# Densities, Viscosities, Refractive Indices, and Surface Tensions for the Mixtures of 1,3-Dioxolane + 2-Propanol or + 2,2,4-Trimethylpentane at (288.15, 298.15, and 308.15) K and 1,3-Dioxolane + 2-Propanol + 2,2,4-Trimethylpentane at 298.15 K

# Hsu-Chen Ku

Department of Cosmetic Applications & Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, 807 Taiwan

# Chen-Chieh Wang and Chein-Hsiun Tu\*

Department of Applied Chemistry, Providence University, Shalu, 43301 Taiwan

Densities, viscosities, refractive indices, and surface tensions of a ternary system (1,3-dioxolane + 2-propanol + 2,2,4-trimethylpentane) at T = 298.15 K and two binary systems (1,3-dioxolane + 2-propanol and 1,3-dioxolane + 2,2,4-trimethylpentane) at T = (288.15, 298.15, and 308.15) K were measured over the extensive composition range at atmospheric pressure. Densities were determined using a vibrating-tube densimeter. Viscosities were measured with an automatic microviscometer based on the rolling-ball principle. Refractive indices were measured using a digital Abbe-type refractometer. Surface tensions were determined by the Wilhelmy-plate method. The excess molar volumes  $V^{\rm E}$  were calculated from the experimental density data. The results are discussed in terms of molecular interactions.

### Introduction

The reformulation of gasoline includes certain oxygenated compounds such as alcohols and ethers. These oxygenated compounds are added to improve the octane rating and pollutionreducing capability of gasoline. This work has been carried out as a part of an extensive study to investigate the thermodynamic behavior of liquid mixtures including oxygenated compounds as the basic components in an alkane liquid. The present paper is concerned with the oxygenated compounds of the type {cyclic ether or aliphatic alcohol} and the alkane liquid that generally appears in gasoline. From the viewpoint of association, cyclic ethers can be regarded as an intermediate case between alkanes (inert compounds) and alkanols (highly self-associated compounds).

For these reasons, we measured densities, viscosities, refractive indices, and surface tensions for two binary systems (1,3dioxolane + 2-propanol and 1,3-dioxolane + 2,2,4-trimethylpentane) at T = (288.15, 298.15, and 308.15) K and a ternary system (1,3-dioxolane + 2-propanol + 2,2,4-trimethylpentane) at T = 298.15 K. In the past, experimental densities and surface tensions were measured at T = 298.15 K for the 1,3-dioxolane + 2-propanol system by Calvo et al.<sup>1</sup> Experimental densities and refractive indices were reported at T = 298.15 K for the 1,3-dioxolane + 2,2,4-trimethylpentane system by Francesconi et al.<sup>2</sup> However, we are not aware of any other data in the literature for the mixtures presented in this study.

# **Experimental Section**

*Materials.* The mass purities and sources of the chemicals employed are as follows: 1,3-dioxolane (Merck, > 99.5 %), 2-propanol (Tedia, > 99.5 %), and 2,2,4-trimethylpentane (Merck, > 99.7 %). All chemicals were used without further

purification after gas chromatography failed to show any significant impurities. Comparison of our measured densities  $\rho$ , viscosities  $\eta$ , refractive indices  $n_{\rm D}$ , and surface tensions  $\sigma$  of pure components with the literature values at T = 298.15 K was shown in Table 1.

Apparatus and Procedure. Densities  $\rho$  were measured with an Anton Paar DMA-5000 vibrating-tube densimeter (Anton-Paar, Graz, Austria). Viscosities  $\eta$  were determined with an automatic microviscometer (Anton Paar type AMVn), which uses the rolling-ball principle. Refractive indices  $n_D$  were measured with an automatic Anton Paar RXA-156 refractometer, which runs with the wavelength of 589 nm corresponding to the D-ray of sodium. Surface tensions  $\sigma$  were measured with an automatic tensionmeter model CBVP-A3 (Kyowa, Japan), which works by the Wilhelmy-plate method. The detailed measuring procedures have been described in the previous studies.<sup>3,4</sup>

All samples were prepared by mass using a Precisa 262SMA balance with a precision of 0.1 mg. The uncertainty in the composition is estimated to within  $\pm 1 \cdot 10^{-4}$  mole fraction. All liquids were thermostatically controlled to within  $\pm 0.01$  K,  $\pm 0.05$  K,  $\pm 0.03$  K, and  $\pm 0.05$  K for  $\rho$ ,  $\eta$ ,  $n_{\rm D}$ , and  $\sigma$  measurements, respectively. All measurements were performed at least four times under atmospheric pressure (100.8  $\pm 0.4$ ) kPa, and the results were averaged to give the final values. The uncertainties of  $\rho$ ,  $\eta$ ,  $n_{\rm D}$ , and  $\sigma$  were estimated to be  $\pm 3 \cdot 10^{-5}$  g·cm<sup>-3</sup>,  $\pm 0.004$  mPa·s,  $\pm 0.00005$ , and  $\pm 0.05$  mN·m<sup>-1</sup>, respectively.

## **Results and Discussion**

The experimental densities  $\rho$ , viscosities  $\eta$ , refractive indices  $n_{\rm D}$ , and surface tensions  $\sigma$  for two binary systems (1,3-dioxolane + 2-propanol and 1,3-dioxolane + 2,2,4-trimethylpentane) at T = (288.15, 298.15, and 308.15) K are presented in Tables 2

<sup>\*</sup> Corresponding author. E-mail: chtu@pu.edu.tw.

and 3, respectively. Increasing temperatures from (288.15 to 308.15) K decreases the values of  $\rho$ ,  $\eta$ ,  $n_D$ , and  $\sigma$  for these two binary systems. Figure 1 contains a comparison of our experimental surface tensions with those from ref 1 at T = 298.15 K for 1,3-dioxolane + 2-propanol. Figure 2 shows our experimental refractive indices along with those from ref 2 at T = 298.15 K for 1,3-dioxolane + 2,2,4-trimethylpentane. The experimental data of  $\rho$ ,  $\eta$ ,  $n_D$ , and  $\sigma$  for the ternary system of 1,3-dioxolane + 2-propanol + 2,2,4-trimethylpentane at T = 298.15 K were shown in Table 4.

Tables 5 to 7 list the derived data of excess molar volumes  $V^{\text{E}}$  for these mixtures. The excess molar volumes were calculated from density data according to the following equation

$$V^{\rm E} = \sum_{i=1}^{N} x_i M_i \left( \frac{1}{\rho} - \frac{1}{\rho_i} \right)$$
(1)

where  $x_i$ ,  $M_i$ , and  $\rho_i$  are the mole fraction, molar mass, and density of the pure component *i*, respectively.  $\rho$  is the density of the mixture, and *N* is the number of components. The uncertainty of excess molar volumes was estimated to be less than  $\pm 5 \cdot 10^{-3}$  cm<sup>3</sup>·mol<sup>-1</sup>.

As shown in the tables, values of excess molar volume  $V^{\text{E}}$  for these two binary systems are positive. The maximum  $V^{\text{E}}$  values for 1,3-dioxolane (1) + 2-propanol (2) and 1,3-dioxolane (1) + 2,2,4-trimethylpentane (2) occurred at  $x_1 = 0.50$  and  $x_1 = 0.45$  with the values being 0.204 cm<sup>3</sup>·mol<sup>-1</sup> and 0.507

Table 1. Comparison of Measured Densities  $\rho$ , Viscosities  $\eta$ , Refractive Indices  $n_D$ , and Surface Tensions  $\sigma$  of Pure Components with Literature Values at T = 298.15 K

|                         | $(\rho)/(g \cdot cm^{-3})$ |                                                                                        | $(\eta)/(mPa \cdot s)$ |                              | ň       | l <sub>D</sub>                                                                             | $(\sigma)/(\mathrm{mN} \cdot \mathrm{m}^{-1})$ |                                                        |
|-------------------------|----------------------------|----------------------------------------------------------------------------------------|------------------------|------------------------------|---------|--------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| component               | expt                       | lit.                                                                                   | expt                   | lit.                         | expt    | lit.                                                                                       | expt                                           | lit.                                                   |
| 1,3-dioxolane           | 1.05929                    | $1.05879^a$<br>$1.058593^b$<br>$1.0591^c$<br>$1.05862^d$                               | 0.596                  | 0.5886 <sup>d</sup>          | 1.39795 | 1.3980 <sup>e</sup>                                                                        | 32.55                                          | 32.61 <sup><i>a</i></sup>                              |
| 2-propanol              | 0.78116                    | $0.78089^a$<br>$0.78126^f$<br>$0.781024^g$                                             | 2.043                  | $2.0436^{f}$<br>$2.0776^{g}$ | 1.37515 | 1.3752 <sup>f</sup>                                                                        | 20.90                                          | $20.85^a$<br>$20.95^h$<br>$20.93^i$                    |
| 2,2,4-trimethyl-pentane | 0.68795                    | $\begin{array}{c} 0.68781^{f} \\ 0.68885^{i} \\ 0.68762^{k} \\ 0.6860^{l} \end{array}$ | 0.481                  | $0.4804^k$<br>$0.4784^l$     | 1.38916 | 1.3890 <sup>b</sup><br>1.38898 <sup>f</sup><br>1.3892 <sup>j</sup><br>1.38858 <sup>l</sup> | 18.33                                          | 18.60 <sup><i>l</i></sup><br>18.32 <sup><i>m</i></sup> |

<sup>*a*</sup> Calvo et al., 2004.<sup>1 *b*</sup> Francesconi et al., 1993.<sup>2 *c*</sup> Grolier et al., 1982.<sup>5 *d*</sup> Gascón et al., 2000.<sup>6 *e*</sup> Wisniak et al., 1997.<sup>7 *f*</sup> Riddick et al., 1986.<sup>8</sup> <sup>*g*</sup> Haraschta et al., 1999.<sup>9 *h*</sup> Azizian and Bashavard, 2005.<sup>10 *i*</sup> Ouyang et al., 2003.<sup>11 *j*</sup> Aralaguppi et al., 1999.<sup>12 *k*</sup> Bouzas et al., 2000.<sup>13 *l*</sup> Gómez-Díaz, et al., 2002.<sup>14 *m*</sup> Vargaftik, 1975.<sup>15</sup>

|        | (ρ)                            | $(\eta)$ |             | $(\sigma)$                     |         | $(\rho)$                       | $(\eta)$ |             | $(\sigma)$          |
|--------|--------------------------------|----------|-------------|--------------------------------|---------|--------------------------------|----------|-------------|---------------------|
| $x_1$  | $\overline{(g \cdot cm^{-3})}$ | (mPa•s)  | $n_{\rm D}$ | $\overline{(mN \cdot m^{-1})}$ | $x_1$   | $\overline{(g \cdot cm^{-3})}$ | (mPa•s)  | $n_{\rm D}$ | $(mN \cdot m^{-1})$ |
|        |                                |          |             | T = 28                         | 8.15 K  |                                |          |             |                     |
| 0.0000 | 0.78953                        | 2.849    | 1.37933     | 21.75                          | 0.5500  | 0.93582                        | 0.779    | 1.39107     | 25.85               |
| 0.0500 | 0.80201                        | 2.285    | 1.38037     | 21.98                          | 0.6000  | 0.95011                        | 0.745    | 1.39227     | 26.43               |
| 0.1000 | 0.81465                        | 1.846    | 1.38139     | 22.23                          | 0.6500  | 0.96458                        | 0.719    | 1.39348     | 27.05               |
| 0.1500 | 0.82745                        | 1.564    | 1.38242     | 22.53                          | 0.7001  | 0.97920                        | 0.697    | 1.39473     | 27.75               |
| 0.2000 | 0.84043                        | 1.371    | 1.38343     | 22.85                          | 0.7500  | 0.99401                        | 0.682    | 1.39600     | 28.57               |
| 0.2500 | 0.85356                        | 1.221    | 1.38447     | 23.20                          | 0.8000  | 1.00900                        | 0.671    | 1.39731     | 29.47               |
| 0.3001 | 0.86686                        | 1.105    | 1.38550     | 23.57                          | 0.8500  | 1.02420                        | 0.657    | 1.39862     | 30.50               |
| 0.3500 | 0.88033                        | 1.012    | 1.38655     | 23.95                          | 0.9000  | 1.03961                        | 0.636    | 1.39993     | 31.63               |
| 0.4000 | 0.89396                        | 0.934    | 1.38763     | 24.38                          | 0.9500  | 1.05525                        | 0.635    | 1.40123     | 32.95               |
| 0.4500 | 0.90775                        | 0.874    | 1.38875     | 24.83                          | 1.0000  | 1.07124                        | 0.667    | 1.40252     | 34.37               |
| 0.5000 | 0.92170                        | 0.823    | 1.38990     | 25.32                          |         |                                |          |             |                     |
|        |                                |          |             | T = 29                         | 8.15 K  |                                |          |             |                     |
| 0.0000 | 0.78116                        | 2.043    | 1.37515     | 20.90                          | 0.5500  | 0.92502                        | 0.671    | 1.38611     | 24.92               |
| 0.0500 | 0.79333                        | 1.690    | 1.37601     | 21.22                          | 0.6000  | 0.93914                        | 0.645    | 1.38729     | 25.48               |
| 0.1000 | 0.80566                        | 1.429    | 1.37686     | 21.52                          | 0.6500  | 0.95343                        | 0.626    | 1.38850     | 26.10               |
| 0.1500 | 0.81826                        | 1.237    | 1.37776     | 21.80                          | 0.7001  | 0.96787                        | 0.611    | 1.38975     | 26.77               |
| 0.2000 | 0.83103                        | 1.099    | 1.37869     | 22.10                          | 0.7500  | 0.98251                        | 0.599    | 1.39103     | 27.53               |
| 0.2500 | 0.84397                        | 0.992    | 1.37966     | 22.40                          | 0.8000  | 0.99736                        | 0.592    | 1.39234     | 28.38               |
| 0.3001 | 0.85709                        | 0.908    | 1.38065     | 22.75                          | 0.8500  | 1.01238                        | 0.587    | 1.39368     | 29.33               |
| 0.3500 | 0.87034                        | 0.840    | 1.38168     | 23.12                          | 0.9000  | 1.02767                        | 0.585    | 1.39509     | 30.37               |
| 0.4000 | 0.88374                        | 0.784    | 1.38274     | 23.50                          | 0.9500  | 1.04329                        | 0.587    | 1.39653     | 31.43               |
| 0.4500 | 0.89731                        | 0.740    | 1.38384     | 23.93                          | 1.0000  | 1.05929                        | 0.596    | 1.39795     | 32.55               |
| 0.5000 | 0.91108                        | 0.720    | 1.38496     | 24.42                          |         |                                |          |             |                     |
|        |                                |          |             | T = 30                         | 08.15 K |                                |          |             |                     |
| 0.0000 | 0.77252                        | 1.541    | 1.37061     | 20.17                          | 0.5500  | 0.91373                        | 0.586    | 1.38121     | 24.03               |
| 0.0500 | 0.78433                        | 1.299    | 1.37126     | 20.48                          | 0.6000  | 0.92766                        | 0.568    | 1.38238     | 24.55               |
| 0.1000 | 0.79638                        | 1.126    | 1.37207     | 20.80                          | 0.6500  | 0.94179                        | 0.555    | 1.38359     | 25.15               |
| 0.1500 | 0.80869                        | 0.999    | 1.37295     | 21.10                          | 0.7001  | 0.95609                        | 0.542    | 1.38483     | 25.80               |
| 0.2000 | 0.82118                        | 0.895    | 1.37388     | 21.42                          | 0.7500  | 0.97057                        | 0.531    | 1.38608     | 26.50               |
| 0.2500 | 0.83389                        | 0.817    | 1.37483     | 21.70                          | 0.8000  | 0.98526                        | 0.525    | 1.38737     | 27.28               |
| 0.3001 | 0.84677                        | 0.756    | 1.37579     | 22.00                          | 0.8500  | 1.00013                        | 0.520    | 1.38872     | 28.10               |
| 0.3500 | 0.85980                        | 0.706    | 1.37680     | 22.33                          | 0.9000  | 1.01521                        | 0.519    | 1.39013     | 28.95               |
| 0.4000 | 0.87301                        | 0.667    | 1.37785     | 22.70                          | 0.9500  | 1.03071                        | 0.523    | 1.39165     | 29.82               |
| 0.4500 | 0.88641                        | 0.637    | 1.37894     | 23.12                          | 1.0000  | 1.04685                        | 0.535    | 1.39322     | 30.67               |
| 0.5000 | 0.89998                        | 0.609    | 1.38006     | 23.55                          |         |                                |          |             |                     |

Table 2. Experimental Densities  $\rho$ , Viscosities  $\eta$ , Refractive Indices  $n_D$ , and Surface Tensions  $\sigma$  for 1,3-Dioxolane (1) + 2-Propanol (2) Mixtures

Table 3. Experimental Densities  $\rho$ , Viscosities  $\eta$ , Refractive Indices  $n_D$ , and Surface Tensions  $\sigma$  for 1,3-Dioxolane (1) + 2,2,4-Trimethylpentane (2) Mixtures

|                       | (ρ)                            | $(\eta)$ |             | (σ)                            |        | (ρ)                            | $(\eta)$ |             | ( <i>o</i> )        |
|-----------------------|--------------------------------|----------|-------------|--------------------------------|--------|--------------------------------|----------|-------------|---------------------|
| <i>x</i> <sub>1</sub> | $\overline{(g \cdot cm^{-3})}$ | (mPa•s)  | $n_{\rm D}$ | $\overline{(mN \cdot m^{-1})}$ | $x_1$  | $\overline{(g \cdot cm^{-3})}$ | (mPa•s)  | $n_{\rm D}$ | $(mN \cdot m^{-1})$ |
| T = 288.15  K         |                                |          |             |                                |        |                                |          |             |                     |
| 0.0000                | 0.69610                        | 0.537    | 1.39408     | 19.18                          | 0.5500 | 0.82088                        | 0.561    | 1.39558     | 21.02               |
| 0.0501                | 0.70403                        | 0.529    | 1.39395     | 19.37                          | 0.6000 | 0.83870                        | 0.568    | 1.39610     | 21.32               |
| 0.1000                | 0.71238                        | 0.528    | 1.39385     | 19.55                          | 0.6500 | 0.85832                        | 0.576    | 1.39668     | 21.63               |
| 0.1500                | 0.72122                        | 0.527    | 1.39377     | 19.70                          | 0.7000 | 0.87984                        | 0.585    | 1.39734     | 22.00               |
| 0.2000                | 0.73061                        | 0.527    | 1.39374     | 19.83                          | 0.7500 | 0.90363                        | 0.595    | 1.39807     | 22.43               |
| 0.2500                | 0.74066                        | 0.528    | 1.39378     | 19.97                          | 0.8000 | 0.92995                        | 0.605    | 1.39883     | 23.00               |
| 0.3000                | 0.75151                        | 0.532    | 1.39389     | 20.08                          | 0.8500 | 0.95926                        | 0.617    | 1.39966     | 23.85               |
| 0.3500                | 0.76325                        | 0.536    | 1.39411     | 20.22                          | 0.9000 | 0.99211                        | 0.632    | 1.40055     | 25.35               |
| 0.4000                | 0.77592                        | 0.541    | 1.39440     | 20.38                          | 0.9500 | 1.02919                        | 0.651    | 1.40152     | 28.33               |
| 0.4500                | 0.78966                        | 0.547    | 1.39473     | 20.57                          | 1.0000 | 1.07124                        | 0.667    | 1.40252     | 34.37               |
| 0.5000                | 0.80459                        | 0.554    | 1.39512     | 20.78                          |        |                                |          |             |                     |
| T = 298.15 K          |                                |          |             |                                |        |                                |          |             |                     |
| 0.0000                | 0.68795                        | 0.481    | 1.38916     | 18.33                          | 0.5500 | 0.81069                        | 0.504    | 1.39068     | 20.30               |
| 0.0501                | 0.69541                        | 0.480    | 1.38898     | 18.57                          | 0.6000 | 0.82825                        | 0.511    | 1.39120     | 20.60               |
| 0.1000                | 0.70347                        | 0.478    | 1.38885     | 18.75                          | 0.6500 | 0.84756                        | 0.519    | 1.39178     | 20.93               |
| 0.1500                | 0.71211                        | 0.478    | 1.38876     | 18.92                          | 0.7000 | 0.86887                        | 0.527    | 1.39243     | 21.32               |
| 0.2000                | 0.72142                        | 0.479    | 1.38876     | 19.07                          | 0.7500 | 0.89242                        | 0.536    | 1.39318     | 21.80               |
| 0.2500                | 0.73137                        | 0.479    | 1.38883     | 19.20                          | 0.8000 | 0.91853                        | 0.546    | 1.39399     | 22.40               |
| 0.3000                | 0.74215                        | 0.480    | 1.38897     | 19.33                          | 0.8500 | 0.94766                        | 0.557    | 1.39487     | 23.32               |
| 0.3500                | 0.75376                        | 0.483    | 1.38920     | 19.47                          | 0.9000 | 0.98035                        | 0.571    | 1.39581     | 24.90               |
| 0.4000                | 0.76631                        | 0.487    | 1.38948     | 19.63                          | 0.9500 | 1.01739                        | 0.584    | 1.39683     | 27.60               |
| 0.4500                | 0.77989                        | 0.492    | 1.38982     | 19.82                          | 1.0000 | 1.05929                        | 0.596    | 1.39795     | 32.55               |
| 0.5000                | 0.79463                        | 0.498    | 1.39022     | 20.03                          |        |                                |          |             |                     |
|                       |                                |          |             | T = 30                         | 8.15 K |                                |          |             |                     |
| 0.0000                | 0.67962                        | 0.434    | 1.38497     | 17.35                          | 0.5500 | 0.80050                        | 0.453    | 1.38563     | 19.42               |
| 0.0501                | 0.68672                        | 0.431    | 1.38381     | 17.58                          | 0.6000 | 0.81780                        | 0.460    | 1.38614     | 19.72               |
| 0.1000                | 0.69459                        | 0.432    | 1.38367     | 17.78                          | 0.6500 | 0.83680                        | 0.467    | 1.38672     | 20.05               |
| 0.1500                | 0.70308                        | 0.432    | 1.38361     | 17.93                          | 0.7000 | 0.85772                        | 0.475    | 1.38739     | 20.47               |
| 0.2000                | 0.71228                        | 0.433    | 1.38360     | 18.08                          | 0.7500 | 0.88096                        | 0.484    | 1.38814     | 20.95               |
| 0.2500                | 0.72216                        | 0.433    | 1.38370     | 18.23                          | 0.8000 | 0.90676                        | 0.494    | 1.38895     | 21.57               |
| 0.3000                | 0.73281                        | 0.433    | 1.38387     | 18.37                          | 0.8500 | 0.93570                        | 0.505    | 1.38987     | 22.60               |
| 0.3500                | 0.74431                        | 0.434    | 1.38410     | 18.53                          | 0.9000 | 0.96803                        | 0.515    | 1.39090     | 24.22               |
| 0.4000                | 0.75672                        | 0.438    | 1.38440     | 18.72                          | 0.9500 | 1.00478                        | 0.526    | 1.39199     | 26.78               |
| 0.4500                | 0.77011                        | 0.442    | 1.38476     | 18.93                          | 1.0000 | 1.04685                        | 0.535    | 1.39322     | 30.67               |
| 0.5000                | 0.78466                        | 0.447    | 1.38517     | 19.15                          |        |                                |          |             |                     |

cm<sup>3</sup>·mol<sup>-1</sup>, respectively. Figure 3 contains a comparison of our  $V^{\rm E}$  values at T = 298.15 K with those from ref 1 for 1,3-dioxolane + 2-propanol and those from ref 2 for 1,3-dioxolane + 2,2,4-trimethylpentane. As expected from the behavior of binary mixtures, the  $V^{\rm E}$  values shown in Table 7



The dependence of  $V^{E}$  on both composition and temperature for the present mixtures may be explained as a balance between



**Figure 1.** Comparison of surface tension data between this work and the literature at T = 298.15 K:  $\bigcirc$ , 1,3-dioxolane (1) + 2-propanol (2);  $\bullet$ , 1,3-dioxolane (1) + 2-propanol (2) from Calvo et al.<sup>1</sup>



**Figure 2.** Comparison of refractive index data between this work and the literature at T = 298.15 K:  $\Delta$ , 1,3-dioxolane (1) + 2,2,4-trimethylpentane (2);  $\blacktriangle$ , 1,3-dioxolane (1) + 2,2,4-trimethylpentane (2) from Francesconi et al.<sup>2</sup>

Table 4. Experimental Densities  $\rho$ , Viscosities  $\eta$ , Refractive Indices  $n_D$ , and Surface Tensions  $\sigma$  for 1,3-Dioxolane (1) + 2-Propanol (2) + 2,2,4-Trimethylpentane (3) Mixtures

|        |                       | ( ho)               | $(\eta)$ |             | $(\sigma)$                     |        |        | (ρ)                 | $(\eta)$ |             | $(\sigma)$                     |
|--------|-----------------------|---------------------|----------|-------------|--------------------------------|--------|--------|---------------------|----------|-------------|--------------------------------|
| $x_1$  | <i>x</i> <sub>2</sub> | $(g \cdot cm^{-3})$ | (mPa•s)  | $n_{\rm D}$ | $\overline{(mN \cdot m^{-1})}$ | $x_1$  | $x_2$  | $(g \cdot cm^{-3})$ | (mPa•s)  | $n_{\rm D}$ | $\overline{(mN \cdot m^{-1})}$ |
| 0.0500 | 0.8999                | 0.78229             | 1.146    | 1.37685     | 20.75                          | 0.3000 | 0.5500 | 0.81680             | 0.707    | 1.38195     | 21.35                          |
| 0.0500 | 0.8000                | 0.76350             | 1.106    | 1.37813     | 20.15                          | 0.3000 | 0.4500 | 0.79666             | 0.624    | 1.38214     | 20.50                          |
| 0.0500 | 0.7000                | 0.74862             | 0.894    | 1.37941     | 19.67                          | 0.3000 | 0.3500 | 0.78020             | 0.565    | 1.38393     | 19.90                          |
| 0.0500 | 0.6000                | 0.73648             | 0.750    | 1.38111     | 19.33                          | 0.3000 | 0.2500 | 0.76651             | 0.524    | 1.38513     | 19.45                          |
| 0.0500 | 0.5000                | 0.72598             | 0.647    | 1.38223     | 19.05                          | 0.3000 | 0.1500 | 0.75513             | 0.498    | 1.38624     | 19.25                          |
| 0.0500 | 0.4000                | 0.71745             | 0.579    | 1.38341     | 18.89                          | 0.3000 | 0.0500 | 0.74610             | 0.480    | 1.38786     | 19.15                          |
| 0.0500 | 0.3000                | 0.71010             | 0.534    | 1.38475     | 18.75                          | 0.4000 | 0.5500 | 0.86710             | 0.732    | 1.38232     | 22.75                          |
| 0.0500 | 0.2000                | 0.70413             | 0.504    | 1.38608     | 18.67                          | 0.4000 | 0.4500 | 0.83913             | 0.642    | 1.38346     | 21.63                          |
| 0.0500 | 0.1000                | 0.69920             | 0.486    | 1.38729     | 18.60                          | 0.4001 | 0.3500 | 0.81687             | 0.580    | 1.38459     | 20.70                          |
| 0.0500 | 0.0500                | 0.69720             | 0.480    | 1.38811     | 18.55                          | 0.4000 | 0.2500 | 0.79872             | 0.536    | 1.38574     | 20.15                          |
| 0.1000 | 0.8500                | 0.79380             | 1.229    | 1.37716     | 21.30                          | 0.4000 | 0.1500 | 0.78387             | 0.505    | 1.38685     | 19.85                          |
| 0.1000 | 0.7500                | 0.77381             | 0.983    | 1.37847     | 20.20                          | 0.4000 | 0.0501 | 0.77130             | 0.486    | 1.38911     | 19.75                          |
| 0.1000 | 0.6500                | 0.75780             | 0.813    | 1.37991     | 19.60                          | 0.5000 | 0.4500 | 0.89280             | 0.664    | 1.38457     | 23.55                          |
| 0.1000 | 0.5500                | 0.74473             | 0.693    | 1.38125     | 19.33                          | 0.5000 | 0.3500 | 0.86220             | 0.596    | 1.38563     | 22.20                          |
| 0.1000 | 0.4501                | 0.73378             | 0.611    | 1.38247     | 19.12                          | 0.5000 | 0.2500 | 0.83768             | 0.549    | 1.38665     | 21.20                          |
| 0.1000 | 0.3500                | 0.72461             | 0.556    | 1.38365     | 18.97                          | 0.5000 | 0.1501 | 0.81784             | 0.518    | 1.38772     | 20.45                          |
| 0.1000 | 0.2501                | 0.71696             | 0.518    | 1.38481     | 18.85                          | 0.5000 | 0.0500 | 0.80159             | 0.496    | 1.38884     | 20.10                          |
| 0.1000 | 0.1500                | 0.71062             | 0.494    | 1.38635     | 18.75                          | 0.6000 | 0.3500 | 0.91920             | 0.617    | 1.38691     | 24.40                          |
| 0.1000 | 0.0500                | 0.70550             | 0.479    | 1.38791     | 18.65                          | 0.6000 | 0.2500 | 0.88574             | 0.567    | 1.38785     | 22.65                          |
| 0.2000 | 0.7500                | 0.81762             | 0.988    | 1.37896     | 21.75                          | 0.6000 | 0.1500 | 0.85920             | 0.531    | 1.38885     | 21.25                          |
| 0.2000 | 0.6500                | 0.79495             | 0.817    | 1.38002     | 20.75                          | 0.6000 | 0.0500 | 0.83772             | 0.509    | 1.38991     | 20.70                          |
| 0.2000 | 0.5500                | 0.77654             | 0.695    | 1.38137     | 20.05                          | 0.7000 | 0.2500 | 0.94608             | 0.588    | 1.38936     | 25.35                          |
| 0.2000 | 0.4500                | 0.76211             | 0.615    | 1.38236     | 19.70                          | 0.7000 | 0.1500 | 0.91004             | 0.549    | 1.39024     | 22.85                          |
| 0.2000 | 0.3500                | 0.74992             | 0.556    | 1.38358     | 19.45                          | 0.7000 | 0.0500 | 0.88126             | 0.527    | 1.39123     | 21.45                          |
| 0.2000 | 0.2500                | 0.73966             | 0.558    | 1.38493     | 19.25                          | 0.8000 | 0.1500 | 0.97400             | 0.574    | 1.39287     | 26.65                          |
| 0.2000 | 0.1500                | 0.73108             | 0.491    | 1.38642     | 19.05                          | 0.7999 | 0.0501 | 0.93509             | 0.547    | 1.39285     | 23.25                          |
| 0.2000 | 0.0500                | 0.72430             | 0.475    | 1.38753     | 18.87                          | 0.8999 | 0.0500 | 1.00250             | 0.573    | 1.39523     | 27.85                          |
| 0.3000 | 0.6500                | 0.84181             | 0.826    | 1.38071     | 22.25                          |        |        |                     |          |             |                                |

Table 5. Excess Molar Volumes  $V^{E}$  for 1,3-Dioxolane (1) + 2-Propanol (2) Mixtures

|                       | $(V^{\rm E})$                         |        | $(V^{\rm E})$                         |         | $(V^{\rm E})$                         |        | $(V^{\rm E})$                         |  |  |  |  |
|-----------------------|---------------------------------------|--------|---------------------------------------|---------|---------------------------------------|--------|---------------------------------------|--|--|--|--|
| <i>x</i> <sub>1</sub> | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $x_1$  | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $x_1$   | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $x_1$  | $(\text{cm}^3 \cdot \text{mol}^{-1})$ |  |  |  |  |
| <i>T</i> = 288.15 К   |                                       |        |                                       |         |                                       |        |                                       |  |  |  |  |
| 0.0500                | 0.035                                 | 0.3001 | 0.139                                 | 0.5500  | 0.149                                 | 0.8000 | 0.102                                 |  |  |  |  |
| 0.1000                | 0.066                                 | 0.3500 | 0.145                                 | 0.6000  | 0.144                                 | 0.8500 | 0.083                                 |  |  |  |  |
| 0.1500                | 0.092                                 | 0.4000 | 0.150                                 | 0.6500  | 0.135                                 | 0.9000 | 0.063                                 |  |  |  |  |
| 0.2000                | 0.111                                 | 0.4500 | 0.152                                 | 0.7001  | 0.128                                 | 0.9500 | 0.036                                 |  |  |  |  |
| 0.2500                | 0.125                                 | 0.5000 | 0.153                                 | 0.7500  | 0.116                                 |        |                                       |  |  |  |  |
|                       | T = 298.15 K                          |        |                                       |         |                                       |        |                                       |  |  |  |  |
| 0.0500                | 0.051                                 | 0.3001 | 0.180                                 | 0.5500  | 0.199                                 | 0.8000 | 0.140                                 |  |  |  |  |
| 0.1000                | 0.096                                 | 0.3500 | 0.190                                 | 0.6000  | 0.191                                 | 0.8500 | 0.118                                 |  |  |  |  |
| 0.1500                | 0.126                                 | 0.4000 | 0.198                                 | 0.6500  | 0.181                                 | 0.9000 | 0.092                                 |  |  |  |  |
| 0.2000                | 0.150                                 | 0.4500 | 0.203                                 | 0.7001  | 0.173                                 | 0.9500 | 0.052                                 |  |  |  |  |
| 0.2500                | 0.165                                 | 0.5000 | 0.204                                 | 0.7500  | 0.158                                 |        |                                       |  |  |  |  |
|                       |                                       |        | T = 30                                | )8.15 K |                                       |        |                                       |  |  |  |  |
| 0.0500                | 0.071                                 | 0.3001 | 0.242                                 | 0.5500  | 0.260                                 | 0.8000 | 0.180                                 |  |  |  |  |
| 0.1000                | 0.129                                 | 0.3500 | 0.254                                 | 0.6000  | 0.251                                 | 0.8500 | 0.153                                 |  |  |  |  |
| 0.1500                | 0.170                                 | 0.4000 | 0.263                                 | 0.6500  | 0.236                                 | 0.9000 | 0.126                                 |  |  |  |  |
| 0.2000                | 0.203                                 | 0.4500 | 0.266                                 | 0.7001  | 0.223                                 | 0.9500 | 0.078                                 |  |  |  |  |
| 0.2500                | 0.223                                 | 0.5000 | 0.266                                 | 0.7500  | 0.203                                 |        |                                       |  |  |  |  |

positive contributions (hydrogen bond rupture or dispersive interactions between unlike molecules) and negative contributions (intermolecular dipolar interactions or geometrical fitting between components). In the present investigation, 1,3-dioxolane is associated through the dipole-dipole interaction, and 2-propanol is associated through the hydrogen bonding of its hydroxyl group. The 2,2,4-trimethylpentane molecules do not exhibit this property because they have no atoms having that ability.

In our binary systems, the values of excess molar volume  $V^{\rm E}$  for 1,3-dioxolane + 2,2,4-trimethylpentane are larger than those for 1,3-dioxolane + 2-propanol. Larger  $V^{\rm E}$  values in the mixtures of 1,3-dioxolane with 2,2,4-trimethylpentane may lead us to believe that the contribution to the  $V^{\rm E}$  values occurred from the cleavage of the O–O interaction between 1,3-dioxolane molecules. Smaller values of  $V^{\rm E}$  observed in the 1,3-dioxolane + 2-propanol mixtures imply that a weak dispersion type interaction likely exists between these two molecules. Despite the non-negligible degree of cyclic diethers–alkanol complex-

ation by a hydrogen bond, such association between unlike molecules, as happens in the 1,3-dioxolane + 2-propanol mixtures, is not significant to offset the positive contribution to  $V^{\text{E}}$ .

### Conclusion

This paper reports the experimental data of densities  $\rho$ , viscosities  $\eta$ , refractive indices  $n_{\rm D}$ , and surface tensions  $\sigma$  for two binary systems (1,3-dioxolane + 2-propanol and 1,3-dioxolane + 2,2,4-trimethylpentane) at T = (288.15, 298.15, and 308.15) K and a ternary system (1,3-dioxolane + 2-propanol + 2,2,4-trimethylpentane) at T = 298.15 K. Increasing temperatures from (288.15 to 308.15) K decreases the values of  $\rho$ ,  $\eta$ ,  $n_{\rm D}$ , and  $\sigma$  for binary mixtures. A good agreement was found between our data and the literature results of excess molar volume  $V^{\rm E}$  at T = 298.15 K for these two binary systems. Increasing temperatures increases the values of  $V^{\rm E}$ . The values

Table 6. Excess Molar Volumes  $V^{E}$  for 1,3-Dioxolane (1) + 2,2,4-Trimethylpentane (2) Mixtures

|                       | $(V^{\rm E})$                         |        | $(V^{\rm E})$                                    |         | $(V^{\rm E})$                                    |        | $(V^{\rm E})$                         |  |  |
|-----------------------|---------------------------------------|--------|--------------------------------------------------|---------|--------------------------------------------------|--------|---------------------------------------|--|--|
| <i>x</i> <sub>1</sub> | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $x_1$  | $\overline{(\text{cm}^3 \cdot \text{mol}^{-1})}$ | $x_1$   | $\overline{(\text{cm}^3 \cdot \text{mol}^{-1})}$ | $x_1$  | $(\text{cm}^3 \cdot \text{mol}^{-1})$ |  |  |
|                       |                                       |        | T = 28                                           | 38.15 K |                                                  |        |                                       |  |  |
| 0.0501                | 0.051                                 | 0.3000 | 0.356                                            | 0.5500  | 0.374                                            | 0.8000 | 0.151                                 |  |  |
| 0.1000                | 0.108                                 | 0.3500 | 0.381                                            | 0.6000  | 0.342                                            | 0.8500 | 0.108                                 |  |  |
| 0.1500                | 0.175                                 | 0.4000 | 0.398                                            | 0.6500  | 0.294                                            | 0.9000 | 0.067                                 |  |  |
| 0.2000                | 0.246                                 | 0.4500 | 0.402                                            | 0.7000  | 0.248                                            | 0.9500 | 0.028                                 |  |  |
| 0.2500                | 0.311                                 | 0.5000 | 0.394                                            | 0.7500  | 0.197                                            |        |                                       |  |  |
| T = 298.15 K          |                                       |        |                                                  |         |                                                  |        |                                       |  |  |
| 0.0501                | 0.141                                 | 0.3000 | 0.476                                            | 0.5500  | 0.481                                            | 0.8000 | 0.236                                 |  |  |
| 0.1000                | 0.240                                 | 0.3500 | 0.497                                            | 0.6000  | 0.452                                            | 0.8500 | 0.176                                 |  |  |
| 0.1500                | 0.325                                 | 0.4000 | 0.506                                            | 0.6500  | 0.410                                            | 0.9000 | 0.115                                 |  |  |
| 0.2000                | 0.387                                 | 0.4500 | 0.507                                            | 0.7000  | 0.355                                            | 0.9500 | 0.062                                 |  |  |
| 0.2500                | 0.445                                 | 0.5000 | 0.499                                            | 0.7500  | 0.295                                            |        |                                       |  |  |
|                       |                                       |        | T = 30                                           | )8.15 K |                                                  |        |                                       |  |  |
| 0.0501                | 0.209                                 | 0.3000 | 0.557                                            | 0.5500  | 0.555                                            | 0.8000 | 0.325                                 |  |  |
| 0.1000                | 0.329                                 | 0.3500 | 0.571                                            | 0.6000  | 0.531                                            | 0.8500 | 0.244                                 |  |  |
| 0.1500                | 0.423                                 | 0.4000 | 0.577                                            | 0.6500  | 0.495                                            | 0.9000 | 0.177                                 |  |  |
| 0.2000                | 0.482                                 | 0.4500 | 0.580                                            | 0.7000  | 0.451                                            | 0.9500 | 0.095                                 |  |  |
| 0.2500                | 0.528                                 | 0.5000 | 0.572                                            | 0.7500  | 0.389                                            |        |                                       |  |  |

Table 7. Excess Molar Volumes  $V^{E}$  for 1,3-Dioxolane (1) + 2-Propanol (2) + 2,2,4-Trimethylpentane (3) Mixtures

|        |                       | $(V^{\rm E})$                         |        |                       | $(V^{\rm E})$           |        |                       | $(V^{\rm E})$                         |        |                       | $(V^{\rm E})$           |
|--------|-----------------------|---------------------------------------|--------|-----------------------|-------------------------|--------|-----------------------|---------------------------------------|--------|-----------------------|-------------------------|
| $x_1$  | <i>x</i> <sub>2</sub> | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $x_1$  | <i>x</i> <sub>2</sub> | $(cm^3 \cdot mol^{-1})$ | $x_1$  | <i>x</i> <sub>2</sub> | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $x_1$  | <i>x</i> <sub>2</sub> | $(cm^3 \cdot mol^{-1})$ |
| 0.0500 | 0.8999                | 0.139                                 | 0.1000 | 0.4501                | 0.677                   | 0.3000 | 0.5500                | 0.457                                 | 0.5000 | 0.2500                | 0.536                   |
| 0.0500 | 0.8000                | 0.319                                 | 0.1000 | 0.3500                | 0.718                   | 0.3000 | 0.4500                | 0.583                                 | 0.5000 | 0.1501                | 0.579                   |
| 0.0500 | 0.7000                | 0.435                                 | 0.1000 | 0.2501                | 0.706                   | 0.3000 | 0.3500                | 0.671                                 | 0.5000 | 0.0500                | 0.555                   |
| 0.0500 | 0.6000                | 0.511                                 | 0.1000 | 0.1500                | 0.613                   | 0.3000 | 0.2500                | 0.727                                 | 0.6000 | 0.3500                | 0.264                   |
| 0.0500 | 0.5000                | 0.623                                 | 0.1000 | 0.0500                | 0.420                   | 0.3000 | 0.1500                | 0.730                                 | 0.6000 | 0.2500                | 0.390                   |
| 0.0500 | 0.4000                | 0.653                                 | 0.2000 | 0.7500                | 0.247                   | 0.3000 | 0.0500                | 0.584                                 | 0.6000 | 0.1500                | 0.452                   |
| 0.0500 | 0.3000                | 0.672                                 | 0.2000 | 0.6500                | 0.435                   | 0.4000 | 0.5500                | 0.294                                 | 0.6000 | 0.0500                | 0.451                   |
| 0.0500 | 0.2000                | 0.594                                 | 0.2000 | 0.5500                | 0.613                   | 0.4000 | 0.4500                | 0.463                                 | 0.7000 | 0.2500                | 0.240                   |
| 0.0500 | 0.1000                | 0.443                                 | 0.2000 | 0.4500                | 0.670                   | 0.4001 | 0.3500                | 0.579                                 | 0.7000 | 0.1500                | 0.317                   |
| 0.0500 | 0.0500                | 0.306                                 | 0.2000 | 0.3500                | 0.725                   | 0.4000 | 0.2500                | 0.647                                 | 0.7000 | 0.0500                | 0.348                   |
| 0.1000 | 0.8500                | 0.195                                 | 0.2000 | 0.2500                | 0.748                   | 0.4000 | 0.1500                | 0.651                                 | 0.8000 | 0.1500                | 0.178                   |
| 0.1000 | 0.7500                | 0.370                                 | 0.2000 | 0.1500                | 0.711                   | 0.4000 | 0.0501                | 0.632                                 | 0.7999 | 0.0501                | 0.215                   |
| 0.1000 | 0.6500                | 0.503                                 | 0.2000 | 0.0500                | 0.531                   | 0.5000 | 0.4500                | 0.287                                 | 0.8999 | 0.0500                | 0.109                   |
| 0.1000 | 0.5500                | 0.600                                 | 0.3000 | 0.6500                | 0.303                   | 0.5000 | 0.3500                | 0.431                                 |        |                       |                         |

of  $V^{\rm E}$  for 1,3-dioxolane + 2,2,4-trimethylpentane are larger than those for 1,3-dioxolane + 2-propanol. The  $V^{\rm E}$  values are positive at all compositions. The predominant contributions to this excess property are most likely from the breaking of the hydrogen



**Figure 3.** Variation of excess molar volume  $V^{\text{E}}$  with mole fraction  $x_1$  for the binary systems at T = 298.15 K:  $\bigcirc$ , 1,3-dioxolane (1) + 2-propanol (2);  $\bullet$ , 1,3-dioxolane (1) + 2-propanol (2) from Calvo et al.;<sup>1</sup>  $\triangle$ , 1,3-dioxolane (1) + 2,2,4-trimethylpentane (2);  $\blacktriangle$ , 1,3-dioxolane (1) + 2,2,4-trimethylpentane (2);  $\bigstar$ , 1,3-dioxolane (1) + 2,2,4-trimethylpentane (2) from Francesconi et al.<sup>2</sup>

bonding interactions between alcohols and the O–O interaction between 1,3-dioxolane molecules.

### Literature Cited

- (1) Calvo, E.; Pintos, M.; Amigo, A.; Bravo, R. Surface Tension and Density of Mixtures of 1,3-Dioxolane + Alkanols at 298.15 K: Analysis under the Extended Langmuir Model. J. Colloid Interface Sci. 2004, 272, 438–443.
- (2) Francesconi, R.; Comelli, F.; Malta, V. Isothermal Vapor-Liquid Equilibria, Densities, Refractive Indexes, Excess Enthalpies, and Excess Volumes of 1,3-Dioxolane or Oxolane + Isooctane at 298.15 K. J. Chem. Eng. Data 1993, 38, 424–427.
- (3) Wang, C. C.; Chen, H. W.; Tu, C. H. Densities, Viscosities, and Refractive Indices for Binary and Ternary Mixtures of Ethanol, 2-Methylpropan-2-ol, and 2,2,4-Trimethylpentane. *J. Chem. Eng. Data* 2005, 50, 1687–1693.
- (4) Sheu, Y. W.; Tu, C. H. Refractive Indices and Surface Tensions of Binary Mixtures of Ethyl Acetoacetate, Ethyl Isovalerate, Methyl Benzoate, Benzyl Acetate, Ethyl Salicylate, and Benzyl Propionate with Ethanol at (288.15, 298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2006, 51, 1690–1697.
- (5) Grolier, J. P. E.; Ingles, A.; Wilhelm, E. Excess Enthalpies of Binary Systems of Cyclic Ether + Cyclohexane. J. Chem. Eng. Data 1982, 27, 333–335.
- (6) Gascón, I.; Mainar, A. M.; Royo, F. M.; Urieta, J. S.; Alvarez-Cerdeiriña, L. Experimental Viscosities and Viscosity Predictions of the Ternary Mixture (Cyclohexane + 1,3-Dioxolane + 2-Butanol) at 298.15 and 313.15 K. J. Chem. Eng. Data 2000, 45, 751–755.
- (7) Wisniak, J.; Embon, G.; Shafir, R. Isobaric Vapor-Liquid Equilibria in the Systems Methyl 1,1-Dimethylethyl Ether + 1,3-Dioxolane and Methyl 1,1-Dimethylethyl Ether + 2,2'-Oxybis[propane]. J. Chem. Eng. Data 1997, 42, 673–676.
- (8) Riddick, A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Physical Properties and Method of Purification, 4th ed.; Wiley Interscience: New York, 1986.
- (9) Haraschta, P.; Heintz, A.; Lehmann, J. K.; Peters, A. Excess Molar Volumes and Viscosities of Binary Mixtures of 4-Methylpyridine with

Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, and 2-Methylpropan-2-ol at 298.15 K and Atmospheric Pressure. J. Chem. Eng. Data **1999**, 44, 932–935.

- (10) Azizian, S.; Bashavard, N. Surface Tensions of Dilute Solutions of Linear Alcohols in Benzyl Alcohol. J. Chem. Eng. Data 2005, 50, 1303–1307.
- (11) Quyang, G.; Huang, Z.; Ou, J.; Wu, W.; Kang, B. Excess Molar Volumes and Surface Tensions of Xylene with 2-Propanol or 2-Methyl-2-propanol at 298.15 K. J. Chem. Eng. Data 2003, 48, 195–197.
- (12) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, Viscosity and Speed of Sound in Binary Mixtures of Cyclohexanone with Hexane, Heptane, Octane, Nonane, Decane, Dodecane and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1999, 44, 43–438.
- (13) Bouzas, A.; Burguet, M. C.; Montón, J. B.; Muñoz, R. Densities, Viscosities, and Refractive Indices of the Binary Systems Methyl *tert*-Butyl Ether + 2-Methylpentane, + 3-Methylpentane, + 2,3-Dimeth-

ylpentane, + and 2,2,4-Trimethylpentane at 298.15 K. J. Chem. Eng. Data 2000, 45, 331–333.

- (14) Gómez-Díaz, D.; Mejuto, J. C.; Navaza, J. M.; Rodríquez-Álvarez, A. Viscosities, Densities, Surface Tensions, and Refractive Indexes of 2,2,4-Trimethylpentane + Cyclohexane + Decane Ternary Liquid Systems at 298.15 K. J. Chem. Eng. Data 2002, 47, 872–875.
- (15) Vargaftik, N. B. Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed.; Hemisphere Publishing Co.: Washington D.C., 1975.

Received for review July 31, 2008. Accepted October 21, 2008. The authors wish to extend their deep gratitude for the support by the National Science Council of the Republic of China under grant NSC 95-2221-E-126-010-MY3.

JE800664Z