Standard Molar Enthalpy of Formation of $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O$ (Hsal = Salicylate $C_7H_5O_3^-$, tch = Thioprolinate $C_4H_6NO_2S^-)^{\dagger}$

Li Xu, Xiao Sheng-Xiong, Li Qiang-Guo,* Ye Li-Juan, Yang De-Jun, and Jiang Jian-Hong

Department of Chemistry and Life Science, Xiangnan University, Chenzhou, Hunan 423000, China

The product from the reaction of neodymium chloride hexahydrate with salicylic acid and thioproline, $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O$, was synthesized and characterized by IR, elemental analysis, molar conductance, thermogravimetric analysis, and chemical analysis. The standard molar enthalpies of solution of $NdCl_3 \cdot 6H_2O(s)$, $[2C_7H_6O_3(s)]$, $C_4H_7NO_2S(s)$, and $[Nd(Hsal)2 \cdot (tch)] \cdot 2H_2O(s)$ in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide (DMSO), and $3 \mod \cdot L^{-1}$ HCl were determined by calorimetry to be $\Delta_s H_m^{\Theta}[NdCl_3 \cdot 6H_2O(s), 298.15 \text{ K}] = -(51.94 \pm 0.14) \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta_s H_m^{\Theta}[2C_7H_6O_3(s), 298.15 \text{ K}] = (52.96 \pm 0.48) \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta_s H_m^{\Theta}[C_4H_7NO_2S(s), 298.15 \text{ K}] = (23.50 \pm 0.23) \text{ kJ} \cdot \text{mol}^{-1}$, and $\Delta_s H_m^{\Theta}[NdCl_3 \cdot 6H_2O(s), 298.15 \text{ K}] = -(41.76 \pm 0.50) \text{ kJ} \cdot \text{mol}^{-1}$. The enthalpy change of the reaction $NdCl_3 \cdot 6H_2O(s) + 2C_7H_6O_3(s) + C_4H_7NO_2S(s) = [Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s) + 3HCl(g) + 4H_2O(l)$ was determined to be $\Delta_r H_m^{\Theta} = (172.57 \pm 0.75) \text{ kJ} \cdot \text{mol}^{-1}$. From data in the literature, through Hess' law, the standard molar enthalpy of formation of $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ was estimated to be $\Delta_r H_m^{\Theta} [Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ was estimated to be $\Delta_r H_m^{\Theta} [Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$.

Introduction

It is known that rare earth ions and salicylic acid are antibacterial.¹⁻⁶ Thioproline possesses some special functions such as prolonging body life, controlling drug toxicity, and catalyzing plant growth and, in particular, functions as anticancer drugs, which can make cancer cells revert to normal cells.⁷ The synthesis and characterization of the rare earth complexes with thioproline and salicylic acid have been reported, and their research applications in experiments were carried out on Escherichia coli,8 indicating that the catalysis of the ternary complexes of rare earth ions against Escherichia coli was more significant than that of their ligands, thioproline, and salicylic acid. Obviously, it is very important to carry out research on the rare earth complex of thioproline and salicylic acid. The standard molar enthalpy of formation of the complex has not yet been reported. As commonly known, it is necessary to obtain basic thermodynamic properties as the basis for theoretical research and industrial design when they are synthesized and developed industrially.

In this paper, the standard molar enthalpies of solution of $[NdCl_3 \cdot 6H_2O(s)], [2C_7H_6O_3(s)], [C_4H_7NO_2S(s)], and <math>[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide (DMSO), and 3 mol·L⁻¹ HCl at 298.15 K are reported. By a thermochemical cycle, the molar enthalpy of the reaction

$$NdCl_{3} \cdot 6H_{2}O(s) + 2C_{7}H_{6}O_{3}(s) + C_{4}H_{7}NO_{2}S(s) = [Nd(Hsal)_{2} \cdot (tch)] \cdot 2H_{2}O(s) + 3HCl(g) + 4H_{2}O(l) (1)$$

and the standard molar enthalpy of formation of $[Nd(Hsal)_2 \cdot tch] \cdot 2H_2O(s)$ were obtained.

Experimental Section

Chemicals and Instruments. The chemicals $NdCl_3 \cdot 6H_2O(s)$ (>99%), salicylic acid $C_7H_6O_3(s)$ (>99.5%), and KCl (>99.99%) were obtained from the Shanghai Reagent Company. L-Thioproline ($C_4H_7NO_2S$, s) (>99.5%) was from Wuhan University Hoyo Co., Ltd.

NdCl₃·6H₂O(s) was dried in a desiccator containing sulfuric acid (60 %)¹ at room temperature, and C₇H₆O₃(s) and C₄H₇NO₂S(s) were dried in a vacuum desiccator containing P₄O₁₀ to constant mass. KCl (calorimetric primary standard) of purity greater than 99.99 % was dried in a vacuum oven for 6 h at 135 °C.

An elemental analyzer (Perkin-Elmer 2400 CHN, USA), an FT-IR spectrometer (Avatar 360, with KBr pellets, USA), a thermogravimetric analyzer (Perkin-Elmer TG6, at a heating rate of 10 °C·min⁻¹ flowing in N₂, USA), an Abbe refractometer (WAY, Shanghai, China), an ultraviolet–visible spectrotometer (U-3010, Hitachi, Japan), a solution-reaction isoperibol calorimeter (SRC 100, constructed by the thermochemical laboratory of Wuhan University, China), and a conductometer (DDS-12A, Shanghai, China) were used.

Synthesis and Characterization of $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$. A mass of 0.04 mol of powdered salicylic acid $C_7H_6O_3(s)$ was dissolved in 30 cm³ of absolute ethyl alcohol (solution I). Sodium salicylate solution was formed when an aqueous solution of 10 % NaOH (0.04 mol of NaOH) was added into solution I (solution II). A mass of 0.02 mol of powdered thioproline was dissolved in 50 cm³ of distilled water (solution III) at 333.15 K in a water-bath. A solution mixture was obtained when solution II was added into solution III (solution IV). A mass of 0.02 mol of powdered NdCl₃·6H₂O was dissolved in 40 cm³ of distilled water (solution V). White crystals were separated out when solution IV was added slowly into solution V at 333.15 K in a water-bath after 11 h of magnetic stirring. The solution was left to settle down at pH 5.0 to 6.0 over 12 h. Finally, the white

^{*} To whom correspondence may be addressed. Fax: +86-735-2653129. E-mail: liqiangguo@163.com.

[†] Part of the "Gerhard M. Schneider Festschrift".

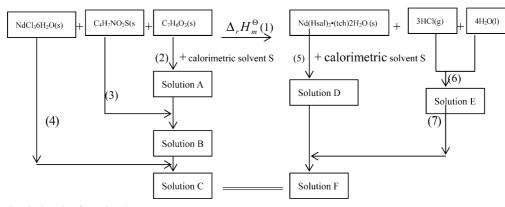


Figure 1. Thermochemical cycle of reaction 1.

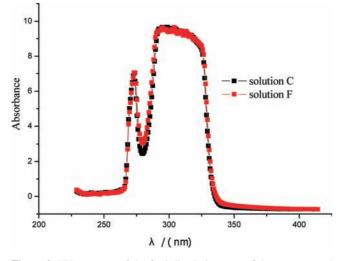


Figure 2. UV spectrum of the final dissolution state of the reactants and products.

solid complex was obtained by filtration in a vacuum and washed with absolute ethyl alcohol three times and several portions of hot distilled water many times at 343.15 K. The product was put into a desiccator in a vacuum at 333.15 K for 24 h and kept until the mass of the crystals became constant. The chemical composition of the synthetic sample was determined by elemental analysis for C, H, and N, by EDTA titration for Nd^{3+,9} by mercury salt titration for Cl⁻, and by difference and TG-DTG curves for H₂O. The analysis results proved that the composition of the complex was [Nd(Hsal)₂•(tch)]•2H₂O(s), and its purity was >99.1 %.

Solution-Reaction Isoperibol Calorimety and Calibration. The solution-reaction isoperibol calorimeter (SRC 100) has been detailed elsewhere.¹⁰ A Dewar vessel with an internal volume of 100 mL, equipped with a twin-blade stirrer, was submerged in the water thermostat. The precisions of temperature control and temperature measurement were \pm 0.001 K and \pm 0.0001 K, respectively.

The calibration of the calorimeter was carried out by measuring the dissolution enthalpies of THAM (NBS 742a, USA) in 0.0001 mol·cm⁻³ HCl and KCl (calorimetric primary standard) in water at 298.15 K. The mean dissolution enthalpies were (-29 776 ± 16) J·mol⁻¹ for THAM and (17 597 ± 17) J·mol⁻¹ for KCl, which agree with published data [(-29 766 ± 31.5) J·mol⁻¹ for THAM¹¹ and (17 536 ± 9) J·mol⁻¹ for KCl¹²].

Table 1. Dissolution Enthalpies of $[2C_7H_6O_3(s)]$, $[C_4H_7NSO_2(s)]$, $[NdCl_3 \cdot 6H_2O(s)]$, and $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ in the Calorimetric Solvent S at 298.15 $K^{a,b}$

				$\Delta_{\rm s} H_{\rm m}^{\Theta}$
system	no.	<i>m</i> (g)	<i>t</i> (s)	$(kJ \cdot mol^{-1})$
$C_4H_7NSO_2(s)$ in S	1	0.0335	40.74	23.4359
	2	0.0334	64.89	23.7289
	3	0.0334	67.44	23.7473
	4	0.0334	63.21	23.3491
	5	0.0333	56.16	23.2407
$\Delta_{\rm s} H_{\rm m}^{\Theta}[{\rm C}_4{\rm H}_7{\rm NSO}_2({\rm s}), 298.15$	K] = 0	(23.50 ± 0)	0.23) kJ•	mol^{-1c}
$2C_7H_6O_3(s)$ in the solution A	1	0.0692	91.46	533653
	2	0.0692	81.32	52.2209
	3	0.0691	97.58	53.0947
	4	0.0688	73.79	53.3445
	5	0.0692	77.18	52.7597
$\Delta_{\rm s} H^{\Theta}_{\rm m}(3) = \Delta_{\rm s} H^{\Theta}_{\rm m}[2{\rm C}_7{\rm H}_6{\rm O}_3({\rm s}), 29]$	98.15 K	[K] = (52.9)	6 ± 0.48	B) kJ•mol ^{−1}
$NdCl_3 \cdot 6H_2O(s)$ in the solution B	1	0.0897	60.66	-51.7751
	2	0.0894	62.46	-51.9785
	3	0.0897	51.49	-52.1542
	4	0.0897	54.27	-51.9229
	5	0.0898	64.23	-51.8520
$\Delta_{\rm s} H_{\rm m}^{\Theta}(4) = \Delta_{\rm s} H_{\rm m}^{\Theta}[{\rm NdCl}_3 \cdot 6{\rm H}_2 {\rm G}_3 \cdot 6{\rm H}_2 {\rm H}_2 {$	D(s), 29	98.15 K] =	= (21.79	± 0.35)
kJ·	mol^{-1}			
$[La(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ in S	1	0.1458	25.54	-42.1987
	2	0.1457	51.62	-41.8552
	3	0.1460	56.69	-41.3876
	4	0.1458	56.91	-42.2587
	5	0.1460	56.74	-41.1067
$\Delta_{\rm s} H_{\rm m}^{\Theta}(5) = \Delta_{\rm s} H_{\rm m}^{\Theta}[\rm Nd(Hsal)]$	$_2 \cdot (tch)$	$\cdot 2H_2O(s)$, 298.15	K] =
-(41.76 ±				-
solution D + solution E	1	0.0451	83.17	-66.3927
	2	0.0453	83.17	-66.1676
	3	0.0441	83.44	-66.4431
	4	0.0451	71.01	-66.5198
	5	0.0455	85.24	-66.3346
$\Delta_{\rm s} H_{\rm m}^{\Theta}(7) = -(66.$	37 ± 0	0.13) kJ•n	$10l^{-1}$	

^{*a*} *n*: molar number of sample. ^{*b*} *t*: heating period of electrical calibration. ^{*c*} Uncertainty was estimated as twice the standard deviation of the mean of the results.

Table 2. Analytical Results of the Complex [Nd $(C_7H_5O_3)_2\text{-}(C_4H_6NO_2S)]\text{-}2H_2O\ (\%)$

complex	С	Н	S	Ν	Nd
$[Nd(C_7H_5O_3)_2(C_4H_6NO_2S)] \cdot 2H_2O$ theoretical values	36.85	3.44	5 47	2 30	24.59
experimental data	36.71		5.88		24.37

Determination of Dissolution Enthalpies. $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ can be regarded as the product of the reaction 1

$$NdCl_{3} \cdot 6H_{2}O(s) + 2C_{7}H_{6}O_{3}(s) + C_{4}H_{7}NO_{2}S(s) = [Nd(Hsal)_{2} \cdot (tch)] \cdot 2H_{2}O(s) + 3HCl(g) + 4H_{2}O(l) (1)$$

and the thermochemical cycle was designed as shown in Figure 1.

Table 3. IR Absorption of Ligands and Complex (cm⁻¹)

0 _{0-H}	$\delta_{ m N-H}$	$v_{\rm s}^{\rm COO^-}$	$\nu_{\rm as}^{\rm COO^-}$	$\nu_{\rm N-H}$	$\nu_{\rm C-O}$	$\nu_{\rm O-H}$	compound
1475	1622	1424	1556	2059	1663	2598	C ₇ H ₆ O ₃
	1032	1.00.	1336 1461 (1389)	2020	2922	3398	[Nd(Hsal) ₂ •
	1632	1434 1623	1556 1461 (1389)	3058 1560 (1596)			$C_4H_7NO_2S$

The UV spectrum and refractive indices of the final solution of the reactants and the final solution of the products can be used to determine if they have the same thermodynamic state. In the present experiments, we determined the spectrum and refractive indices of solution C and solution F and found for both of them the same UV spectrum (Figure 2) and equal refractive indices ($\eta_{25^{\circ}C} = 1.4102$), which proves that both have the same thermodynamic state and that the thermochemical cycle of reaction 1 is reliable.

The chosen calorimetric solvent must dissolve the chemicals in the sample cell completely and very rapidly. The calorimetric solvent (S) of dimethyl sulfoxide (DMSO) and absolute ethyl alcohol and 3 mol·L⁻¹ HCl (V_{DMSO} : V_{EtOH} : $V_{HCl} = 1:1:1$) is the most appropriate solvent for this experiment. Rigorous control of the stoichiometry was maintained through each series of experiments to ensure that the final solutions resulting from the dissolution of the reactants were of the same composition as those from the dissolution of the products.

The thioproline $C_4H_7NO_2S(s)$ was ground in an agate mortar, and a sample (0.033 g) was placed into a sample cell in a calorimeter. The calorimetric solvent (100 cm³) was added into the reaction vessel. The calorimeter was adjusted to a constant temperature of 298.15 K, and the dissolution enthalpy was determined. A series of five experiments were performed.

$$C_4H_7NO_2S(s) + S \rightarrow solution A$$
 (2)

where S is the calorimetric solvent (100 cm³). The solution A above was kept in the reaction vessel. Powdered salicylic acid $C_7H_6O_3(s)$ (0.069 g) was put into the sample cell. A series of five experiments was performed.

$$2C_7H_6O_3(s) +$$
solution A \rightarrow solution B (3)

The solution B above was kept in the reaction vessel. Powdered NdCl₃· $6H_2O(s)$ (0.090 g) was put into the sample cell. A series of five experiments were performed.

$$NdCl_3 \cdot 6H_2O(s) + solution B \rightarrow solution C$$
 (4)

Powdered $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ (0.147 g) was put into the sample cell in the calorimeter, and the calorimeter solvent (100 cm^3) was added into the reaction vessel. The calorimeter was adjusted to a constant temperature of 298.15 K, and the dissolution enthalpy was determined. A series of five experiments were performed.

$$[Nd(Hsal)_{2} \cdot (tch)] \cdot 2H_{2}O(s) + S \rightarrow solution D$$
 (5)

where S is the calorimetric solvent (100 cm³). A mass of 1.5 mmol of HCl(g) was mixed into 2.0 mmol of $H_2O(1)$

1.5 mmol of HCl(g) + 2.0 mmol of
$$H_2O(l) \rightarrow$$
 solution E

(6)

The solution D above was kept in the reaction vessel. Solution E was put into the sample cell. A series of five experiments were performed.

solution D + solution E
$$\rightarrow$$
 solution F (7)

The calorimetric results of reactions 2 to 5 and 7 are listed in Table 1.

Results and Discussion

Elemental Analyses and Infrared Spectra. Analytical results for the complex and proposed formula are given in Table 2. The determined results coincide with the theoretical ones very well.

Frequencies of characteristic absorption bands in the IR spectra (cm⁻¹) for the ligands and complex are given in Table 3.

There are five characteristic bands observed for salicylic acid:¹³ v_{OH}^{COOH} (hydrogen bond intramolecular, 3237 cm⁻¹, s), ν_{OH}^{COOH} (hydrogen bond intermolecular, 2857 cm⁻¹, s), ν_{O-H} (COOH, 2598 cm⁻¹, s), ν_{C-0} (COOH, 1663 cm⁻¹, vs) and $\delta_{\rm O-H}$ (phenol, 1475 cm⁻¹, s). All these bands disappeared after complex formation except the band due to the angular deformation of the OH group. At the same time, two new absorption bands due to the carboxylate groups $v_{as}^{COO^-}$ (1594 cm⁻¹, s) and $v_s^{COO^-}$ (1387 cm⁻¹, s) appeared, indicating that the oxygen atoms of the carboxylate group are coordinated to the metal ion. These observed frequencies in the complex shifted to higher values when compared with the frequencies observed for the sodium salicylate salt, but $\Delta \nu (\nu_{as} - \nu_{s})$ stayed the same (207 cm⁻¹). According to these results, it can be concluded that the carboxylate group is coordinated to the metal ion through the two oxygen atoms, as a symmetrical bidentate group.

There are four characteristic absorption bands observed for thioproline:¹⁴ ν_{N-H} (3058 cm⁻¹, s, sh), δ_{N-H} (1632 cm⁻¹, sh),

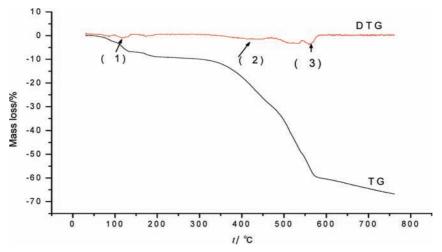


Figure 3. TG-DTG curves of [Nd(Hsal)₂•(tch)]•2H₂O(s).

 $\nu_{\rm as}^{\rm COO^-}$ (1556 cm⁻¹, s), and $\nu_{\rm s}^{\rm COO^-}$ (1434 cm⁻¹, s). After complex formation, both $\nu_{\rm N-H}$ and $\nu_{\rm s}^{\rm COO^-}$ shift toward higher frequencies $\nu_{\rm N-H}$ (3066 cm⁻¹, m) and $\nu_{\rm s}^{\rm COO^-}$ (1462 cm⁻¹, s) and both $\delta_{\rm N-H}$ and $\nu_{\rm as}^{\rm COO^-}$ shift toward lower frequencies $\delta_{\rm N-H}$ (1622 cm⁻¹) and $\nu_{\rm as}^{\rm COO^-}$ (1548 cm⁻¹). According to these results, it can be concluded that the neodymium ion is coordinated with the N atom of the imine group and one O atom of the carboxylate group in thioproline, as an antisymmetric bidentate group.

Thermal Decomposition of the Complex. The TG and DTG curves of [Nd(Hsal)₂·(tch)]·2H₂O(s), at a heating rate of 10 $^{\circ}C \cdot \min^{-1}$ in flowing N₂, are shown in Figure 3. The thermal decomposition process of [Nd(Hsal)₂·(tch)]·2H₂O(s) can be divided into four stages. The first stage is from (84 to 134) °C. The TG curve shows that the mass loss corresponding to this temperature range is 6.22 %, which roughly coincides with the value of 6.14 %, calculated for the loss of 2 mol of H₂O from the complex. The second stage ranges from (260 to 580) °C with the mass loss of 47.36 %, which corresponds to the loss of 2 mol of Hsal⁻. The theoretical mass loss is 46.89 %. The third stage degradation temperature is in the range of (580 to 641) °C with the mass loss of 42.33 %, which corresponds to the loss of 1 mol of tch⁻. The theoretical mass loss is 42.46 %. On the basis of experimental and calculated results, the thermal decomposition of $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ was postulated as follows

$$[Nd(Hsal)_{2} \cdot (tch)] \cdot 2H_{2}O(s) \xrightarrow{(84 \text{ to } 133.7) \ ^{\circ}C}$$
$$[Nd(Hsal)_{2} \cdot (tch)] \xrightarrow{(260 \text{ to } 580) \ ^{\circ}C} Nd(tch)O \xrightarrow{(580 \text{ to } 641) \ ^{\circ}C}$$
$$1/2Nd_{2}O_{3}$$

Results of Calorimetric Experiment. The results of the calorimetric measurements are given in Table 1.

Estimation of $\Delta_s H^{\Theta}_m(6)$. According to reaction 6

1.5 mmol of HCl(g) + 2.0 mmol of H₂O(l) \rightarrow solution E

$$\Delta_{s}H_{m}^{\Theta}(6) = \Delta_{s}H_{m}^{\Theta} (m = 41.7 \text{ mol} \cdot \text{cm}^{-3}) =$$

$$\Delta_{s}H_{m}^{\Theta} (m = 1.000 \text{ mol} \cdot \text{cm}^{-3}) - \Delta_{d}H_{m}^{\Theta}(41.7 \rightarrow 1.000) =$$

$$[-74.843 - (-34.923)] \text{ kJ} \cdot \text{mol}^{-1} = -39.92 \text{ kJ} \cdot \text{mol}^{-1}$$

See ref 15.

· ····

Molar Enthalpy of Reaction 1. According to Hess' Law, the standard molar reaction enthalpy of reaction 1 was obtained

$$\Delta_{\rm r} H_{\rm m}^{\Theta}(1) = \Delta_{\rm s} H_{\rm m}^{\Theta}(2) + \Delta_{\rm s} H_{\rm m}^{\Theta}(3) + \Delta_{\rm s} H_{\rm m}^{\Theta}(4) - \Delta_{\rm s} H_{\rm m}^{\Theta}(5) - \Delta_{\rm s} H_{\rm m}^{\Theta}(6) - \Delta_{\rm s} H_{\rm m}^{\Theta}(7) = (172.57 \pm 0.75) \,\,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$$

Evaluation of $\Delta_{f}H_{m}^{\Theta}[[Nd(Hsal)_{2} \cdot (tch)] \cdot 2H_{2}O(s)]$. According to Hess' law

$$\Delta_{\rm r} H_{\rm m}^{\Theta}(1) = \Delta_{\rm f} H_{\rm m}^{\Theta} \{ [\rm Nd(Hsal)_2 \cdot (tch)] \cdot 2\rm H_2O(s), 298.15 \ K \} + 3\Delta_{\rm f} H_{\rm m}^{\Theta} [\rm HCl(g), 298.15 \ K] + 4\Delta_{\rm f} H_{\rm m}^{\Theta} [\rm H_2O(l), 298.15 \ K] - \Delta_{\rm f} H_{\rm m}^{\Theta} [\rm NdCl_3 \cdot 6\rm H_2O(s), 298.15 \ K] - 2\Delta_{\rm f} H_{\rm m}^{\Theta} [\rm C_7\rm H_6O_3(s), 298.15 \ K] - \Delta_{\rm f} H_{\rm m}^{\Theta} [\rm C_7\rm H_6O_3(s), 298.15 \ K] - \Delta_{\rm f} H_{\rm m}^{\Theta} [\rm (C_4\rm H_7\rm NO_2\rm S)(s), 298.15 \ K]$$

$$\Delta_{\rm f} H_{\rm m}^{\Theta}[{\rm HCl}({\rm g}), 298.15 \,{\rm K}] = -(92.31 \pm 0.10) \,{\rm kJ} \cdot {\rm mol}^{-1}$$

 $\Delta_{\rm f} H_{\rm m}^{\Theta}[{\rm H}_2{\rm O}(1), 298.15 \text{ K}] = -(285.830 \pm 0.040) \text{ kJ} \cdot \text{mol}^{-1}$

According to ref 15

$$\Delta_{\rm f} H_{\rm m}^{\Theta}[\rm NdCl_3 \cdot 6H_2O(s), 298.15 K] =$$

 $-(2874.4 \pm 8.0) \text{ kJ} \cdot \text{mol}^{-1}$

where \pm 8.0 kJ·mol^{-1} was calculated according to the data in refs 16 and 17. According to ref 17

$$\Delta_{\rm f} H^{\Theta}_{\rm m} [{\rm C}_7 {\rm H}_6 {\rm O}_3({\rm s}), 298.15 \text{ K}] = -(592.1 \pm 1.3) \text{ kJ} \cdot \text{mol}^{-1}$$

According to ref 7

$$\Delta_{\rm f} H^{\Theta}_{\rm m} [C_4 H_7 NO_2 S(s), 298.15 \text{ K}] = -(401.33 \pm 1.54) \text{ kJ} \cdot \text{mol}^{-1}$$

and the above-calculated value of

$$\Delta_{\rm r} H_{\rm m}^{\Theta} = (172.57 \pm 0.75) \, \rm kJ \cdot mol^{-1}$$

so that

$$\Delta_{\rm f} H_{\rm m}^{\Theta} \{ [\mathrm{Nd}(\mathrm{Hsal})_2 \cdot (\mathrm{tch})] \cdot 2\mathrm{H}_2\mathrm{O}(\mathrm{s}), 298.15 \mathrm{K} \} = \\ [172.57 - 3 \cdot (-92.31) - 4 \cdot (-285.830) + \\ (-2874.4) + 2 \cdot (-592.1) + (-401.33)] \pm \\ \left[\sqrt{0.75^2 + (3 \cdot 0.10)^2 + (4 \cdot 0.040)^2 + \\ (8.0)^2 + (2 \cdot 1.3)^2 + (1.54)^2} \right] = \\ - (2867.1 \pm 8.6) \mathrm{kJ} \cdot \mathrm{mol}^{-1}$$

Conclusion

In this work, $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O$ was synthesized and characterized by IR, elemental analysis, molar conductance, thermogravimatric analysis, and chemical analysis. The enthalpy change of the reaction (eq 1) was determined to be $\Delta_r H_m^{\Theta} = (172.57 \pm 0.75) \text{ kJ} \cdot \text{mol}^{-1}$. The standard molar enthalpy of formation of $[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s)$ was estimated to be $\Delta_f H_m^{\Theta} \{[Nd(Hsal)_2 \cdot (tch)] \cdot 2H_2O(s), 298.15 \text{ K}\} = -(2867.1 \pm 8.6) \text{ kJ} \cdot \text{mol}^{-1}$.

Literature Cited

- Li, Q. G.; Ye, L. J.; Shou, M. J. Standard Molar Enthalpies of Formation of Ce(TCA)₃ 3H₂O(s) and Ce(TCA)(C₉H₆NO)₂(s). *Chin. J. Chem.* 2003, 21, 1580–1585.
- (2) Li, Q. G.; Qu, S. S.; Liu, Y. A Thermochemical Study on the Coordinayion Complex of Lanthanum atarichloroacetic Acid with 8-Hydroxyquinoline. *Thermochim. Acta* 2001, *376*, 101–107.
- (3) Zhang, Z. S.; Yao, K. L.; Wu, J. G.; et al. A Study of Rare Earth Pyridine-3-carboxylic Acid 1,10-phenanthroline Complexes. J. Chin. Rare Earth Soc. 1988, 6, 13–17.
- (4) Marinova, V.; Kharizanova, T. Activity of 8-Oxyquinolines Against Phytopathogenic Fungi and Possibilities for their Practical. *Chem. Abstr.* **1982**, *96*, 157188.
- (5) Qu, J. Q.; Wang, L. F.; Liu, Y. Q.; et al. Syntheses, Characterization and Antitumour Activities of Rare Earth Metal Complexes with 2-(((4,6-dimethyl)-2-Pyrimidinyl)thio)-Acetic Acid. *Rare Earths* 2006, 24 (1), 15–19.
- (6) Bi, C. F.; Fan, Y. H.; Liu, S. Q.; et al. Synthesis, Characterization and Antibacterial Activity of New Ln(III) Complex with Unsymmetrical Schiff Base Ligand. J. Rare Earths 2005, 23 (S1), 536–539.
- (7) Li, Q. G.; Li, X.; Deng, B.; Yang, X. W. Thermochemical Study on the Thioproline. J. Therm. End Calorim. 2006, 85 (3), 585–587.
- (8) Li, Q. G.; Yang, D. J.; Li, X.; Ye, L. J.; Wei, D. L.; Xiao, S. X. Thermokinetic Studies of Action of Complexes [RE(Hsal)2•(tch)]•2H2O on Growth Metabolism of Escherichia. Coli. Acta Chim. Sin. 2008, 66 (24), 2686–2692.
- (9) Xie, Z. Q. Determination of Center Lanthanide Ions in Organic Complex Salts. J. Wuhan Univ. 1985, 2, 119–124.
- (10) Yu, H. G.; Liu, Y.; Tan, Z. C.; et al. A Solution-Reaction Isoperibol Calorimeter and Standard molar Enthalpies of Formation of Ln(hq)₂Ac (Ln=La, Pr). *Thermochim. Acta* **2003**, 401 (2), 217.

According to ref 16

- (11) Rychly, R.; Pekarek, V. The Use of Potassium Chloride and Tris(hydroxymethyl)aminomethane as Standard Substances for Solution Calorimetry. J. Chem. Thermodyn. 1977, 9 (4), 391–396.
- (12) Montgomery, R. L.; Melaugh, R. A.; Lau, C. C. Determination of the Energy Equivalent of a Water Solution Calorimeter with a Standard Substance. J. Chem. Thermodyn. 1977, 9 (10), 915–936.
- (13) Rohatgi, K. K.; Sen Gupta, S. K. Spectral study of mixed chelates of rare earths—II U.v, visible and i.r. spectra of tris-salicylato-bisphenanthroline complex of La, Pr, Nd, Sm, Eu and Tb. J. Inorg. Nucl. Chem. 1970, 32, 2247.
- (14) Yuan, G. Z.; Huang, J. J.; Zhang, G. M. Diaryl Boron Chelates of Thioproline. *Chem. Res. Chin. Univ.* **1989**, *9*, 881–885.
- (15) Weast, R. C. CRC Hand book of Chemistry and Physics, 69th ed.; CRC Press Inc.: Florida, 1988/1989; D-71.
- (16) Cox, J. D.; Wagman, D. D.; Medvedev, V. A. DATA Key Values for Thermodynamics; Hemisphere Publishing Corp.: New York, 1984; p 1.
- (17) Sabbah, R.; Le, T. H. D. Etude thermodynamique des trois isomeres de l'acide bydroxybenzolque. *Can. J. Chem.* **1993**, *71* (9), 1378–1383.

Received for review September 27, 2008. Accepted March 21, 2009. This work was financially supported by the Hunan Provincial Educational Committee Foundation (No.04C635) and the Hunan Provincial Natural Science Foundation (No.08JJ3014) of China.

JE800719G