Binary Liquid–Liquid Equilibrium (LLE) for *N*-Methylformamide (NMF) + Hexadecane between (288.15 and 318.15) K and Ternary LLE for Systems of NMF + Heterocyclic Nitrogen Compounds + Hexadecane at 298.15 K

In-Chan Hwang,[†] So-Jin Park,^{*,†} Dong-Won Seo,[†] and Kyu-Jin Han[‡]

Department of Chemical Engineering, College of Engineering, Chungnam National University, Daejeon 305–764, Korea, and Department of Ammunition, Daeduk College, Daejeon 305–715, Korea

The binary liquid-liquid equilibrium (LLE) data for the system *N*-methylformamide (NMF) + *n*-hexadecane from (288.15 to 318.15) K and the ternary LLE for the systems NMF + heterocyclic nitrogen compounds (quinoline, pyridine, pyrrole, aniline, indole) + *n*-hexadecane at 298.15 K were analytically determined at atmospheric pressure by the use of stirred and thermoregulated cells. Experimental data were correlated with the NRTL and UNIQUAC activity coefficient models. The reliability of the measured LLE data were tested using the Bachman-Brown, Hand, and Othmer-Tobias equations. In addition, the extraction capability of NMF for heterocyclic nitrogen compounds was investigated with respect to distribution and selectivity.

Introduction

Air pollution by nitrogen compounds (NO_r) and particulate matter (PM) of diesel exhaust is now a serious common problem in the whole world. In the very early 2000s, most governmental regulatory limits for highway vehicle diesel were within the mass fraction range of (300 to $500) \cdot 10^{-6}$ by weight of total sulfur. However, the U.S. Environmental Protection Agency (EPA) recently passed rules requiring the use of ultra-low sulfur diesel (ULSD) for diesel vehicles, which allows a mass fraction of only $15 \cdot 10^{-6}$ of sulfur. This ULSD oil is expected to reduce NO_x and PM dramatically. So far, the hydrodesulfurization (HDS) process is most commonly used in the oil industry to reduce sulfur content in diesel fuel by converting sulfur compounds to hydrogen sulfide.¹⁻⁴ For the operation of the HDS process, heterocyclic nitrogen compounds act as inhibitors of desulfurization. This is the reason why they should be eliminated in the HDS process, and N-methylformamide (NMF) could be a good solvent for extracting nitrogen compounds from diesel oil.

Therefore, in the present study, we report the binary liquid-liquid equilibrium (LLE) data for the system of NMF + hexadecane at several temperatures from (288.15 to 318.15) K and five ternary LLE data for NMF + heterocyclic nitrogen compounds (quinoline, pyridine, pyrrole, aniline, indole) + hexadecane (model compound of diesel oil) mixtures at 298.15 K and atmospheric pressure. The experimental binary and ternary LLE data were correlated by the use of two activity coefficient models: NRTL and UNIQUAC. The Bachman-Brown, Hand and Othmer-Tobias correlations were used to ascertain the reliability of the experimental data for each system. In addition, the extraction capabilities of NMF for heterocyclic nitrogen compounds were investigated with respect to distribution and selectivity.

Table 1. Densities of Chemicals Used in These Experiments

	ρ/g•cm ³ at 298.15 K		GC analysis	UNIQUAC		
chemicals	this work	ref ^a	(wt %)	r value ^{<i>a</i>}	q value ^a	
NMF	0.78532	0.78500	> 99.7	2.4317	2.1920	
hexadecane	0.77319	0.77330	> 99.8	11.2438	9.2560	
quinoline	1.08945	1.09290^{b}	> 99.6	4.7923	3.1530	
pyridine	0.97825	0.97820	> 99.5	2.9993	2.1130	
indole	1.21668	1.21950^{b}	> 99.0	4.2820	2.6920	
pyrrole	0.96590	0.96980^{b}	> 97.0	2.5734	1.8240	
aniline	1.01742	1.01750	> 99.6	3.7165	2.8160	

Figure 1. LLE for the binary system: \bullet , NMF (1) + hexadecane (2). Solid curves were calculated from the UNIQUAC equation.

Experimental Section

Materials. Commercial grade NMF, *n*-hexadecane, pyridine, and aniline were obtained from Aldrich. Pyrrole and quinoline were obtained from Fluka and Junsei, respectively. All chemicals were dried using molecular sieves with a pore diameter of 0.4 nm. The purity of the chemicals was examined by gas

^{*} Corresponding author. Tel: +82-42-821-5684. Fax: +82-42-823-6414. E-mail: sjpark@cnu.ac.kr.

[†] Chungnam National University.

^{*} Daeduk College.

Table 2.	Experimental Data, G ^E Model Parameters, and Mean
Deviation	between the Calculated and Experimental Values for the
Binary Sy	v_{stem} of NMF (1) + Hexadecane (2)

Experimental Data						
	NMF-rich phase hexadecane-rich phase					
T/K	<i>x</i> ₁		<i>x</i> ₁	-		
293.15	0.9993		0.0009			
298.15	0.9990	0.9990 0.0011				
303.15	0.9984	0.0021				
308.15	0.9985		0.0026			
313.15	0.9988		0.0027			
318.15	0.9987		0.0029			
$G^{\rm E}$ Model						
	NRTL		UNI	QUAC		
	ij = 12	ij = 21	ij = 12	ij = 21		
$A_{ij}(K)^a$	1773.2552	4452.1926	134.5659	1890.8760		

-10.0943

-0.4634

0.0014

-2.9627

^{*a*} Parameters (*K*): $a_{ij} = A_{ij} + B_{ij}T$.

-0.8516

0.20

0.0027

 B_{ij}

α

RMSD

Figure 2. LLE for the ternary system of NMF (1) + quinoline (2) + hexadecane (3) at 298.15 K: \bigcirc , experimental value; \bigcirc , calculated value. Dashed lines were calculated from the UNIQUAC equation.

chromatography and by comparing the densities with values reported in the literature. Their impurities were less than 0.5 %, except for pyrrole (< 3.0 %) and indole (< 1.0 %). The measured densities and purities of the samples are summarized in Table 1.

Apparatus and Procedure. The self-designed LLE measuring vessel, which is similar to that of S. Horstmann et al.,⁵ was used. The equilibrium vessel was thermostatted in a thermostat (Lauda MD 20 with DLK 15 cooler) within \pm 0.02 K. The sample mixture was stirred in an equilibrium vessel for about 8 h and was then allowed to settle for more than 16 h at constant system temperature. After both phases settled, sampling was carefully carried out from the upper and lower phases without contamination of both phases. The analysis was carried out using a gas chromatograph (HP 6890N) with an HP-5 ((30 m) • (0.32 mm) • (0.25 μ m)) capillary column and a thermal conductivity detector. We estimate the uncertainty of the calculated mole fraction to be less than ca. $\pm 1 \cdot 10^{-4}$. The procedure is described in detail elsewhere.⁶

Table 3. Experimental LLE Data of the System NMF (1) + Nitrogen-Containing Compounds (2) + Hexadecane (3) at 298.15 K

	NMF-rich phase		hexadec ph	hexadecane-rich phase	
nitrogen-containing compds	<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₁₃	<i>x</i> ₂₃	
quinoline	0.9523	0.0439	0.0000	0.0283	
1	0.9283	0.0674	0.0000	0.0444	
	0.8947	0.0946	0.0000	0.0548	
	0.8421	0.1509	0.0000	0.0773	
	0.6980	0.2938	0.0000	0.1229	
	0.6529	0.3347	0.0000	0.1422	
	0.5941	0.3896	0.0000	0.1629	
	0.3371	0.4942	0.0000	0.1837	
	0.4235	0.5456	0.0000	0.2345	
	0.2536	0.6974	0.0000	0.2942	
	0.0882	0.8329	0.0000	0.3810	
	0.0358	0.8169	0.0000	0.4675	
	0.0141	0.7984	0.0000	0.5564	
pyridille	0.8649	0.0238	0.0000	0.0188	
	0.8474	0.1444	0.0000	0.0831	
	0.8088	0.1825	0.0000	0.1005	
	0.7014	0.2213	0.0000	0.1194	
	0.6195	0.3657	0.0000	0.2199	
	0.5524	0.4303	0.0000	0.2397	
	0.4895	0.4999	0.0000	0.2890	
	0.3480	0.6298	0.0000	0.3770	
	0.2886	0.6840	0.0000	0.4275	
	0.2323	0.7388	0.0000	0.4680	
	0.1436	0.8186	0.0000	0.5413	
	0.0506	0.8655	0.0000	0.6881	
рупоте	0.9185	0.0739	0.0000	0.0000	
	0.7780	0.2157	0.0000	0.0146	
	0.6466	0.3453	0.0000	0.0195	
	0.3833 0.4875	0.4082	0.0000	0.0335	
	0.4043	0.5912	0.0000	0.0683	
	0.3275	0.6654	0.0000	0.0654	
	0.2303	0.7339	0.0000	0.1179	
	0.1594	0.8319	0.0000	0.1206	
	0.1145	0.8729	0.0000	0.1369	
	0.0000	0.9125	0.0000	0.1722	
	0.0000	0.9874	0.0000	0.1735	
aniline	0.9635	0.0356	0.0000	0.0000	
	0.8782	0.1199	0.0000	0.0000	
	0.8389	0.1599	0.0000	0.0141	
	0.7888	0.2096	0.0000	0.0181	
	0.6915	0.3069	0.0000	0.0299	
	0.6315	0.3667	0.0000	0.0348	
	0.6040	0.3943	0.0000	0.0406	
	0.5086	0.4846	0.0000	0.0545	
	0.4566	0.5410	0.0000	0.0591	
	0.4307	0.6147	0.0000	0.0039	
	0.3422	0.6535	0.0000	0.0773	
	0.2869	0.7106	0.0000	0.0870	
	0.1841	0.8123	0.0000	0.1035	
	0.1274	0.8679	0.0000	0.1064	
	0.0719	0.9206	0.0000	0.1062	
indole	0.9288	0.0695	0.0000	0.0000	
	0.8588	0.1384	0.0000	0.0000	
	0.7982	0.1992	0.0000	0.0000	
	0.6725	0.3223	0.0000	0.0122	
	0.6068	0.3876	0.0000	0.0150	
	0.5366	0.4567	0.0000	0.0276	
	0.4089	0.5817	0.0000	0.0386	
	0.3498	0.6403	0.0000	0.0452	
	0.3029	0.6845	0.0000	0.0497	

Figure 3. LLE for the ternary system of NMF (1) + pyridine (2) + hexadecane (3) at 298.15 K; \bigcirc , experimental value; \bigcirc , calculated value. Dashed lines were calculated from UNIQUAC equation.

Figure 4. LLE for the ternary system of NMF (1) + pyrrole (2) + hexadecane (3) at 298.15 K: \bigcirc , experimental value; \bigcirc , calculated value. Dashed lines were calculated from the NRTL equation.

Results and Discussion

Tie Lines and Data Correlation Using NRTL and UNIQUAC. The LLE data for the binary system NMF + n-hexadecane at (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K and at atmospheric pressure are listed in Table 2 and plotted in Figure 1. The binary LLE data were correlated with the NRTL and the UNIQUAC models. The adjustable binary parameters of the NRTL and the UNIQUAC models are listed in Table 2, along with the root-mean-square deviations (RMSDs) between the experimental values and values recalculated using these two models. The UNIQUAC model gave slightly better correlation results with a 0.14 % mean deviation of the NMF mole fraction. The dashed lines in Figure 1 represent the values calculated using the UNIQUAC model.

The measured ternary LLE data for NMF + nitrogencontaining compounds (quinoline, pyridine, pyrrole, aniline,

Figure 5. LLE for the ternary system of NMF (1) + aniline (2) + hexadecane (3) at 298.15 K: \bigcirc , experimental value; \bigcirc , calculated value. Dashed lines were calculated from the UNIQUAC equation.

Figure 6. LLE for the ternary system of NMF (1) + indole (2) + hexadecane (3) at 298.15 K: \bigcirc , experimental value; ●, calculated value. Dashed lines were calculated from the UNIQUAC equation.

indole) + n-hexadecane mixtures at 298.15 K are given in Table 3. The ternary LLE data for each system are plotted in the form of Gibbs triangles in Figures 2, 3, 4, 5, and 6. The experimental LLE data points were correlated using NRTL and UNIQUAC models. We determined the constituent binary parameters of both models by minimizing the differences between the experimental and calculated mole fractions for each component over all of the measured LLE data of the ternary systems. The objective function (OF) used was

$$OF = \min \sum_{i} \sum_{j} \sum_{k} \left(x_{ijk} - x_{ijk}^{c} \right)^{2}$$
(1)

where x and x^{c} are the experimental and calculated mole fractions, respectively. The subscripts *i*, *j*, and *k* denote component, phase, and tie line, respectively. The parameters can optimized according to the mean deviation in the composi-

Table 4. NRTL and UNIQUAC Model Parameters for the Ternary Systems of NMF (1) + Nitrogen-Containing Compounds (2) + Hexadecane (3) at 298.15 K

nitrogen-containing					
compds	i-j	$(g_{ij} - g_{ii})/R$	$(g_{ji} - g_{jj})/R$	α_{ij}	RMSD
quinoline	1 - 2	- 49.718	365.390	0.20	0.0054
^ ^	2 - 3	782.170	-23.063	0.20	
	1 - 3	1064.200	1872.200	0.20	
pyridine	1 - 2	-445.860	638.340	0.20	0.0040
	2 - 3	1172.900	- 364.060	0.20	
	1 - 3	906.160	1880.800	0.20	
pyrrole	1 - 2	-618.730	330.660	0.20	0.0035
	2 - 3	1160.800	112.650	0.20	
	1 - 3	989.450	1305.600	0.20	
aniline	1 - 2	156.160	-187.620	0.20	0.0025
	2 - 3	1441.700	159.310	0.20	
	1 - 3	1314.500	1450.200	0.20	
indole	1 - 2	143.990	- 585.340	0.20	0.0021
	2 - 3	970.100	300.160	0.20	
	1 - 3	1263.900	1347.600	0.20	
nitrogen-containing		UNIQUAC para	ameters (K)		
nitrogen-containing compds	<i>i</i> — <i>j</i>	UNIQUAC para $(u_{ij} - u_{ii})/R$	ameters (K) $(u_{ji} - u_{j})$	ij)/R	RMSD
nitrogen-containing compds quinoline	$\frac{i-j}{1-2}$	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400	ameters (K) $\frac{(u_{ji} - u_{j})}{339.5}$	ij)/R	RMSD 0.0048
nitrogen-containing compds quinoline	$\frac{i-j}{1-2}$	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810	$\frac{(u_{ji} - u_{ji})}{(u_{ji} - u_{ji})}$ $\frac{(u_{ji} - u_{ji})}{339.5}$	ij)/R 20 60	RMSD 0.0048
nitrogen-containing compds quinoline	$\frac{\overline{i-j}}{1-2}$ $2-3$ $1-3$	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186	ameters (K) $(u_{ji} - u_{ji})$ 339.5 265.9 1352.2	ij)/R 20 60 00	RMSD 0.0048
nitrogen-containing compds quinoline pyridine	$ \frac{i-j}{1-2} \\ 2-3 \\ 1-3 \\ 1-2 $	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150	$\frac{(u_{ji} - u_{ji})}{(u_{ji} - u_{ji})}$ 339.5 265.9 1352.2 401.6	ij)/R 20 60 00 80	RMSD 0.0048 0.0036
nitrogen-containing compds quinoline pyridine	$ \frac{i-j}{1-2} \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 $	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550	ameters (K) $(u_{ji} - u_{j})$ 339.5 265.9 1352.2 401.6 266.7	ij)/R 20 60 00 80 10	RMSD 0.0048 0.0036
nitrogen-containing compds quinoline pyridine	$ \begin{array}{r} \hline i - j \\ 1 - 2 \\ 2 - 3 \\ 1 - 3 \\ 1 - 2 \\ 2 - 3 \\ 1 - 3 \\ 1 - 3 \end{array} $	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160	$ \frac{(u_{ji} - u_{ji})}{(u_{ji} - u_{ji})} $ $ \frac{(u_{ji} - u_{ji})$	ij)/R 220 660 000 80 110 00	RMSD 0.0048 0.0036
nitrogen-containing compds quinoline pyridine pyrrole	$ \frac{i-j}{1-2} \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 $	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -223.110	$ \frac{(u_{ji} - u_{j})}{(u_{ji} - u_{j})} $ 339.5 265.9 1352.2 401.6 266.7 1419.5 28.4	ij)/R 220 660 600 880 710 600 42	RMSD 0.0048 0.0036 0.0035
nitrogen-containing compds quinoline pyridine pyrrole	$ \begin{array}{r} \hline i - j \\ 1 - 2 \\ 2 - 3 \\ 1 - 3 \\ 1 - 2 \\ 2 - 3 \\ 1 - 3 \\ 1 - 2 \\ 2 - 3 \end{array} $	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -223.110 -59.734	$ \frac{(u_{ji} - u_{j})}{(u_{ji} - u_{j})} $ 339.5 265.9 1352.2 401.6 266.7 1419.5 28.4 522.6	ij)/R 20 60 00 80 (10 00 42 40	RMSD 0.0048 0.0036 0.0035
nitrogen-containing compds quinoline pyridine pyrrole	$ \frac{i-j}{1-2} \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 1-3 $	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -78.160 -59.734 -50.972	ameters (K) $(u_{ji} - u_j)$ 339.5 265.9 1352.2 401.6 266.7 1419.5 28.4 522.6 1063.2	ij)/R 20 60 00 80 10 00 42 40 00	RMSD 0.0048 0.0036 0.0035
nitrogen-containing compds quinoline pyridine pyrrole aniline	$ \begin{array}{r} \hline i - j \\ 1 - 2 \\ 2 - 3 \\ 1 - 3 \\ 1 - 2 \\ 2 - 3 \\ 1 - 3 \\ 1 - 2 \\ 2 - 3 \\ 1 - 3 \\ 1 - 2 \\ 1 - 3 \\ 1 - 2 \end{array} $	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -223.110 -59.734 -50.972 193.220	ameters (K) $(u_{ji} - u_j)$ 339.5 265.9 1352.2 401.6 266.7 1419.5 28.4 522.6 1063.2 -190.4	ij)/R 20 60 00 80 10 00 42 40 00 70	RMSD 0.0048 0.0036 0.0035 0.0022
nitrogen-containing compds quinoline pyridine pyrrole aniline	$\begin{array}{c} \hline i-j \\ \hline 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-2 \\ 2-3 \\ \end{array}$	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -223.110 -59.734 -50.972 193.220 35.937	$\begin{array}{c} \text{ameters } (K) \\ \hline (u_{ji} - u_{j}) \\ 339.5 \\ 265.9 \\ 1352.2 \\ 401.6 \\ 266.7 \\ 1419.5 \\ 28.4 \\ 522.6 \\ 1063.2 \\ -190.4 \\ 254.1 \end{array}$	ij)/R 20 60 000 80 10 000 42 40 000 70 30	RMSD 0.0048 0.0036 0.0035 0.0022
nitrogen-containing compds quinoline pyridine pyrrole aniline	$ \begin{array}{r} \hline i-j \\ \hline 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-$	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -223.110 -59.734 -50.972 193.220 35.937 9.682	$\frac{(u_{ji} - u_{ji})}{(u_{ji} - u_{ji})}$ $\frac{(u_{ji} - u_{ji})}{339.5}$ 265.9 1352.2 401.6 266.7 1419.5 28.4 522.6 1063.2 -190.4 254.1 1095.8	ij)/R 20 60 00 80 10 00 42 40 00 70 30 00	RMSD 0.0048 0.0036 0.0035 0.0022
nitrogen-containing compds quinoline pyridine pyrrole aniline indole	$\begin{array}{c} \hline \hline i-j \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1$	UNIQUAC para $(u_{ij} - u_{ii})/R$ -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -223.110 -59.734 -50.972 193.220 35.937 9.682 278.280	ameters (K) $(u_{ji} - u_j)$ 339.5 265.9 1352.2 401.6 266.7 1419.5 28.4 522.6 1063.2 -190.4 254.1 1095.8 -488.1	ij)/R 20 60 00 80 10 00 42 40 00 70 30 00 40	RMSD 0.0048 0.0036 0.0035 0.0022 0.0016
nitrogen-containing compds quinoline pyridine pyrrole aniline indole	$ \begin{array}{r} \hline i-j \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 2-3 \\ 1-2 \\ 2-3 \\ 1-2 \\ 2-3 \\ 1-2 \\ 2-3 \\ 1-2 \\ 2-3 \\ 1-2 \\ 2-3 \\ 1-2 \\ 2-3 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-3 \\ 1-2 \\ 1-3 \\ 1-3 \\ 1-2 \\ 1-3 $	UNIQUAC para (u _{ij} - u _{ii})/R -162.400 -111.810 -59.186 -218.150 -65.550 -78.160 -223.110 -59.734 -50.972 193.220 35.937 9.682 278.280 -105.520	ameters (K) $(u_{ji} - u_j)$ 339.5 265.9 1352.2 401.6 266.7 1419.5 28.4 522.6 1063.2 -190.4 254.1 1095.8 -488.1 412.1	ij)/R 20 60 00 80 10 00 42 40 00 70 30 00 40 00	RMSD 0.0048 0.0036 0.0035 0.0022 0.0016

Table 5. Bachman–Brown, Hand, and Othmer–Tobias Correlation of LLE Data for the Ternary Systems of NMF (1) + Nitrogen-Containing Compounds (2) + Hexadecane (3) at 298.15 K

correlation	parameter, linearity	quinoline	pyridine	pyrrole	aniline	indole
Bachman-Brown	A =	0.806	0.681	0.991	0.981	0.981
	B =	0.228	0.342	0.020	0.030	0.023
	r =	0.996	0.993	0.999	0.999	0.999
Hand	A =	1.445	1.278	1.313	1.260	0.780
	B =	0.826	0.552	1.830	1.582	0.921
	r =	0.994	0.997	0.996	0.991	0.999
Othmer-Tobias	A =	0.295	0.394	0.073	0.085	0.049
	B =	1.418	1.225	1.047	1.825	1.894
	r =	0.989	0.994	0.991	0.989	0.989

tions of coexisting phases.⁷ The binary parameters optimized are listed in Table 4 with the RMSD values between experimental and calculated data defined as

$$RMSD = \left[\frac{\sum_{i} \sum_{j} \sum_{k} (x_{ijk} - x_{ijk}^{c})^{2}}{6N}\right]^{1/2}$$
(2)

where *N* is the number of tie lines. The digit number 6 is the number of binary interaction parameters adjusted for a ternary system. The ternary LLE of each system at 298.15 K are plotted in Figures 2, 3, 4, 5, and 6. The dashed lines are calculated tie lines. The experimental and calculated LLE data agreed relatively well, as shown in the Figures. The slopes of the tie lines presented in the Figures show that quinoline, pyridine, pyrrole, aniline, and indole are more soluble in NMF than in hexadecane. All ternary systems are therefore classified as Treybal's type II⁸ because they have two partially miscible binaries. The correlated parameters of the NRTL and UNIQUAC models for ternary systems and mean deviations of comparison

Table 6. Experimental Distribution Values, *D*, and Selectivity Values, *S*, for Each Tie Line

alues, 5, 101 Each The Line			
nitrogen-containing compds	<i>x</i> ₂₁	D	S
quinoline	0.0439	1.5512	32.5207
	0.0674	1.5180	21.1718
	0.0946	1.7263	10.3939
	0.2071	1.9464	8.9946
	0.2938	2.3906	7.9158
	0.3347	2.3537	6.7811
	0.3896	2.3917	5.8922
	0.4449	2.4219	5.2520
	0.5456	2.3267	4.0358
	0.6974	2.3705	3.1759
	0.8329	2.1827	2.3938
	0.8279	1.9930	2.1311
	0.7984	1.7474	1.6125
pyridine	0.0258	1.3723	40.8435
	0.1201	2.1033	15.5687
	0.1444	1.7377	11.3871
	0.1825	1.8159	9.4975
	0.2213	1.8264	6.1166
	0.3657	1.6630	4.3706
	0.4303	1.7952	4.0106
	0.4999	1.7298	3.3884
	0.5555	1./513	3.0778
	0.6840	1.6000	2.2491
	0.7388	1.5786	2.0563
	0.7882	1.5266	1.8649
	0.8186	1.5123	1.7659
pyrrole	0.8033	1.2378	88 6456
pynole	0.2157	14.7740	66.5494
	0.3453	17.7077	50.1067
	0.4082	12.2583	29.5593
	0.5033	12.9383	25.2455
	0.6654	10.1743	15.1291
	0.7359	9.6702	13.0028
	0.8105	6.8745	8.4163
	0.8319	6.8980	8.2061
	0.9125	6.1489	6.6389
	0.9807	5.6951	5.6951
	0.9874	5.6911	5.6911
aniline	0.1599	11.3404	70.3937
	0.2096	11.5801	54.8501 42.4723
	0.3069	10.2642	33.2714
	0.3667	10.5374	28.5953
	0.3943	9.7118	24.5248
	0.4464	9.5181	21.1514
	0.5410	9.1540	16.8457
	0.5610	8.7793	15.5856
	0.6147	8.6334	14.0039
	0.6535	8.4541	12.8520
	0.7575	8 4637	11.4340
	0.8123	7.8483	9.6192
	0.8679	8.1570	9.3479
	0.9206	8.6685	9.3401
indole	0.9948	26 4 180	7.7176 80.6657
muon	0.3876	25.8400	65.7172
	0.4567	16.5471	35.7080
	0.5209	15.3658	29.0743
	0.5817	15.0699	25.4948
	0.6845	13.7726	∠1.7870 19.7570
	0.7103	13.5813	18.8184

results are given in Table 4. The experimental ternary LLE data are well correlated with both models. Their RMSDs between measured and calculated mole fractions are less than 0.5 % for almost all systems. Additionally, Bachman–Brown,⁹ Hand¹⁰ and Othmer–Tobias¹¹ correlations were used to ascertain

Figure 7. Distribution coefficient (*D*) and selectivity (*S*) against x_{21} for the ternary systems of NMF (1) + nitrogen-containing compounds (2) + hexadecane (3) at 298.15 K: \bigcirc , quinoline; \blacksquare , pyridine; \triangle , pyrrole; \blacklozenge , aniline; \blacktriangledown , indole.

the reliability of the experimental data for each system. The constants of the correlations are given in Table 5. The Bachman–Brown correlation gave the best results for almost all of the systems. The Bachman–Brown correlation is

$$x_{11}/x_{33} = Ax_{11} + B \tag{3}$$

The Hand correlation is

$$\log(x_{21}/x_{11}) = A \log(x_{23}/x_{33}) + B \tag{4}$$

The Othmer-Tobias correlation is

$$\log[(100 - x_{11})/x_{11}] = A \log[(100 - x_{33})/x_{33}] + B \quad (5)$$

where A and B are each model parameters and r is a calculated linearity.

Distribution and Selectivity. The distribution coefficient (D) of the solute (nitrogen-containing compounds) over the two liquid phases in the equilibrium is defined as

$$D = \frac{x_{21}}{x_{23}} \tag{6}$$

where x_{21} is the mole fraction of solute in the NMF-rich phase and x_{23} is the mole fraction of solute in the hexadecane-rich phase. Calculated *D* values of each solute are presented in Table 6 and plotted in Figure 7. As shown in Figure 7, the *D* values of indole, pyrrole, and aniline are greater than those of quinoline and pyridine in the measured systems. The effectiveness of the extraction of nitrogen-containing compounds by NMF could be given by its selectivity (*S*)

$$S = \frac{x_{21}(x_{21} + x_{31})}{x_{23}(x_{23} + x_{33})} \tag{7}$$

 x_{21} is the mole fraction of solute in the NMF-rich phase, x_{23} is the mole fraction of solute in the hexadecane-rich phase, and x_{31} is the mole fraction of hexadecane in the NMF-rich phase.

The experimental *S* values are also listed in Table 6 and plotted in Figure 7. As shown in Figure 7, the *S* value decreases when going through the tie-line end compositions from low to high concentrations of nitrogen-containing compounds.

Conclusions

Binary LLE data for the NMF + n-hexadecane were measured in the temperature ranging of (293.15 to 318.15) K, and ternary tie-line data for five different NMF + nitrogen-containing compounds + hexadecane systems were measured at 298.15 K. The UNIQUAC model gave a slightly better correlation result with 0.14 % mean deviation of NMF mole fraction for the binary system. All of the ternary systems are classified as Treybal's type II because they have two partially miscible binaries. They were also well correlated with the NRTL and the UNIQUAC models, and their RMSDs between the calculated and measured values were mostly less than 0.6 mol %. The Bachman–Brown correlation gave the best linearity. The *D* values of indole, pyrrole, and aniline are greater than those of quinoline and pyridine in the measured systems. Selectivity, *S*, decreases when going through the tie-line end compositions from low to high concentrations of nitrogencontaining compounds.

Literature Cited

- Landau, M. V. Deep Hydrotreating of Middle Distillates from Crude and Shale Oils. *Catal. Today* 1997, *36*, 393–429.
- (2) Van Looij, F.; Van der Laan, P.; Stork, W. H. J.; Dicamillo, D. J.; Swain, J. Key Parameters in Deep Hydrodesulfurization of Diesel Fuel. *Appl. Catalyst* **1998**, *170*, 1–12.
- (3) Colombo, A.; Battilana, P.; Ragaini, V.; Bianchi, C. L.; Carvoli, G. Liquid–Liquid Equilibria of the Ternary Systems Water + Acetic Acid + Ethyl Acetate and Water + Acetic Acid + Isophorone (3,5,5-Trimethyl-2-cyclohexen-1-one). J. Chem. Eng. Data 1999, 44, 35–39.
- (4) Mochida, I.; Sakanish, K.; Ma, X.; Nagoa, S.; Isoda, T. Deep Hydrodesulfurization of Diesel Fuel: Design of Reaction Process and Catalysts. *Catal. Today* **1996**, *29*, 185–189.
- (5) Horstmann, S.; Fischer, K.; Gmehling, J. Vapor-Liquid-Liquid Equilibria, Azeotropic, and Excess Enthalpy Data for the Binary System *n*-Undecane + Propionamide and Pure-Component Vapor Pressure and Density Data for Propionamide. *J. Chem. Eng. Data*. 2004, 49, 1494–1498.
- (6) Won, D. B.; Park, S. J.; Han, K. J.; Kim, C. J. Liquid–Liquid Equilibria for Methanol + Hexadecane + Heterocyclic Nitrogen-Containing Compounds at 298.15 K. *Fluid Phase Equilib.* **2002**, *193*, 217–227.
- (7) Novák, J. P.; Matous, J.; Pick, J. Liquid-Liquid Equilibria; Elsevier: New York, 1987.
- (8) Treybal, R. E. *Liquid Extraction*, 2nd ed.; McGraw-Hill: New York, 1963.
- (9) Brown, T. F. Distribution in Hydrocarbon Solvent Systems. Ind. Eng. Chem 1948, 40, 103–106.
- (10) Hand, D. B. Dineric Distribution. J. Phys. Chem. 1930, 34, 1961–2000.
- (11) Othmer, D. F.; Tobias, P. E. Toluene and Acetaldehyde Systems; Tie Line Correlation; Partial Pressures of Ternary Liquid Systems and the Prediction of Tie Lines. *Ind. Eng. Chem* **1942**, *34*, 693–696.
- (12) Dortmund Data Bank Software Package (DDBSP), version 2006 professional; Dortmund Data Bank Software & Separation Technology: Oldenburg, Germany, 2006. http://www.ddbst.de.

Received for review August 10, 2008. Accepted November 18, 2008. JE8006265