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The Stokes-Einstein relation, relating the self-diffusion coefficient D to the shear viscosity η (D ) kBT/
2πησ), is tested for two- and three-dimensional fluids. The influence of attractive potential and temperature
on the validity of the Stokes-Einstein relation by employing square-well potential is analyzed. A breakdown
of the Stokes-Einstein relation is observed at low temperatures for three-dimensional fluid by using the
Nigra and Evans11 model and with that obtained from the velocity autocorrelation function10 and for two-
dimensional fluids by using the Garcia-Rojo et al.12 model for hard discs.

Introduction

The problem of accurately predicting transport properties of
simple fluid over a wide range of densities and temperatures
has been a central concern in recent years. The transport
properties are less amenable to accurate theoretical calculation
and require computationally intense molecular dynamic simula-
tions, hence the continuing interest in their study. Through a
natural, although adhoc, extension of the dilute gas Boltzmann
equation, Enskog transport theory1 provided the first prediction
of the transport coefficients of the hard sphere fluid and opened
the way to the calculation of transport properties of real dense
fluids. In addition to the aforementioned problems, the transport
coefficients tend to make their molecular understanding appear
even more complex and discouraging. Therefore, the complex
and difficult task would be made less daunting if there were
some rigorous or sufficiently accurate relations between the
various transport coefficients. One such typical relation is the
Stokes-Einstein relation that relates the self-diffusion coefficient
D to the shear viscosity η for dense fluid.

The Stokes-Einstein relation for three-dimensional fluids

is an important hydrodynamic law relating the diffusion
coefficient D of the Brownian particles and the fluid shear
viscosity η. This combines the Einstein relation D ) {kBT/�}
for D and Stokes law � ) cησ for the frictional force � on a
sphere in a fluid. In eq 1, kB is Boltzmann constant; T is absolute
temperature; C is a numerical constant determined by the
hydrodynamic boundary condition; and σ is the diameter of the
hard sphere particle. In the recent past, the Stokes-Einstein
(S-E) relation was supposed to be valid. Now, it has been
observed that the S-E relation fails under certain conditions.
In the present work, we consider the validity of the S-E relation
in the presence of attractive intermolecular forces in a simple
derivation of the Stokes-Einstein relation. We consider the
square-well fluid in which the time correlation (tcf) of inter-
molecular forces arises from repulsion and attraction.

Recently, Liu et al. 2 have tested the Stokes-Einstein relation
for a 2D Yukawa fluid. In the present work, we have tested the
validity of the Stokes-Einstein relation over a wide range of
densities for hard discs.

Theory

Knowledge of the velocity time correlation function (tcf)
allows calculation of transport coefficients which describe the
displacement of mass, momentum, and energy through the
system in response to a perturbation. Although the Green-Kubo
relations3,4 are often used to relate the integral of a correspond-
ing time correlation function to its transport coefficient, it is
difficult to implement in a reference system such as the hard
spheres due to a singularity in the time correlation function.
Thus, alternative approaches are considered such as the memory
function R(t) is considered rather than the velocity autocorre-
lation function. Alder et al.5 used a mean-square displacement
approach to calculate transport coefficients of the hard sphere
system. Evans6 employed a generalized Langevin equation of
the form7,8

where CV(t) is the velocity tcf

and m is the mass of the particle; kBT is the thermal energy; fE

is the Enskog friction drag arising from the uncorrelated binary
collisions; and R(t) is the memory function arising from
correlated events. The Enskog friction fE is given by
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where Z is the collision frequency per particle; VF is the relative
thermal velocity; y ) (π/6)Fσ3 is the packing fraction; the
contact pair correlation function, gHS(σ), for a hard sphere fluid
and can be calculated from the Carnahan and Starling equation
as

The dynamical variable in the memory function arises from
the binary collision operator and is ř δ(r - σ), where r is the
center-to-center distance for a specific pair of hard spheres and
σ is the hard sphere diameter. The decay of the memory function
is governed by a time correlation function of the form

So that the frequency-dependent memory function is

The t ) 0 value of the C1(t) tcf is not trivial to derive. Merely
substituting t ) 0 into the tcf yields infinity. However, the
memory function from its zero time value is derived by Tang
et al.9 as

evaluated under the assumption that three-body dynamical events
were significant. Using the zero time value of the memory
function (eq 6a and 7)

Thus, the velocity correlation function can be written as6

where

where D(s) is the frequency-dependent diffusion coefficient.
Now, the diffusion coefficient can be defined as

Hence the diffusion coefficient can be solved as

and the final expression for the reduced diffusion coefficient
can be written as

Here gHS(σ) is the pair correlation function for the hard sphere
system. We have obtained the self-diffusion coefficient for a
square well fluid by using the Chapman-Enskog method of
solution by replacing the pair correlation function gHS(σ) in eq
12 by gSQ(σ) as

where gSW(σ) and gSW(λσ) are the radial distribution functions
evaluated at the points σ and λσ, respectively.

Hence, velocity correlation function for square-well fluids can
be written as

The reduced diffusion coefficient for square-well fluids can be
written as

For square-well fluid, the pair correlation function gSW(σ) can
be written in high-temperature approximation (HTA)

where a1
SW is the first-order perturbation term associated with

attractive energy as given below

where ηeff and gHS(λσ) are defined in our recent work.10 Equation
16 is very useful for Chemical Engineers for the chemical
products whose theoretical thermodynamic and transport proper-
ties do not match with experimental results for square-well
fluids.
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ĥ1(s) ) 1

1 + x + (1 + x)-1

x ) � s2σ2

2D(s)

D )
kBT

m
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To calculate the Stokes-Einstein relation values, we have
employed the following equation proposed by Evans6

or

where ηE is the Enskog viscosity arising from uncorrelated
binary collisions and ηSW is the viscosity for square-well fluids
for uncorrelated and correlated binary collision and ηE can be
determined as

where

fE and ω are already defined by eq 4.
To test the validity of our results, a comparison is also made

with the theory formulated by Nigra and Evans.11 The diffusion
coefficient (in reduced units) proposed by Nigra and Evans11

can be solved as

where

The shear viscosity (in reduced unit) proposed by Nigra and
Evans11 can be written as

where

The shear viscosity (in reduced units) can be obtained from
eq 23 by employing the Stokes-Einstein relation from eq 19.

For 2D fluids, unlike 3D fluids, the Stokes-Einstein relation
is lacking and is not well established. However, recently Garcia-
Rojo et al.12 have calculated transport coefficients for hard discs.
The self-diffusion coefficient from the Enskog equation in the
first Sonine approximation for d ) 2, that is13

Here T is the temperature; kB is the Boltzmann constant; σ is
the diameter of the hard discs; m is their masses; and g1(σ) is
the value of the equilibrium pair correlation function at contact,
which is a function of the density F.

Three different expressions for the pair correlation function
at contact are provided by Henderson,14 Luding,15 and Garcia-
Rojo et al.12 However, they do not show any effect on the
Stokes-Einstein relation. The results just overlap each other.

The shear viscosity of hard discs is given by12

where y1 ) (π/4)Fσ2, the packing fraction

Our aim is to calculate the S-E relation for 2D fluids. The
2D S-E relation is given by2

where C2D ) 1.69 as proposed by Liu et al.2

Thus, the Stokes-Einstein relation for 2D fluids can be
written as

Result and Discussion

The square-well fluid is the simplest one possessing the basic
characteristic of real fluids. In the recent past, several
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theories6,9,16-20 have been developed to establish accurate
expressions for the self-diffusion coefficient of the hard sphere
system. One such theory is developed by Evans6 to calculate
the velocity time correlation function for a hard sphere system.
We apply this approach to calculate self-diffusion coefficient
and shear viscosity of square-well fluids and hence the
Stokes-Einstein relation. The attractive feature of the square-
well fluids in the Chapman-Enskog theory is the radial
distribution function at the point of contact, i.e., the radial
distribution function at the distance of the centers of the
molecules at the moment of a collision for square-well
molecules. In the present work, this characteristic feature has
been explored by calculating pair correlation function at contact
in a high-temperature approximation21,22 for square-well fluids.
The numerical results of the Stokes-Einstein relation are
calculated from eq 19. Figure 1 shows the Stokes-Einstein
relation for a square-well fluid. Figure 1 predicts that the
Stokes-Einstein relation is sharply dependent on the temper-
ature at lower densities, while it tends to unity at higher densities
and similar to a hard sphere system in medium and high
densities. It is also investigated that at lower densities [(2πηSWD-
SWσ)/kBT ] tends to deviate to lower values with increasing well
depth ε* (i.e., T*-1). This is in agreement with molecular
dynamics results.23,24 Most of the literature is concerned with
the hard sphere system and simply discusses the failure of the
Stokes-Einstein at low temperatures and not the variation of
the Stokes-Einstein relation with temperature.

To examine the validity of our results for the Stokes-Einstein
relation at low temperatures, we have also calculated the shear
viscosity directly and with that obtained from diffusion coef-
ficients by employing the Stokes-Einstein relation. Both the
expressions of shear viscosity and diffusion coefficient are
derived by Nigra and Evans11 under the same conditions. Two
results are compared and presented in Figure 2 for λ ) 1.5 at
T* ) 3, 2, and 1.5. It is evident from Figure 2 that the shear
viscosity obtained by employing the Stokes-Einstein results
tends to deviate at low temperatures from the results obtained
directly from shear viscosity expression. This deviation shows
that the Stokes-Einstein relation fails for low-temperature
liquids.

For 3D liquids, the failure of the Stokes-Einstein relation is
well-known. For 2D liquids, earlier results suggest that the
Stokes-Einstein relation should not be valid at all as the
transport coefficients D and η are not valid. Now, it has been
shown in several simulation results25-28 that the shear viscosity

coefficient η and diffusion coefficient D are meaningful.
Recently, Liu et al.2 have performed equilibrium molecular
dynamic simulations with a Yukawa pair potential. The
Stokes-Einstein relation is tested in the regimes 124 < Γ <
145 where motion is diffusive and D is meaningful in 2D liquids.
They observed the deviation from linear scaling for Γ > 124
near the disorder transition that indicates a violation of the
Stokes-Einstein relation due to decoupling of diffusive and
viscous transport. They found that the diffusion coefficient is
larger than would be expected if the S-E relation was valid.
We performed the calculation of the S-E relation using eq 30,
and the results are shown in Figure 3. It can be seen that the
S-E does not remain valid at low densities as also observed
for 3D liquids. We have also performed calculations for different

Figure 1. Stokes-Einstein relation for square-well fluids. The solid line is
for T* ) 2, the big dashed line for T* ) 3, and the dash-dotted line for T*
) 5, and the small dashed line represents SE relation for a hard sphere
system. On the x-axis the reduced density and on the y-axis the
Stokes-Einstein relations are plotted.

Figure 2. Comparison of the reduced shear viscosity of square-well fluid
obtained from the direct expression of shear viscosity and with that obtained
by employing the SE relation from the Nigra and Evans model for T* ) 3,
2, and 1.5 from top to bottom, respectively. Dotted lines (.....) represent
the results from the Nigra and Evans model,11 and dash dot ( · - ·-) lines
represent the results from the Stokes-Einstein relations. On the x-axis the
reduced density and on the y-axis the reduced shear viscosity are plotted.

Figure 3. Stokes-Einstein relation for hard discs at different densities. On
the x-axis the reduced density and on the y-axis the Stokes-Einstein relation
are plotted.
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expressions of pair correlation functions at contact14,15,12

However, we have found no change in the plot of the S-E
relation as a function of F* despite the fact there is a significant
change in the values of the pair correlation function at contact
described by the authors of refs 14, 15 and 12. This may be
due to the fact that changes in D and η due to different pair
correlation functions at contact may nullify each other.

Conclusion

In the present work, it has been shown that the Stokes-Einstein
relation fails for square-well fluids at low temperatures. In most
of the literature, the failure of the Stokes-Einstein relation has
been shown for the hard sphere system. We have investigated
that the hard sphere system can be transformed into square-
well fluids by employing eq 13. Evans6 has calculated velocity
correlation and diffusion coefficients for hard sphere system,
while we have calculated is for square-well fluids. The
importance of Figure 1 is that it shows the variation of the
Stokes-Einstein relation with temperature for square-well fluids,
while in the literature only failure of the Stokes-Einstein
relation at low temperature has been predicted for the hard
sphere system. To show the changes in the Stokes-Einstein
relation from hard sphere to square-well fluids, the hard sphere
results are plotted in Figure 1. The Stokes-Einstein relation
for square-well fluids may coincide with the Stokes-Einstein
relation of hard sphere fluids by raising the temperature when
square-well fluid becomes automatically hard sphere fluid.
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