_i^{\exp} - T_i^{cal} \right]^2 \tag{3}$$

where T_{ν}^{exp} and T_{i}^{cal} are the experimental and calculated equilibrium temperature, respectively.

The root-mean-square deviation of temperature (σ) between experimental and calculated values was defined by the following equation

$$\sigma = \left[\sum_{i=1}^{n} (T_i^{\exp} - T_i^{cal})^2 / (n-1)\right]^{1/2}$$
(4)

where *n* is the number of experimental data; T_i^{exp} is the experimental temperature; and T_i^{cal} is the temperature calculated from eq 2 with the γ_i^{cal} values.

The curve-fit parameters of the Wilson, NRTL, and UNI-QUAC models and root-mean-square deviations of temperature are listed in Table 3. The best description of solid-liquid equilibrium was given by the UNIQUAC equation with the average root-mean-square deviation of temperature $\bar{\sigma}_{\rm U} = 0.26$ K. The results of correlations by use of the other models present worse average deviations, $\bar{\sigma}_{\rm w} = 0.41$ K and $\bar{\sigma}_{\rm N} = 0.40$ K for the Wilson and NTRL models, respectively.

The solubilities in the azeotropic mixtures of solvents are shown in Tables 4 and 5. As can be observed in Figure 3, the solubility increases by a synergetic effect of the mixtures with respect to pure solvents. Negative deviations of the ideality were found ($\gamma < 1$) except for the mixtures acetone—heptane, acetone—hexane, and ethanol—heptane (Table 4). The solubility increases in mixtures with alcohols with respect to pure solvents in ethanol—heptane, hexane—ethanol, heptane—2-propanol and hexane—2-propanol systems, probably because the alcohol interrupts its self-association by hydrogen bonding when it is mixed with the cosolvent, and the mixture achieves an intermediate polarity between its components. When the solvents were mixtures of trichloroethylene with ethanol or 2-propanol, the solubility improved with respect to the pure alcohol being similar to the one in pure trichloroethylene because of the formation of hydrogen bonds, probably. A similar fact was observed for trichloroethylene with branched alcohols.¹⁴

For the prediction of solute solubilities in the azeotropic mixtures of solvents, the combined nearly ideal binary solvent (NIBS)/Redlich-Kister model suggested by Acree et al.¹⁶⁻¹⁸ was used. That model is expressed as

$$\ln x_{\rm A} = x_{\rm B}^0 \ln(x_{\rm A}^{\rm sat})_{\rm B} + x_{\rm C}^0 \ln(x_{\rm A}^{\rm sat})_{\rm C} + x_{\rm B}^0 x_{\rm C}^0 \sum_{i=0}^N S_i^* (x_{\rm B}^0 - x_{\rm C}^0)$$
(5)

where x_B^0 and x_C^0 are the initial mole fractions of the binary solvent as if the solute A is not present and $(x_A^{sat})_i$ is the mole fraction solubility of the A solute in pure solvent *i*. S_i^* is the parameter of the model, and it is expressed as the following

$$S_{i}^{*} = a_{i} + b_{i}T + c_{i}T^{2}$$
(6)

The parameters and the average root-mean-square deviation of temperature are listed in Table 5. For the systems palmitic acid—azeotropic mixtures, the NIBS/Redlich—Kister correlation describes well the solubility curves.

Conclusions

The solubility of palmitic acid in pure solvents decreased in the order: trichloroethylene > 2-propanol > hexane > heptane > acetone > ethanol. The best results for the correlation of the experimental data of palmitic acid solubility in pure solvents were obtained with the UNIQUAC equation. The solubility of the palmitic acid increased in azeotropic mixtures compared to the pure solvents, except for the ethanol-trichloroethylene mixture where the solubility was similar to the one in pure trichloroethylene. The NIBS/Redlich-Kister equation predicted well the solubility in the azeotropic mixtures of solvents.

Literature Cited

- Adhvaryu, A.; Sung, C.; Erhan, S. Z. Fatty acids and antioxidant effects on grease microstructures. *Ind. Crops Products* 2005, 21 (3), 285– 291.
- (2) Karaipekli, A.; Sari, A. Capric acid and palmitic acid eutectic mixture applied in building wallboard for latent heat thermal energy storage. *J. Sci. Ind. Res.* 2007, *66* (6), 470–476.
- (3) Ralston, A. W.; Hoerr, C. W. The solubilities of the normal saturated fatty acids. J. Org. Chem. 1942, 7 (6), 546–555.
- (4) Kolb, D. K.; Brown, J. B. Low temperature solubilities of fatty acids in selected organic solvents. J. Am. Oil Chem. Soc. 1955, 32 (6), 357– 361.
- (5) Maeda, K.; Yamada, S.; Hirota, S. Binodal curve of two liquid phases and solid-liquid equilibrium for water plus fatty acid plus ethanol systems and water plus fatty acid plus acetone systems. *Fluid Phase Equilib.* **1997**, *130* (1–2), 281–294.
- (6) Calvo, B.; Cepeda, E. A. Solubility of stearic acid in Organic Solvents and in Azeotropic Solvent Mixtures. J. Chem. Eng. Data 2008, 53, 628–633.
- (7) BOE (Artículo 28) Reglamentación Técnico-Sanitaria para la elaboración, circulación y comercio de grasas comestibles, margarinas, y preparados grasos, 1981; p 12071.
- (8) Daubert, T. E.; Danner, R. P. Physical and thermodynamic properties of pure chemicals data compilation; Hemisphere Pub. Corp: New York, 1984.
- (9) Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular thermodynamics of fluid-phase equilibria; 3rd ed.; Prentice Hall PTR: Upper Saddle River, NJ, 1999.
- (10) Kowalska, T. Application of Dielectric-Constant Measurements to Determination of Hydrogen-Bond Energy of Hydrophobic Organic-Compounds. *Microchem. J.* 1977, 22 (2), 131–134.
- (11) Loveluck, G. A Dielectric Study of the Carboxylic Acid Dimer. J. Phys. Chem. 1960, 64 (4), 385–387.
- (12) Sliwiok, J.; Kowalska, T. Spectroscopic and Chromatographic Investigation of Hydrogen-Bonds in Higher Aliphatic-Acids. *Microchem.* J. 1977, 22 (2), 226–228.

- (13) Maryott, A. A.; Hobbs, M. E.; Gross, P. M. Electric polarization of carboxylic acids 0.3. A study of the association of some additional carboxylic acids in benzene solution. J. Am. Chem. Soc. 1949, 71 (5), 1671–1674.
- (14) Venkatesulu, D.; Venkatesu, P.; Rao, M. V. P. Excess volumes and viscosities of binary mixtures of trichloroethylene with branched alcohols. *Fluid Phase Equilib.* **1997**, *128* (1–2), 241–248.
- (15) Hansen, H. K.; Rasmussen, P.; Fredenslund, A.; Schiller, M.; Gmehling, J. Vapor-liquid-equilibria by Unifac group contribution. 5. Revision and extension. *Ind. Eng. Chem. Res.* **1991**, *30* (10), 2352–2355.
- (16) Acree, W. E.; Mccargar, J. W.; Zvaigzne, A. I.; Teng, I. L. Mathematical representation of thermodynamic properties. Carbazole solubilities in binary alkane + dibutyl ether and alkane + tetrahydropyran solvent mixtures. *Phys. Chem. Liquids* **1991**, 23 (1), 27–35.
- (17) Acree, W. E.; Zvaigzne, A. I. Thermodynamic properties of nonelectrolyte solutions. 4. Estimation and mathematical representation of solute activity-coefficients and solubilities in binary solvents using the Nibs and modified Wilson equations. *Thermochim. Acta* **1991**, *178*, 151–167.
- (18) Acree, W. E. Mathematical representation of thermodynamic properties 0.2. Derivation of the combined nearly ideal binary solvent (Nibs) Redlich-Kister mathematical representation from a 2-body and 3-body interactional mixing model. *Thermochim. Acta* **1992**, *198* (1), 71–79.
- (19) Van Ness, H. C.; Soczek, C. A.; Kochar, N. K. Thermodynamic excess properties for ethanol-n-heptane. J. Chem. Eng. Data 1967, 12 (3), 346–351.

- (20) Susarev, M. P.; Kudryavtseva, L. S.; Matushkevich, E. A. Concentration regions of the location and temperature shift of ternary azeotropes. *Zh. Fiz. Khim.* **1963**, *37* (12), 2672–2677.
- (21) Tanaka, T. Attempting the prediction of an azeotrope and its x-y curve on the basis of the molecular-parameters. *Fluid Phase Equilib.* 1985, 24 (3), 187–203.
- (22) Ogorodnikov, S. K.; Kogan, V. B.; Nemtsov, M. S. Separation of C5 hydrocarbons by azeotropic and extractive fractionation. III. Liquidvapor equilibrium in binary systems formed by hydrocarbons with acetone. *Zh. Prikl. Khim.* **1961**, *34*, 323–331.
- (23) Kushner, T. M.; Shleinikova, M. B.; Ryazanova, A. V.; Bakhvalov, L. A.; Serafimov, L. A. The study of azeotropy in aliphatic alcoholparaffin hydrocarbon systems at atmospheric-pressure. *Zh. Fiz. Khim.* **1981**, *55* (6), 1511–1514.
- (24) Sabarathinam, P.; Andiappan, A. Isobaric vapor-liquid-equilibria for binary-systems - normal-propanol, isopropanol, isobutanol and tertbutanol with normal-heptane. *Ind. J. Technol.* **1985**, *23* (3), 101–103.
- (25) Reinders, W.; Deminjer, C. H. Vapour-liquid equilibria in ternary systems 0.4. The system water-ethanol-trichloroethene. *Recl. Trav. Chim. Pays-Bas* **1947**, *66* (9–10), 552–563.
- (26) Lecat, M. New binary azeotropes. (Fifth list). Recl. Trav. Chim. Pays-Bas 1927, 46, 240–247.

Received for review July 31, 2008. Accepted November 14, 2008. The authors gratefully acknowledge financial support for this work provided by Ministerio de Ciencia y Tecnología of Spain, through project PPQ2001-0270-C02-01.

JE8005979