Correlations

A Model for Calculating the Heat Capacity of Aqueous Solutions, with Updated Density and Viscosity Data

Marc Laliberté*

Golder Associates, 9200 boul. de l'Acadie, Montreal (Quebec), Canada H4N 2T2

A model for calculating the heat capacity of complex aqueous solutions with an arbitrary number of solutes and at an arbitrary temperature was developed. Parameters for 79 solutes were established based on a critical review of the literature for solutions of one solute in water, with about 6600 points included. The average difference between the calculated and experimental heat capacity is $-0.0003 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$ with a standard deviation of $0.010 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$. The model was validated by comparing published and calculated heat capacities for 13 systems of more than one solute in water, with a total of 485 data points. The average difference between experimental and calculated values is $-0.003 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$ with a standard deviation of 0.029 kJ $\cdot \text{kg}^{-1} \cdot \text{K}^{-1}$. Data are presented on the following 109 solutes, including data on density (16 300 points) and viscosity (10 700 points): (NH₄)₂SO₄, Al₂(SO₄)₃, AlCl₃, Ba(NO₃)₂, BaCl₂, Ca(CH₃CO₂)₂, Ca(NO₃)₂, CaCl₂, CaSO₄, Cd(NO₃)₂, CdCl₂, CdSO₄, CH₃CH₂OH, CO₂, CoCl₂, CoSO₄, Cr₂(SO₄)₃, CrCl₃, Cu(NO₃)₂, CuCl₂, CuSO₄, Fe₂(SO₄)₃, FeCl₂, FeCl₃, FeSO₄, H₂O₂, H₂SO₄, H₃AsO₃, H₃AsO₄, H₃PO₄, HBr, HCH₃CO₂, HCHO₂, HCl, HCN, HNO₃, K₂CO₃, K₂Cr₂O₇, K2HPO4, K2SO4, K3PO4, KBr, KCH3CO2, KCHO2, KCI, KF, KH2PO4, KHCO3, KHSO3, KI, KNO2, KNO3, KOH, Li₂SO₄, LiCH₃CO₂, LiCl, LiNO₃, LiOH, Mg(CH₃CO₂)₂, Mg(NO₃)₂, MgCl₂, MgSO₄, Mn(NO₃)₂, MnCl₂, MnSO₄, Na₂C₂O₄, Na₂CO₃, Na₂CrO₄, Na₂HPO₄, Na₂MoO₄, Na₂S, Na₂S₂O₃, Na₂SO₃, Na₂SO₄, Na₂WO₄, Na₃PO₄, NaAl(OH)₄, NaBr, NaCH₃CO₂, NaCHO₂, NaCl, NaClO₃, NaF, NaH₂PO₄, NaHCO₃, NaHSO, NaHSO₄, NaHSO₄, NaI, NaMnO₄, NaNO₂, NaNO₃, NaOH, NH₃, NH₄Cl, NH₄HCO₃, NH₄NO₃, Ni(NO₃)₂, NiCl₂, NiSO₄, Pb(NO₃)₂, SO₂, Sr(NO₃)₂, SrCl₂, Sucrose, TiOSO₄, Zn(NO₃)₂, ZnCl₂, ZnSO₄.

Introduction

The heat capacity of aqueous solutions is difficult to estimate based on available published models. While a number of models have been published over the years, the Pitzer equations¹ are the best-known and most precise thermodynamically consistent correlative equations for excess thermodynamic quantities of aqueous electrolytes, including heat capacity. Pitzer equations are computationally complex, and their capability to predict heat capacities outside the parametrization space is rather poor, especially when considering that they contain no explicit temperature or pressure dependence.² Many modifications have been proposed to enable the use of Pitzer equations at arbitrary temperatures, but none have found general acceptance.

We have found that there is a need for a simpler empirical model that would allow for the prediction of solution heat capacities of solutions containing an arbitrary number of solutes (ionic or not) and at arbitrary temperatures. The model should use mass-based units, should be robust, and should be easily programmable in common tools available to chemists and engineers. The fitting of the model parameters for new solutes should be easy and should require a minimum of experimental data, ideally no more than heat capacity data for solutions of this new solute in water at three or four concentrations and two or three temperatures. Finally, this model should extrapolate well.

* Corresponding author. Fax: +1-514-383-5332. E-mail: marc_laliberte@ golder.com.

Pitzer equations unfortunately fail all these requirements and will be discussed no further. We will instead present a new empirical model that we believe meets these requirements. Before we do so, however, we will present a short review of our previous work.

Previous Work

We have recently presented empirical models for estimating the density³ and viscosity⁴ of aqueous solutions. A summary of these papers is presented below. Since then, readers have come back with information that was overlooked, pointed out errors and inconsistencies, or have requested that additional solutes be fitted. While it is impossible to incorporate all the published data for all solutes in a single database, we have tried to be as accommodating as possible. We originally published density data on 59 solutes (10 700 data points): we now present data on 109 solutes (16 300 data points). In our viscosity paper, we published data on 74 solutes (9000 data points): we now present data on 95 solutes (10 700 data points). To keep all this information available in one convenient location, we are including in this paper all information on solutions of one solute in water we have currently fitted. Information on the density or viscosity of solutions of more than one solute is however not repeated, and the interestesd readers are referred to our original publications.3,4

We have decided to include in this paper (not in the Supporting Information, as the Supporting Information is not crawled by search engines) the formula, name, and CAS number of all solutes. We also included herein the notes attached to many of the Excel files in the Supporting Information. In many cases, the notes help to understand some limitations of the data, will refer to data that were not included, or will explain some changes we have made to the data. This has made this paper longer, but we hope that it will be more useful.

Density. In a previous paper³ we presented a model for estimating the density of aqueous solutions. The following equation allows the calculation of the solution density from the solvent density and the solutes apparent density

$$\rho_{\rm m}/\rm{kg}\cdot\rm{m}^{-3} = \frac{1}{\frac{w_{\rm w}}{\rho_{\rm w}/\rm{kg}\cdot\rm{m}^{-3}} + \sum_{i} \frac{w_{i}}{\rho_{\rm app,i}/\rm{kg}\cdot\rm{m}^{-3}}} \qquad (1)$$

where w_w is the mass fraction of water; w_i is the mass fraction of solute *i* (it being understood that for a system with *n* solutes, $w_w + \sum_{i=1}^n w_i = 1$); ρ_w is the density of water; $\rho_{app,i}$ is the solute apparent density; and ρ_m is the solution density (all densities expressed in kg·m⁻³). In this paper the, subscript "*i*" designates a solute; the subscript "m" stands for "mixture" or solution; while the subscript "w" stands for "water".

The density of water can be calculated using the following equation

$$\rho_{\rm w}/\rm{kg} \cdot m^{-3} = (((((-2.8054253 \cdot 10^{-10} \cdot t/^{\circ}\rm{C} + 1.0556302 \cdot 10^{-7}) \cdot t/^{\circ}\rm{C} - 4.6170461 \cdot 10^{-5}) \cdot t/^{\circ}\rm{C} - 0.0079870401) \cdot t/^{\circ}\rm{C} + 16.945176) \cdot t/^{\circ}\rm{C} + 999.83952) - t/^{\circ}\rm{C} + 0.01687985 \cdot t/^{\circ}\rm{C}$$
(2)

where t is the temperature. The apparent density of the solutes is calculated using

$$\rho_{\text{app},i}/\text{kg·m}^{-3} = \frac{(c_0(1 - w_w) + c_1) \cdot e^{(0.000001(t/^{\circ}\text{C} + c_4)^2)}}{(1 - w_w) + c_2 + c_3 t/^{\circ}\text{C}} (3)$$

where c_0 to c_4 are dimensionless empirical constants.

For the purpose of fitting coefficients c_0 to c_4 , the apparent solute density is calculated from the density data for solution of one solute in water by using

$$\rho_{\text{app},i} = \frac{\rho_{\text{m}} w_i}{1 - \frac{\rho_{\text{m}} w_{\text{w}}}{\rho_{\text{w}}}} \tag{4}$$

Viscosity. In another paper,⁴ we proposed the following equation to estimate the viscosity of aqueous solutions

$$\eta_{\rm m} = \eta_{\rm w}^{w_{\rm w}} \prod \eta_i^{w_i} \tag{5}$$

where η_m is the solution viscosity; η_w is the viscosity of water; and η_i is the viscosity of the component *i*, expressed in mPa • s.

The viscosity of water can be evaluated using

$$(\eta_{\rm w}/\rm{mPa}\cdot\rm{s}) = \frac{t/^{\circ}\rm{C} + 246}{(0.05594t/^{\circ}\rm{C} + 5.2842)t/^{\circ}\rm{C} + 137.37}$$
(6)

The component *i* viscosity is calculated using

$$(\eta_i/\text{mPa·s}) = \frac{e^{(\frac{v_1(1 - w_w)^{v_2 + v_3}}{v_4(t/^\circ \text{C}) + 1})}}{v_5(1 - w_w)^{v_6} + 1}$$
(7)

where v_1 to v_6 are dimensionless empirical constants.

For a solution of one solute in water, the solute viscosity η_i is simply calculated by

$$\eta_i = \left(\frac{\eta_{\rm m}}{\eta_{\rm w}^{w_{\rm w}}}\right)^{1/w_i} \tag{8}$$

Note that eq 7 was incorrect in our original publication and that a correction to that effect was subsequently published. Equation 8 also contains a correction to the original (η_w should be used in the denominator instead of η_m).

Heat Capacity of Aqueous Solutions

Heat Capacity of Liquid Water. To calculate solute heat capacity from solution heat capacity, and vice-versa, the heat capacity of water must be known. The International Association for the Properties of Water and Steam has published equations to this effect.⁵ We have used the Russian national committee to IAPWS' MathCAD implementation of the IAPWS 1997 formulation available at http://twt.mpei.ac.ru/ochkov/WSPHB/ Engindex.html to compute the values found in Table 1. The IAPWS equations are not suited for temperatures below the freezing point, so we have used the data for subcooled water from Archer⁶ between (-15 and 0) °C in Table 1. The data in Table 1 are at a pressure of 0.1 MPa up to 95 °C and then at saturation pressure.

We have been unable to find a simple equation that would fit the data in Table 1. We have instead used a quadratic interpolation of this data, using the following equation from Bevington.⁷

Given Cp_1 , Cp_2 , and Cp_3 , the heat capacity of water at three different temperatures t_1 , t_2 , and t_3 , these three temperatures being uniformly spaced and in increasing order, we can estimates Cp_w at an arbitrary temperature t

$$Cp_{w} = Cp_{1} + (Cp_{2} - Cp_{1})\left(\frac{t - t_{1}}{t_{2} - t_{1}}\right) + \frac{(Cp_{3} - 2Cp_{2} + Cp_{1})\left(\frac{t - t_{1}}{t_{2} - t_{1}}\right)\left(\frac{t - t_{1}}{t_{2} - t_{1}} - 1\right)(9)$$

t does not have to be included in the range t_1 to t_3 , but the accuracy of the interpolation is obviously increased if it is. We present in Table 2 a comparison of interpolated and of IAPWS heat capacities at random temperatures ($t_1 \le t \le t_3$). The maximum difference of 0.0001 kJ·kg⁻¹·K⁻¹ is found close to the freezing point. The difference is on average 0.00002 (std dev = 0.00004) kJ·kg⁻¹·K⁻¹. This precision is sufficient for our purpose.

Heat Capacities of Solutions. We have used the following equations to calculate the heat capacity of solutions

Table 1. Heat Capacity of Pure Liquid Water

t/°C	$Cp/kJ \cdot kg^{-1} \cdot K^{-1}$	ref
-15	4.29403	Interpolated from Archer ⁶
-10	4.25688	Interpolated from Archer ⁶
-5	4.23358	Interpolated from Archer ⁶
0	4.21944	From IAPWS ⁵ at $P/MPa = 0.1$
5	4.20495	From IAPWS ⁵ at $P/MPa = 0.1$
10	4.19545	From IAPWS ⁵ at $P/MPa = 0.1$
15	4.18910	From IAPWS ⁵ at $P/MPa = 0.1$
20	4.18480	From IAPWS ⁵ at $P/MPa = 0.1$
25	4.18190	From IAPWS ⁵ at $P/MPa = 0.1$
30	4.18002	From IAPWS ⁵ at $P/MPa = 0.1$
35	4.17895	From IAPWS ⁵ at $P/MPa = 0.1$
40	4.17886	From IAPWS ⁵ at $P/MPa = 0.1$
45	4.17877	From IAPWS ⁵ at $P/MPa = 0.1$
50	4.17956	From IAPWS ⁵ at $P/MPa = 0.1$
55	4.18089	From IAPWS ⁵ at $P/MPa = 0.1$
60	4.18277	From IAPWS ⁵ at $P/MPa = 0.1$
65	4.18517	From IAPWS ⁵ at $P/MPa = 0.1$
70	4.18810	From IAPWS ⁵ at $P/MPa = 0.1$
75	4.19155	From IAPWS ⁵ at $P/MPa = 0.1$
80	4.19552	From IAPWS ⁵ at $P/MPa = 0.1$
85	4.20001	From IAPWS ⁵ at $P/MPa = 0.1$
90	4.20502	From IAPWS ⁵ at $P/MPa = 0.1$
95	4.21057	From IAPWS ⁵ at $P/MPa = 0.1$
100	4.21664	From IAPWS ² at saturation pressure
105	4.22323	From IAPWS ² at saturation pressure
110	4.23036	From IAPWS ² at saturation pressure
115	4.23807	From IAPWS ⁵ at saturation pressure
120	4.24637	From IAPWS ² at saturation pressure
125	4.25528	From IAPWS ² at saturation pressure
130	4.26484	From IAPWS ² at saturation pressure
135	4.27508	From IAPWS ⁵ at saturation pressure
140	4.28604	From IAPWS ⁵ at saturation pressure

 Table 2. Comparison between Quadratic Interpolation of Data

 from Table 1 and IAPWS Data at Random Temperatures

	interpolated Cp	IAPWS Cp	$(Cp_{(Interpolated)} - Cp_{(IAPWS)})$
t/°C	$kJ \cdot kg^{-1} \cdot K^{-1}$	$kJ \cdot kg^{-1} \cdot K^{-1}$	kJ•kg ⁻¹ •K ⁻¹
3.56	4.20861	4.20851	-0.00010
11.33	4.19356	4.19351	-0.00005
27.47	4.18087	4.18086	-0.00001
33.38	4.17919	4.17922	0.00003
43.02	4.17870	4.17862	-0.00008
53.91	4.18055	4.18056	0.00001
65.03	4.18519	4.18519	0.00000
70.77	4.18860	4.18860	0.00000
80.95	4.19633	4.19633	0.00000
97.92	4.21405	4.21405	0.00000
108.82	4.22863	4.22863	0.00000
112.71	4.23447	4.23447	0.00000
		average residual	-0.00002
		std dev of residual	0.00004

$$Cp_{\rm m} = w_{\rm w} Cp_{\rm w} + \sum w_i Cp_i \tag{10}$$

where Cp_m is the solution's heat capacity; Cp_w is the heat capacity of water; and Cp_i is the heat capacity of the solute. Estimating Cp_i is more complex. The following equation has been found to fit the data accurately

$$Cp_i/kJ\cdot kg^{-1}\cdot K^{-1} = a_1e^{\alpha} + a_5(1 - w_w)^{a_6}$$
 (11)

where

$$\alpha = a_2 t e^{0.01 t^{\circ} C} + a_3 e^{0.01 t^{\circ} C} + a_4 (1 - w_w)$$
(12)

and a_1 to a_6 are dimensionless empirical coefficients.

When estimating a solute heat capacity for a solution of one solute in water, the following form of eq 10 is used

$$Cp_i = \frac{Cp_{\rm m} - w_{\rm w}Cp_{\rm w}}{w_i} \tag{13}$$

Figure 1. Heat capacity of potassium chloride in aqueous solutions at various temperatures, as calculated using eq 10 (blue \diamond , experimental at 5 °C; blue line, calculated at 5 °C; green Δ , experimental at 25 °C; green line, calculated at 25 °C; orange **I**, experimental at 50 °C; orange line, calculated at 50 °C; red +, experimental at 100 °C; red line, calculated at 100 °C). Notice the scatter at higher temperature and the model inaccuracy at 0 °C.

Figure 2. Heat capacity of solutions of potassium chloride at various temperatures (blue \diamond , experimental at 5 °C; blue line, calculated at 5 °C; green Δ , experimental at 25 °C; green line, calculated at 25 °C; orange \blacksquare , experimental at 50 °C; orange line, calculated at 50 °C; red +, experimental at 100 °C; red line, calculated at 100 °C). Notice that the scatter has mostly disappeared, except at 100 °C.

Equations 10 to 12 give good results for solutions of one solute in water. Figure 1 shows the values for the heat capacity of aqueous potassium chloride Cp_{KCl} at different temperatures and concentrations, as calculated using eq 13. There is clearly a problem at 5 °C, but then there are only seven data points at that temperature and they all come from the same reference. At higher temperature, the fit is good, even if some significant data scatter is obvious at temperatures of 50 °C and above. Figure 2 shows the solution heat capacity for the same system. At low mass fraction (w < 0.03), the difference between the experimental and calculated heat capacities of KCl is not significant for most purposes. Scatter is also less obvious but still apparent at 100 °C. Figure 3 is a comparison between experimental and calculated values of the heat capacity for the same system. The problem at 5 °C is still obvious. At higher temperature, the model limitation becomes data scatter: the model is precise, but the data are inaccurate. To fit a better model better data would be required. Another way to look at the problem would be to say that the model is accurate enough considering the data accuracy.

To establish the accuracy of eqs 10 to 12 in multisolute systems, we have found data for the following 13 systems:

Figure 3. Comparison of experimental and calculated heat capacity of solutions of potassium chloride at various temperatures (blue \diamond , at 5 °C; green Δ , at 25 °C; orange **II**, at 50 °C; red +, at 100 °C). The model is inaccurate at 5 °C, but overall there is generally a very good correlation between experimental and calculated values.

Figure 4. Comparison of experimental and calculated heat capacity of solutions of magnesium chloride and sodium chloride at various temperatures (green Δ , at 25 °C; orange \blacksquare , at 50 °C; red +, at 100 °C). The model is inaccurate at 100 °C, but overall there is a good correlation between experimental and calculated values (overall $R^2 = 0.992$).

BaCl₂-MgCl₂, CaCl₂-KCl-MgCl₂-NaCl, CaCl₂-MgCl₂, CaCl₂-NaCl,HCl-SO₂,KOH-NH₃,MgCl₂-NaCl,MgCl₂-SrCl₂, Na₂CO₃-NaHCO₃, Na₂CO₃-NaOH, Na₂HPO₄-NaH₂PO₄, Na₃PO₄-NaOH, and NaOH-NH₃. Figure 4 shows a comparison between experimental and calculated values of the solution heat capacity of the system MgCl₂-NaCl at various temperatures, while Figure 5 shows a similar comparison for the system CaCl₂-KCl-MgCl₂-NaCl.

Table 3 presents a summary of the quality of the fit for all the systems named above. The detailed calculations are included in the Supporting Information. 485 data points were found. The average residual (experimental - calculated heat capacity) is $-0.003~kJ\cdot kg^{-1}\cdot K^{-1}$ (0.10 % of the heat capacity), with a standard deviation of 0.029 kJ·kg⁻¹·K⁻¹ (0.82 % of the heat capacity). The first percentile value for the residuals is -0.110kJ·kg⁻¹·K⁻¹ (3.0 % of the heat capacity); the median is 0.001 $kJ \cdot kg^{-1} \cdot K^{-1}$ (0.04 % of the heat capacity); and the 99th percentile is 0.093 kJ·kg⁻¹·K⁻¹ (2.5 % of the heat capacity). Most of the error is in the KOH-NH₃ and NaOH-NH₃ systems, as demonstrated by their much higher standard deviation. This might be because the fit for the heat capacity of NH₃ is of lower quality than for most other solutes. Interestingly, for the systems CaCl₂-KCl-MgCl₂-NaCl and CaCl₂-MgCl₂, the model slightly underestimates the heat capacity, while it overestimates it for

Figure 5. Comparison of experimental and calculated heat capacity of solutions of calcium chloride, potassium chloride, magnesium chloride, and sodium chloride at various temperatures (blue \diamond , at 15 °C; green Δ , at 25 °C; orange \blacksquare , at 35 °C; red +, at 45 °C). The calculated solution heat capacity is on average 0.004 kJ·kg⁻¹·K⁻¹ lower than the experimental value (overall $R^2 = 0.997$).

the CaCl₂-NaCl and MgCl₂-NaCl systems, which are subsets of the CaCl₂-KCl-MgCl₂-NaCl system.

The fit between the experimental and the calculated heat capacity for solutions of many solutes is therefore excellent and is sufficient for most engineering purposes.

Effect of Pressure. Not much has been published regarding the effect of pressure on the heat capacity of solutions. For pure water, the effect is small. At 50 °C and 0.1 MPa, it is 4.1796 $kJ\cdot kg^{-1}\cdot K^{-1}$, while at 30 MPa it is 4.1162 $kJ\cdot kg^{-1}\cdot K^{-1}$, a decrease of 1.5 % (data from IAPWS⁵).

When known, the pressure at which the solution heat capacity was measured is shown in the Supporting Information. When both the mass and the apparent molar heat capacities were measured at high pressure, we used the apparent molar heat capacity. Because the water heat capacity from Table 1 is then used to calculate the solution heat capacity, this significantly reduces the error due to pressure.

Pabalan²⁴⁸ reported on the heat capacity of KCl solutions at high pressure and temperature. At 139.8 °C, 20 MPa, and m =3, he reports that the solution heat capacity is 3.370 kJ·kg⁻¹·K⁻¹, while the apparent molar heat capacity of KCl is -36.67 J·mol⁻¹·K⁻¹. Using the apparent molar heat capacity and the water heat capacity interpolated from data in Table 1 (4.286 kJ·kg⁻¹·K⁻¹), we calculated an equivalent experimental solution heat capacity of 3.412 kJ·kg⁻¹·K⁻¹ at saturation pressure. If we had used the IAPWS water heat capacity at 139.8 °C and 20 MPa (4.232 kJ·kg⁻¹·K⁻¹), we would have calculated an equivalent experimental solution heat capacity of 3.368 kJ·kg⁻¹·K⁻¹.

The difference between Pabalan data at 20 MPa and the calculated data at saturation pressure is therefore about 1 %. This is probably acceptable for most purposes. If a more accurate fit was required, the easiest way to do that would be to use in eq 10 the water heat capacity at the required pressure.

Fitting Data

We will now describe how the fit to the various empirical coefficients was made using the available information. The focus of this paper is on heat capacities, but much of what follows can equally apply to density and viscosity. What follows is significantly modified and expanded from what was published previously.

Table 3.	Main	Results	for	Systems	of	More	than	One	Solu	ite

system	$\frac{\text{average heat}}{\text{kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}}$	$\frac{\text{standard deviation of}}{\text{kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}}$	number of points used in the correlation	$\frac{t_{\min}}{^{\circ}\mathrm{C}}$	$\frac{t_{\max}}{^{\circ}C}$	$\frac{w_{\text{max}}}{\text{solute 1}}$	$\frac{w_{\rm max}}{\rm solute \ 2}$	$\frac{w_{\rm max}}{\rm solute \ 3}$	$\frac{w_{\text{max}}}{\text{solute 4}}$
$BaCl_2 + MgCl_2$	-0.0026	0.0064	7	25	25	0.133	0.061	-	-
$CaCl_2 + KCl + MgCl_2 + NaCl$	0.0036	0.0024	73	15	45	0.040	0.012	0.141	0.081
$CaCl_2 + MgCl_2$	0.0024	0.0046	79	25	100	0.195	0.168	-	-
$CaCl_2 + NaCl$	-0.0015	0.0106	72	25	100	0.136	0.203	-	-
$HCl + SO_2$	-0.0004	0.0009	4	30	103	0.002	0.012	-	-
$KOH + NH_3$	0.0064	0.0462	54	30	79	0.168	0.361	-	-
$MgCl_2 + NaCl$	-0.0047	0.0106	72	25	100	0.107	0.203	-	-
$MgCl_2 + SrCl_2$	-0.0007	0.0102	3	25	25	0.170	0.102	-	-
$Na_2CO_3 + NaHCO_3$	-0.0027	0.0015	34	25	25	0.038	0.059	-	-
$Na2CO_3 + NaOH$	-0.0022	0.0016	5	25	25	0.021	0.002	-	-
$Na_2HPO_4 + NaH_2PO_4$	0.0015	0.0073	33	25	25	0.043	0.081	-	-
$Na_3PO_4 + NaOH$	0.0017	0.0013	7	25	25	0.027	0.001	-	-
$NaOH + NH_3$	-0.0397	0.0652	47	30	79	0.170	0.367	-	-

Solutions of One Solute. The best source of data for estimating the empirical coefficients a_1 to a_6 is heat capacity data for solutions of one solute in water. Ideally, we should have at least 18 data points (using the rule of thumb of three data points per coefficient to be fitted) at different concentrations and temperatures. Data at very low concentration are less useful: when w_i becomes less than about 0.003 the solution heat capacity becomes too close to the heat capacity of water to be effective in predicting the best values of the coefficients.

The procedure is as follows:

1. Initial values are entered for a_1 to a_6 . We have found that much better results are obtained if these initial guesses come from actual fits instead of arbitrary numbers. We recommend using coefficients from solutes that have already been fitted and where the data are of good quality. Three to five different guesses should be made using fits where the temperature coefficient (a_2 for heat capacity) is different. For the purpose of our work, we have used the coefficients for KCl, MgSO₄, NaCH₃CO₂, NH₃, and NaOH.

2. A solution heat capacity is calculated for all data points using the initial values from the first step.

3. A residual δ_{η} is calculated by subtracting the experimental solution heat capacity from its calculated value ($\delta_{\eta} = Cp_{\rm m} - Cp_{\rm calc}$).

4. The sum of the square of the residuals δ_{η} is calculated, and this value is minimized by varying a_1 to a_6 using a nonlinear optimization program.

5. The solution heat capacity is calculated at $w_i = 0.1$ and $t/^{\circ}C$ = 25 and at $w_i = 0.2$ and $t/^{\circ}C = 100$ using the optimized coefficients. These heat capacities are compared to the calculated values for other solutes at the same temperature and composition. If the calculated values are outside of the interval defined by the average plus or minus two times the standard deviation, especially if the concentration or the temperature ranges are very narrow, the guess may be discarded. Judgement must be used here to avoid rejecting valid guesses, but this additional step was added to avoid the problem of fitted coefficients that are optimal within the data space but give aberrant results when extrapolated outside the data space: for example, using the parameters for $Cr_2(SO_4)_3$ published previously,^{3,4} the density of a solution at $w_{Cr_2(SO4)_3} = 0.2$ and $t/^{\circ}C$ = 100 is 194 kg·m⁻³! The present coefficients predict that the density would be 1204 kg \cdot m⁻³, which may or may not be right but at least is reasonable.

6. Steps 1 to 5 are repeated using different initial guesses, and the values of a_1 to a_6 that give the lowest sum of square of residuals are kept, provided the constraint in step 5 is met.

7. The data are checked for consistency (see below). If inconsistent data are found, they are removed and steps 1 to 6 are repeated. This is repeated until there are no more inconsistent data.

In some cases there are very little data available, for some systems as little as three data points. In this case, the procedure above was varied as follow. Steps 1 to 4 were performed for each initial guess, but without trying to minimize the sum of the squares of the residuals. Using the guess that gave the lowest sum of square only, this guess was optimized by using the conjugate search method and specifying only 10 to 20 iterations. While this was not sufficient to truly minimize the sum of the square, it did allow the error to become reasonable, while making sure that the solution heat capacities calculated in step 5 did not become abherant.

As in our previous work, experimental data points with significant error were removed from the calculation of the constants. Significant error here is defined as a point where the residual is greater than the average residual plus or minus 4 times the standard deviation of the residuals, but provided that points at similar concentration and temperature do not show a similarly high residual.

A data point which shows a very high residual compared to other points at similar compositions or temperatures is usually a sign of a measurement or a transcription error. A group of points at similar concentration and temperature that show high residual usually would indicate a model error. While the former were removed from the set of data used to optimize coefficients a_1 to a_6 , the latter have been kept. All points where the residual is more than 4 standard deviation away from the average are clearly identified in the Supporting Information.

Solutions of Many Solutes. In recent papers, Reynolds and Carter considered the use of our density model in multicomponent systems.^{8,9} Most of what they discussed can also be applied with minimum changes to viscosity and heat capacity.

In a first paper,⁸ they established that it is possible to derive coefficients for solutes that cannot exist in solution with water alone, such as $NaAl(OH)_4$ using data from multicomponent solutions. In a detailed review for that particular solute, they developed

a model of the densities of multi-component aqueous electrolyte solutions containing NaOH and NaAl(OH)₄. Coefficients for the Laliberte–Cooper model of multicomponent electrolyte solutions were developed from published density data for the NaOH–NaAl(OH)₄–H₂O system. The density data were split into two groups, data for parameterization and data for validation. The model was able to predict the validation data well, with an R^2 greater than 0.99 for five of seven datasets and greater than 0.95 for all datasets. The model was shown to extrapolate to temperature and composition ranges outside those used for model parameterization. Similarly, using

Table 4. (NH₄)₂SO₄ - Ammonium Sulfate - 7783-20-2

	Density	Viscosity	Heat capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	15.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	55.0 °C	60.0 °C	-
W _{max}	0.429	0.463	-
Average residual	0.06 kg·m ⁻³	0.0008 mPa•s	-
Standard deviation of residual	$0.46 \text{ kg} \cdot \text{m}^{-3}$	0.0128 mPa•s	-
Number of points in the correlation	142	148	-
Number of inconsistent points	10	1	-
References	24, 68, 121, 159	63, 68, 121, 159, 239	

Table 5. $Al_2(SO_4)_3$ - Aluminum Sulfate - 10043-01-3

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	25.0 °C	_
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	35.0 °C	-
Wmax	0.398	0.033	-
Average residual	0.06 kg·m ⁻³	-0.0002 mPa•s	-
Standard deviation of residual	$0.69 \text{ kg} \cdot \text{m}^{-3}$	0.0006 mPa•s	-
Number of points in the correlation	55	14	-
Number of inconsistent points	4	0	-
References	77, 320	239	

Table 6. AlCl₃ - Aluminum Chloride - 7784-13-6

_

_

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	18.0 °C	25.0 °C	-
$t_{\rm max}/{}^{\circ}{\rm C}$	25.0 °C	25.0 °C	-
$w_{\rm max}$	0.194	0.036	-
Average residual	$0.08 \text{ kg} \cdot \text{m}^{-3}$	0.0004 mPa•s	-
Standard deviation of residual	$0.30 \text{ kg} \cdot \text{m}^{-3}$	0.0022 mPa•s	-
Number of points in the correlation	26	5	-
Number of inconsistent points	2	0	-
References	87, 223, 387	87	

Table 7. Ba(NO₃)₂ - Barium Nitrate - 10022-31-8

	Density	Viscosity	Heat Capacity
$t_{\rm min}/{}^{\circ}{\rm C}$	5.0 °C	25.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	60.0 °C	120.0 °C
Wmax	0.084	0.172	0.047
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.09 \text{ kg} \cdot \text{m}^{-3}$	0.0009 mPa•s	$0.0006 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	50	15	96
Number of inconsistent points	1	0	0
References	86, 237	63, 86	
Comments	Data available at lower concentration in Niederhauser ²³⁷		

Table 8. BaCl₂ - Barium Chloride - 10361-37-2

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	10.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	140.0 °C	70.0 °C	25.0 °C
W _{max}	0.253	0.331	0.248
Average residual	0.11 kg·m ⁻³	0.0000 mPa•s	$-0.0004 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.46 \text{ kg} \cdot \text{m}^{-3}$	0.0088 mPa•s	$0.0035 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the> correlation	207	172	16
Number of inconsistent points	1	5	0
References	160, 220, 264, 285, 357	18, 63, 160, 168, 347	108, 264

Table 9. Ca(CH₃CO2)2 - Calcium Acetate - 62-54-4

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	15.0 °C	20.0 °C
$t_{\rm max}/{\rm ^{o}C}$	45.0 °C	45.0 °C	52.0 °C
W _{max}	0.088	0.040	0.150
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	0.0001 mPa•s	$-0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.08 \text{ kg} \cdot \text{m}^{-3}$	0.0011 mPa•s	$0.0003 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	33	22	3
Number of inconsistent points	0	0	0
References	385	385	235

Table 10. Ca(NO₃)₂ - Calcium Nitrate - 10124-37-5

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	−10.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	60.0 °C	100.0 °C	-
Wmax	0.768	0.677	-
Average residual	$-0.07 \text{ kg} \cdot \text{m}^{-3}$	-0.0459 mPa•s	-
Standard deviation of residual	$0.83 \text{ kg} \cdot \text{m}^{-3}$	0.5035 mPa•s	-
Number of points in the correlation	130	167	-
Number of inconsistent points	39	5	-
References	105, 298, 302, 363	12, 27, 216, 302	
Comments	Data from Rodnyanski ²⁹⁸ and		
	Roy ³⁰² inconsistent and excluded		

Table 11. CaCl₂ - Calcium Chloride - 10043-52-4

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	0.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	126.7 °C	100.0 °C	100.0 °C
$w_{\rm max}$	0.513	0.513	0.418
Average residual	$0.20 \text{ kg} \cdot \text{m}^{-3}$	0.0086 mPa•s	$-0.0004 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$1.08 \text{ kg} \cdot \text{m}^{-3}$	0.1658 mPa•s	$0.0066 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	369	532	91
Number of inconsistent points	231	17	0
References	113, 114, 160, 200, 242, 264, 267, 299,	18, 44, 159, 366,	108, 264, 267, 306, 307,
	307, 331, 328, 366, 374, 380	374, 380	328
Comments	Romankiw ²⁹⁹ clearly overevaluates densities when compared		
	to other authors. Wahab ³⁶⁶ shows unacceptable		
	scatter. Both have been tagged as "Inconsistent"		
	even if not all data points are inconsistent.		

Table 12. CaSO₄ - Calcium Sulfate - 7778-18-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	-	25.0 °C
$t_{\rm max}^{\rm old}/{\rm ^{\circ}C}$	25.0 °C	-	25.0 °C
Wmax	0.001	-	0.001
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	9	-	6
Number of inconsistent points	6	-	0
References	139, 227		227
Comments			Millero ²²⁷ values are estimated, not experimental. However, because
			there is no other data and because of the importance of CaSO ₄

in natural waters, these are given here as is.

Table 13. Cd(NO₃)₂ - Cadmium Nitrate - 10325-94-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	15.0 °C	-
$t_{\rm max}^{\rm max}/{\rm ^{\circ}C}$	85.0 °C	55.0 °C	-
w_{\max}	0.700	0.542	-
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0002 mPa·s	-
Standard deviation of residual	$1.13 \text{ kg} \cdot \text{m}^{-3}$	0.0034 mPa•s	-
Number of points in the correlation	143	84	-
Number of inconsistent points	12	7	-
References	86, 104, 160, 325, 328	86, 160	

Table 14. CdCl₂ - Cadmium Chloride - 10108-64-2

	Density	Viscosity	Heat Capacity
$\overline{t_{\min}}/^{\circ}C$	25.0 °C	25.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	25.0 °C	120.0 °C
W _{max}	0.538	0.159	0.155
Average residual	$0.11 \text{ kg} \cdot \text{m}^{-3}$	0.0023 mPa•s	$-0.0006 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.41 \text{ kg} \cdot \text{m}^{-3}$	0.0057 mPa•s	$0.0026 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	88	16	216
Number of inconsistent points	90	0	0
References	49, 87, 143, 290, 293	87, 293	49
Comments	Data from Call ⁴⁹ were marked as inconsistent as they show scatter in the apparent densities and they are inconsistent with data from Herrington, ¹⁴³ Rard, ²⁹⁰ and Reilly. ²⁹³ However, data on MgCl ₂ in the same paper are consistent.		Data from Call ⁴⁹ are used, but the same data for density were judged inconsistent. Use with caution.

coefficients derived here for NaAl(OH)₄ and published coefficients for NaOH and NaNO₂, the model was shown to accurately predict the density of solutions that contain NaNO₂ in addition to NaOH–NaAl(OH)₄ ($R^2 = 0.993$). This indicates that the model coefficients developed here

can be incorporated into models of diverse multicomponent electrolyte solutions.

Their approach was used to develop coefficients for the density and viscosity of NaAl(OH)₄ and for the density of

Table 15. CdSO₄ - Cadmium Sulfate - 10124-36-4

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	18.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	75.0 °C	-
W _{max}	0.297	0.357	-
Average residual	$0.09 \text{ kg} \cdot \text{m}^{-3}$	-0.0084 mPa•s	-
Standard deviation of residual	$0.55 \text{ kg} \cdot \text{m}^{-3}$	0.0643 mPa•s	-
Number of points in the correlation	44	59	-
Number of inconsistent points	25	1	-
References	33, 34, 313	34, 276	

Table 16. CH₃CH₂OH - Ethanol - 64-17-5

	Density	Viscosity	Heat Capacity
t _{min} /°C	−5.0 °C	−5.0 °C	3.0 °C
$t_{\rm max}/{\rm ^{o}C}$	50.0 °C	50.0 °C	41.0 °C
Wmax	1.000	1.000	1.000
Average residual	$-0.28 \text{ kg} \cdot \text{m}^{-3}$	-0.0017 mPa•s	$-0.0037 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$2.05 \text{ kg} \cdot \text{m}^{-3}$	0.0806 mPa•s	0.0460 kJ•kg ⁻¹ •K ⁻¹
Number of points in the correlation	200	120	39
Number of inconsistent points	0	0	0
References	235, 292	292	235
Comments	These data are presented as a "proof of concept" that the density model works with nonionic organic solutes. It should not be considered a definite review of this particular system. The data from ICT ²³⁵ and Rehman ²⁹² are generally in good agreement except at $w = 0.2212$ ($x = 0.1$). Rehman data on LiCl are generally consistent, and there is no deviation at low temperature. The data are kept, but the fit should be used with caution	Same general comment.	Same general comment.

Table 17. CO₂ - Carbon Dioxide - 124-38-9

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	4.9 °C	-	25.0 °C
t _{max} /°C	150.0 °C	-	100.4 °C
w _{max}	0.072	-	0.009
Average residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	-	0.0000 kJ·kg ⁻¹ ·K ⁻¹
Standard deviation of residual	$0.20 \text{ kg} \cdot \text{m}^{-3}$	-	0.0003 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	28	-	12
Number of inconsistent points	0	-	0
References	37, 96, 151, 349		37, 150
Comments	Data available at higher pressure (and thus higher CO ₂ concentration) in Teng ³⁴⁹ and at higher temperature in Hnedkovsky. ¹⁵¹ Molarity for Ellis ⁹⁶ interpreted to have been measured at 25 °C. Densities for Ellis measured at 20 atm, so the delta density was used instead to better represent values at atmospheric pressure.		Data available at higher temperaturein Hnedkovsky. ¹⁵⁰

Table 18. CoCl₂ - Cobalt(II) Chloride - 7646-79-9

	Density	Viscosity	Heat Capacity
t _{min} /°C	15.0 °C	20.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	50.0 °C	25.0 °C
Wmax	0.303	0.345	0.030
Average residual	$0.09 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.63 \text{ kg} \cdot \text{m}^{-3}$	0.0086 mPa•s	0.0001 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	214	61	8
Number of inconsistent points	21	0	0
References	103, 143, 262, 268, 280, 328	18, 268	328
Comments	The data from $Pena^{262}$ and $Phang^{268}$ are inconsistent and have been excluded.		

Table 19. CoSO₄ - Cobalt(II) Sulfate - 10124-43-3

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	25.0 °C	_
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	75.0 °C	-
W _{max}	0.331	0.331	-
Average residual	$0.12 \text{ kg} \cdot \text{m}^{-3}$	0.0070 mPa•s	-
Standard deviation of residual	$1.76 \text{ kg} \cdot \text{m}^{-3}$	0.0506 mPa•s	-
Number of points in the correlation	37	29	-
Number of inconsistent points	4	1	-
References	34, 313	34	

 NH_4HCO_3 (for some reason, the only density data found for that solute are for solutions of more than one solute).

The procedure is simple. Apparent densities, viscosities, or heat capacities are calculated for solutes where coefficients are known. Initial guesses are then made for the unknown coefficients, and a residual is calculated. The sum of the square of these residuals is then minimized using a nonlinear optimization program. Different guesses are tried, and the optimized coefficients giving the lowest sum of square are kept. Readers who are interested are referred to the files for NaAl(OH)₄ and NH₄HCO₃ in the Supporting Information for examples of the calculations.

This is the best way to generate coefficients for solutes that are not stable in solution with pure water such as salts of metals that hydrolyze easily in water such as $Al_2(SO_4)_3$ or CrCl₃. The method is unfortunately less accurate than the usual method; however, it is better to have inaccurate data than no data at all, and the use of this method is encouraged.

Estimating Properties for Solutes Where No Experimental Data Are Available. In a second paper,⁹ Reynolds and Carter demonstrated that the properties for components where no experimental data are available could be estimated if data are available for other components with the same anions and cations. An individual electrolyte is a cation and anion pair, and our model

Table 20. Cr₂(SO₄)₃ - Chromium(III) Sulfate - 10101-53-8

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	25.0 °C	-
$t_{\rm max}/{\rm ^{o}C}$	25.0 °C	25.0 °C	-
$w_{\rm max}$	0.001	0.001	-
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	0.0001 mPa•s	-
Standard deviation of residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0001 mPa•s	-
Number of points in the correlation	16	16	-
Number of inconsistent points	0	0	-
References	32	32	

Table 21. CrCl₃ - Chromium(III) Chloride - 10025-73-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	18.0 °C	20.0 °C	-
t _{max} /°C	18.0 °C	50.0 °C	-
Wmax	0.120	0.253	-
Average residual	0.00 kg·m ⁻³	-0.0014 mPa•s	-
Standard deviation of residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	0.0232 mPa•s	-
Number of points in the correlation	5	62	-
Number of inconsistent points	0	1	-
References	269	18	
Comments		Afzal ¹⁸ does not specify at which temperature he measured his molarities. We have assumed 20 °C. Furthermore, there are no density data for $w > 0.12$, so	

conversions of molarities to mass fraction above this concentration are suspect.

viscosities are consistent. Use this data with caution.

Table 22. Cu(NO₃)₂ - Copper(II) Nitrate - 3251-23-8

	Density	Viscosity	Heat Capacity
<i>t</i> _{min} /°C <i>t</i> _{max} /°C <i>w</i> _{max} Average residual Standard deviation of residual Number of points in the correlation Number of inconsistent points References Comments	5.0 °C 95.0 °C 0.350 0.04 kg·m ⁻³ 0.24 kg·m ⁻³ 110 46, 86, 101, 135 Data from Doan ⁸⁶ are inconsistent and excluded. Data available from Brown ⁴⁶ at lower concentration.	25.0 °C 25.0 °C 0.458 0.0006 mPa·s 0.0008 mPa·s 10 0 86 Only data from Doan ⁸⁶ are available. Since Doan data are inconsistent for densities, his viscosities are suspect. Doan did not test for purity of his chemicals, so it is possible that his chemicals were impure. However, for some other solutes such as Cd(NO ₃) ₂ . Doan density data are inconsistent but his	5.0 °C 120.0 °C 0.085 -0.0003 kJ·kg ⁻¹ ·K ⁻¹ 0.0010 kJ·kg ⁻¹ ·K ⁻¹ 144 0 46

Table 23. CuCl₂ - Copper(II) Chloride - 7447-39-4

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	20.0 °C	19.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	55.0 °C	50.0 °C	51.0 °C
Wmax	0.445	0.375	0.425
Average residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	$-0.0024 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.49 \text{ kg} \cdot \text{m}^{-3}$	0.0142 mPa•s	$0.0106 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	149	73	10
Number of inconsistent points	16	0	0
References	87, 97, 101, 221, 231, 279	18, 87, 147	235
Comments	Data from Motin ²³¹ inconsistent and excluded		The ICT data ²³⁵ are the average Cp between (19 and 51) °C.

Table 24. CuSO₄ - Copper(II) Sulfate - 7758-98-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	10.0 °C	15.0 °C	18.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	60.0 °C	60.0 °C	18.0 °C
$w_{\rm max}$	0.284	0.413	0.150
Average residual	$0.04 \text{ kg} \cdot \text{m}^{-3}$	-0.0042 mPa•s	$-0.0008 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.86 \text{ kg} \cdot \text{m}^{-3}$	0.0494 mPa•s	$0.0041 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	304	180	4
Number of inconsistent points	1	5	0
References	84, 101, 146, 259, 286, 335, 382	22, 33, 63, 84, 377	235
Comments	Data from Demichowicz-Pigoniowa ⁸⁴ generally inconsistent and excluded		

depends on the user's arbitrary choice of how the cations and anions are paired together in multi-ion mixtures. Reynold and Cooper demonstrated the self-consistency of our model when cations and anions are paired in different ways. The authors showed for example that the model coefficients for KAl(OH)₄ could be calculated solely from the coefficients for NaAl(OH)₄, NaOH, and KOH without directly fitting the model to experimental data. The results were confirmed by comparing the calculated densities to published experimental data. The model was able to accurately predict experimentally determined densities ($R^2 > 0.99$) using model coefficients derived without using any experimental data from solutions containing KAl(OH)₄.

Review of Density, Viscosity, and Heat Capacity Data for 105 Solutes

The data for density, viscosity, and heat capacity for the solutes listed in the Abstract are found in Tables 4 to 112

1734 Journal of Chemical & Engineering Data, Vol. 54, No. 6, 2009

Table 25. Fe₂(SO₄)₃ - Iron(III) Sulfate - 10028-22-5

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	20.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	25.0 °C	50.0 °C	-
Wmax	0.301	0.301	-
Average residual	$-0.06 \text{ kg} \cdot \text{m}^{-3}$	-0.0017 mPa•s	-
Standard deviation of residual	$1.72 \text{ kg} \cdot \text{m}^{-3}$	0.0111 mPa•s	-
Number of points in the correlation	31	35	-
Number of inconsistent points	18	0	-
References	65, 235, 386	65	
Comments	The data is generally old and inconsistent. The fit was		
	limited to $w \le 0.3$, the data is too poor above that limit.		

Table 26. FeCl₂ - Iron(II) Chloride - 7758-94-3

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	18.0 °C	16.2 °C
$t_{\rm max}/^{\circ}{\rm C}$	45.0 °C	40.0 °C	35.7 °C
W _{max}	0.210	0.037	0.359
Average residual	0.01 kg·m ⁻³	0.0002 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.14 \text{ kg} \cdot \text{m}^{-3}$	0.0003 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	93	43	3
Number of inconsistent points	7	2	0
References	176, 280, 387	176	42
Comments			The data are very limited and should be used with caution. The solution in Bernarducci ⁴² contained 0.1 m of HCl, the effect of which is neglected in his calculations.

Table 27. FeCl₃ - Iron(III) Chloride - 7705-08-0

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	0.0 °C	-
$t_{\rm max}/{\rm ^{o}C}$	35.0 °C	35.0 °C	-
W _{max}	0.500	0.432	-
Average residual	$0.17 \text{ kg} \cdot \text{m}^{-3}$	0.0026 mPa•s	-
Standard deviation of residual	$1.13 \text{ kg} \cdot \text{m}^{-3}$	0.0299 mPa•s	-
Number of points in the correlation	111	38	-
Number of inconsistent points	16	2	-
References	235, 386, 387	235	
Comments	The data from the International Critical Tables ²³⁵ are calculated from many sources from the late XIX and early XX centuries. Two of those sources (Franz ³⁸⁶ and Heidweiller ³⁸⁷) have been consulted, and it so appears that they are both mutually inconsistent and seem to have little relation with the data published in the ICT. Heyweiller is supposed to have been given a greater weight in the ICT tables, which is strange given the difference between his data and the ICT data. Use with caution.		

Table 28. FeSO₄ - Iron(II) Sulfate - 7720-78-7

	Density	Viscosity	Heat Capacity
t _{min} /°C t _{max} /°C w _{max} Average residual Standard deviation of residual Number of points in the correlation Number of inconsistent points References Comments	15.0 °C 25.0 °C 0.233 0.11 kg·m ⁻³ 1.27 kg·m ⁻³ 66 38 34, 83, 235, 388 Good data for this solute are difficult to find. We have used Konisberger ³⁸⁸ data and based on his findings have removed Bakeev ³⁴ from the fit. The most concentrated data from Degremont ⁸³ were found to be of poorer	Viscosity 25.0 °C 75.0 °C 0.211 0.0009 mPa•s 0.0114 mPa•s 30 0 34 Bakeev ³⁴ data are inconsistent for density. Use with caution.	Heat Capacity 25.0 °C 45.0 °C 0.350 0.0004 kJ·kg ⁻¹ ·K ⁻¹ 0.0045 kJ·kg ⁻¹ ·K ⁻¹ 9 0 235 The ICT ²³⁵ reports that the data represent the average <i>Cp</i> between (25 and 45) °C
	quality and were also excluded. The data at 25 °C are probably good, but extrapolations at very different temperatures are of unknown quality. Use with caution.		

Table 29. H₂O₂ - Hydrogen Peroxide - 7722-84-1

	Density	Viscosity	Heat Capacity
t _{min} /°C	0.0 °C	0.0 °C	25.0 °C
$t_{\rm max}/{\rm ^{o}C}$	96.0 °C	20.0 °C	25.0 °C
W _{max}	0.996	1.000	0.715
Average residual	$-0.13 \text{ kg} \cdot \text{m}^{-3}$	-0.0014 mPa•s	0.0015 kJ·kg ⁻¹ ·K ⁻¹
Standard deviation of residual	$1.41 \text{ kg} \cdot \text{m}^{-3}$	0.0094 mPa•s	0.1116 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	122	46	4
Number of inconsistent points	1	0	6
References	92, 117, 156, 212	212, 272	235

Table 30. H₂SO₄ - Sulfuric Acid - 7664-93-9

	Density	Viscosity	Heat Capacity
$\frac{1}{t_{\min}}$	−11.2 °C	-10.0 °C	−20.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	75.0 °C	55.0 °C
W _{max}	0.782	0.782	0.939
Average residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	-0.0139 mPa•s	$-0.0021 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$1.59 \text{ kg} \cdot \text{m}^{-3}$	0.1133 mPa•s	$0.0410 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	232	141	187
Number of inconsistent points	18	17	6
References	55, 138, 154, 204, 234, 284, 294	55, 118, 294, 312, 364	116, 154, 202, 204
Comments	The quality of the fit decreases significantly if the concentration range is extended to $w = 1$. Data at higher concentration are however available in the Supporting Information.	The "molality" in Gillespie ¹¹⁸ has been interpreted to be based on sulfuric acid as the solvent. The quality of the fit decreases significantly if the concentration range is extended to $w = 1$. Data at higher concentration are however available in the Supporting Information.	Additional data at higher concentration (eg oleum) in Giauque. ¹¹⁶ The model can fit data to $w = 1$ but at the cost of a decrease in the accuracy at lower concentration. The parameters given above are chosen to best fit the range 0 < w < 0.94. Data at higher concentration are however available in the Supporting Information.

Table 31. H₃AsO₃ - Arsenious Acid - 13464-58-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.1 °C	-	55.7 °C
$t_{\rm max}/{\rm ^{o}C}$	100.1 °C	-	76.0 °C
W _{max}	0.036	-	0.037
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	-	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.12 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0006 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	15	-	16
Number of inconsistent points	0	-	0
References	263		263
Comments	Data available in Perfetti ²⁶³ at higher pressure (to 30 MPa) and temperature (to 350 °C).		Data available in Perfetti ¹¹⁶ at higher pressure (to 30 MPa) and temperature (to 350 °C). The ratio $Cp_{\rm H3AsO3}/Cp_{\rm H2O}$ is used instead of the apparent molal heat capacity to reduce the effect of the higher pressure

Table 32. H₃AsO₄ - Arsenic Acid - 7778-39-4

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	25.0 °C	50.7 °C
$t_{\rm max}/^{\circ}{\rm C}$	50.0 °C	25.0 °C	74.9 °C
$w_{\rm max}$	0.700	0.124	0.069
Average residual	$0.21 \text{ kg} \cdot \text{m}^{-3}$	-0.0004 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.56 \text{ kg} \cdot \text{m}^{-3}$	0.0014 mPa•s	$0.0023 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	42	4	7
Number of inconsistent points	0	0	0
References	235, 263	235	263
Comments	Data at higher pressure and temperature available in Perfetti. ²⁶⁹ Delta densities for Perfetti averaged when more than 1 data point available.		Data at higher pressure and temperature available in Perfetti. ²⁶⁹

Table 33. H₃PO₄ - Phosphoric Acid - 7664-38-2

	Density	Viscosity	Heat Capacity
t _{min} /°C	15.9 °C	20.0 °C	24.7 °C
$t_{\rm max}/^{\circ}{\rm C}$	81.4 °C	25.0 °C	101.1 °C
Wmax	0.850	0.800	0.986
Average residual	0.10 kg·m ⁻³	-0.0223 mPa•s	$-0.0018 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.40 \text{ kg} \cdot \text{m}^{-3}$	0.0518 mPa•s	$0.0202 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	215	25	134
Number of inconsistent points	0	12	24
References	72, 94, 204, 317, 334	89, 93, 321	95, 204, 317, 370
Comments		Data from Simon ³²¹ inconsistent and excluded. All data sets are however old.	The data from Wakefield ³⁷⁰ are not so much inconsistent as simply at too high a concentration to truly be considered representative of the Cp of H ₃ PO ₄ solutions.

Table 34. HBr - Hydrobromic Acid - 10035-10-6

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	−10.0 °C	0.0 °C	24.9 °C
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	25.0 °C	24.9 °C
W _{max}	0.407	0.195	0.028
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	-0.0001 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.85 \text{ kg} \cdot \text{m}^{-3}$	0.0018 mPa•s	$0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	211	11	21
Number of inconsistent points	16	0	0
References	137, 142, 322	235	322
Comments	The data from Haase ¹³⁷ are not very accurate.		

Table 35. HCH₃CO₂ - Acetic Acid - 64-19-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	15.0 °C	0.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	85.0 °C	55.0 °C	120.0 °C
W _{max}	1.000	1.000	0.153
Average residual	$0.13 \text{ kg} \cdot \text{m}^{-3}$	-0.0032 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.75 \text{ kg} \cdot \text{m}^{-3}$	0.0185 mPa•s	$0.0024 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	328	238	214
Number of inconsistent points	7	0	0
References	25, 35, 53, 89, 126, 127, 159, 187, 203, 375	53, 80, 89, 126, 159, 205	15, 25, 35
Comments	Data at lower concentration available in Ballerat-Busserolles. ³⁵ In the same paper, when two apparent molar volumes are given at the same concentration and temperature, the average is used.		Data at lower concentration available in Ballerat-Busserolles. ³⁵ The heat capacity in Ballerat-Busserolles is a bit higher than in Allred. ²⁵

Table 36. HCHO₂ - Formic Acid - 64-18-6

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	15.0 °C	0.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	55.0 °C	55.0 °C	120.0 °C
W _{max}	1.000	1.000	0.116
Average residual	0.00 kg·m ⁻³	0.0003 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	0.98 kg·m ⁻³	0.0137 mPa•s	$0.0032 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	182	153	52
Number of inconsistent points	0	0	0
References	127, 159, 187	159	15
Comments			Ackermann ¹⁵ data point at $m = 0.982$ and $t = 0$ is shown as 0.997 cal/g/C.

This is probably a typo and we have used 0.979 cal/g/C instead.

Table 37. HCl - Hydrochloric Acid - 7647-01-0

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	5.0 °C	10.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	98.8 °C	42.5 °C	130.0 °C
W _{max}	0.376	0.360	0.065
Average residual	$0.06 \text{ kg} \cdot \text{m}^{-3}$	0.0013 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.21 \text{ kg} \cdot \text{m}^{-3}$	0.0134 mPa•s	$0.0028 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	287	163	348
Number of inconsistent points	168	0	0
References	21, 26, 110, 121, 142, 145, 282, 297, 308, 322, 352	57, 121, 157, 240	26, 35, 131, 255, 282, 308, 322, 353, 373
Comments	Data available at lower concentration in Allred. ²⁶ Akerlof ²¹ seems to systematically underestimate the density when compared to more recent data. It has been excluded from the fit even if not all residuals are greater than ± 4 std dev.		Tremaine ³⁵³ has additional data at 139.46 °C and 0.5 MPa. Data available at lower concentration in Allred ²⁶ and in Ballerat-Busserolles. ³⁵ The data are scattered, and the fit is not very good. Consider for example the variation in apparent heat capacity at 100 °C.

Table 38. HCN - Hydrogen Cyanide - 74-90-8

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	0.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	20.0 °C	0.0 °C	-
$w_{\rm max}$	1.000	1.000	-
Average residual	$0.06 \text{ kg} \cdot \text{m}^{-3}$	0.0203 mPa•s	-
Standard deviation of residual	$2.34 \text{ kg} \cdot \text{m}^{-3}$	0.0731 mPa•s	-
Number of points in the correlation	56	12	-
Number of inconsistent points	0	0	-
References	192, 235	192	

Table 39. HNO₃ - Nitric Acid - 7697-37-2

	Density	Viscosity	Heat Capacity
$\overline{t_{\min}}/^{\circ}C$	-10.0 °C	4.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	25.0 °C	120.0 °C
W _{max}	0.701	0.309	0.065
Average residual	$-0.12 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	$-0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$1.02 \text{ kg} \cdot \text{m}^{-3}$	0.0027 mPa•s	$0.0011 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	295	16	159
Number of inconsistent points	17	0	0
References	136, 155, 153, 256	45, 351	98, 155, 153, 256
Comments	Data from Haase ¹³⁶ at higher concentration ($w > 0.75$) excluded because		
	the model cannot fit it very well.		

Table 40. K₂CO₃ - Potassium Carbonate - 584-08-7

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	5.0 °C	19.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	89.0 °C	120.0 °C
W _{max}	0.361	0.518	0.065
Average residual	$0.09 \text{ kg} \cdot \text{m}^{-3}$	0.0032 mPa•s	$0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.79 \text{ kg} \cdot \text{m}^{-3}$	0.0820 mPa•s	$0.0010 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	75	61	96
Number of inconsistent points	42	0	0
References	119, 149, 229, 326	76, 149, 252	326
Comments	Data at lower concentration available from Sorenson. ³²⁶ Data from Ginsburg ¹¹⁹ excluded because inconsistent and scattered.		Data at lower concentration available from Sorenson. ³²⁶

Table 41. K₂Cr₂O₇ - Potassium Dichromate - 7778-50-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/{\rm ^{o}C}$	0.0 °C	0.2 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	90.0 °C	89.3 °C	-
Wmax	0.400	0.400	-
Average residual	$0.06 \text{ kg} \cdot \text{m}^{-3}$	-0.0012 mPa•s	-
Standard deviation of residual	$2.24 \text{ kg} \cdot \text{m}^{-3}$	0.0229 mPa•s	-
Number of points in the correlation	38	43	-
Number of inconsistent points	4	0	-
References	140, 181, 189, 190, 288	63, 140, 181	

Table 42. K₂HPO₄ - Dipotassium Hydrogen Phosphate - 7758-11-4

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	21.0 °C	-
$t_{\rm max}/{\rm ^{o}C}$	25.0 °C	50.0 °C	-
Wmax	0.181	0.181	-
Average residual	$0.14 \text{ kg} \cdot \text{m}^{-3}$	0.0002 mPa•s	-
Standard deviation of residual	$1.39 \text{ kg} \cdot \text{m}^{-3}$	0.0050 mPa•s	-
Number of points in the correlation	12	42	-
Number of inconsistent points	0	0	-
References	67, 334	67	
Comments	The data from Chenlo ⁶⁷ are inconsistent with the data from Surdo. ³³⁴ The quality of the fit is therefore poor, and the coefficients should be used with caution.	Note that density data are available only at 25 °C, and therefore conversions of kinematic to dynamic viscosities at other temperatures are subject to systematic errors.	

Table 43. K₂SO₄ - Potassium Sulfate - 7778-80-5

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	0.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	98.7 °C	89.5 °C	100.0 °C
W _{max}	0.152	0.155	0.080
Average residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	0.0012 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.18 \text{ kg} \cdot \text{m}^{-3}$	0.0078 mPa•s	0.0013 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	239	214	43
Number of inconsistent points	6	0	0
References	82, 155, 158, 177, 228, 245, 265, 309	63, 75, 106, 158, 167, 177, 239, 333, 346	155, 245, 309

Table 44	K ₂ PO ₄ -	Potassium	Phosphate -	7778-53-2
1 anic 77.	1341 04 -	1 Otassium	I nospitate .	- 1110-33-4

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	24.9 °C	20.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	25.0 °C	50.0 °C	-
Wmax	0.209	0.209	-
Average residual	$0.16 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	-
Standard deviation of residual	$3.89 \text{ kg} \cdot \text{m}^{-3}$	0.0030 mPa•s	-
Number of points in the correlation	14	42	-
Number of inconsistent points	9	9	-
References	67, 89, 334	67, 89	
Comments	The data from Drucker ⁸⁹ are clearly inconsistent with the data from Chenlo ⁶⁷ or Surdo. ³³⁴ On the other hand, the agreement between Chenlo and Surdo is not that good either (see K ₂ HPO ₄). Use with caution.	Density data are available only at 25 °C, and therefore conversions of kinematic to dynamic viscosities at other temperatures are subject to systematic errors.	

Table 45. KBr - Potassium Bromide - 7758-02-3

	Density	Viscosity	Heat Capacity
t _{min} /°C	0.0 °C	0.0 °C	25.0 °C
$t_{\rm max}/{\rm ^{o}C}$	95.0 °C	95.0 °C	25.0 °C
W _{max}	0.504	0.462	0.105
Average residual	0.06 kg·m ⁻³	0.0000 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.36 \text{ kg} \cdot \text{m}^{-3}$	0.0089 mPa•s	0.0010 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	266	347	20
Number of inconsistent points	23	6	0
References	38, 110, 152, 160, 170, 172, 208, 229, 232, 247, 288, 314, 322, 331, 332	63, 123, 122, 160, 170, 172, 208, 232, 247, 311, 345	110, 322

Table 46. KCH₃CO₂ - Potassium Acetate - 127-08-2

	Density	Viscosity	Heat Capacity
t _{min} /°C	15.0 °C	15.0 °C	20.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	55.0 °C	55.0 °C	51.0 °C
W _{max}	0.595	0.595	0.500
Average residual	$-0.05 \text{ kg} \cdot \text{m}^{-3}$	-0.0030 mPa•s	$-0.0007 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	0.21 kg·m ⁻³	0.0138 mPa•s	$0.0063 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	147	148	10
Number of inconsistent points	0	0	0
References	89, 159, 385	89, 159, 205, 385	235
Comments			The ICT ²³⁵ reports that the data represent the average Cp between (20 and 51) °C. The data were modeled at 35.5 °C.

Table 47. KCHO₂ - Potassium Formate - 590-29-4

_

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	15.0 °C	-
$t_{\rm max}/{}^{\circ}{\rm C}$	55.0 °C	55.0 °C	-
Wmax	0.678	0.813	-
Average residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	-0.0094 mPa•s	-
Standard deviation of residual	$0.30 \text{ kg} \cdot \text{m}^{-3}$	0.0602 mPa•s	-
Number of points in the correlation	122	140	-
Number of inconsistent points	0	0	-
References	69, 159	69, 159, 295	

Table 48. KCl - Potassium Chloride - 7447-40-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	5.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	125.0 °C	150.0 °C	140.0 °C
Wmax	0.264	0.306	0.258
Average residual	$0.06 \text{ kg} \cdot \text{m}^{-3}$	-0.0001 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.22 \text{ kg} \cdot \text{m}^{-3}$	0.0030 mPa•s	$0.0061 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	655	647	315
Number of inconsistent points	45	7	0
References	39, 82, 89, 110, 113, 125, 133, 161, 177, 191, 198, 208, 213, 229, 236, 244, 247, 255, 299, 309, 322, 381	18, 57, 63, 89, 125, 129, 161, 162, 177, 191, 208, 232, 236, 246, 247, 331, 337, 345, 381	210, 244, 248, 255, 303, 309, 322, 329, 348
Comments	To keep the data set size reasonnable, data points where $w < 0.003$ are excluded. The data from Bell ³⁹ are generally scattered and have been excluded.		Data at higher temperature available in Likke ²¹⁰ and Pabalan. ²⁴⁸

Table 49. KF - Potassium Fluoride - 7789-23-3

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	5.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	50.0 °C	55.0 °C	130.0 °C
W _{max}	0.424	0.424	0.084
Average residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	0.0025 mPa•s	0.0000 kJ·kg ⁻¹ ·K ⁻¹
Standard deviation of residual	$0.58 \text{ kg} \cdot \text{m}^{-3}$	0.0255 mPa•s	0.0021 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	158	98	57
Number of inconsistent points	0	0	0
References	110, 208, 229, 260, 344	123, 122, 208	110, 303
Comments	Perdersen ²⁶⁰ has detailed data available for 25 °C, with more than 150 densities at different concentrations. Only some of the data are used here. Tamas ³⁴⁴ and Lengyel ²⁰⁸ report values that are suspiciously close (concentrations, when reported in the same units, are identical to 5 significant figures). The two data sets are however not inconsistent with the other data and do not cover quite the same temperature range, so both sets have been kept.		

Table 50. KH₂PO₄ - Potassium Dihydrogen Phosphate - 7778-77-0

	Density	Viscosity	Heat Capacity
$\overline{t_{\min}}/^{\circ}C$	20.0 °C	20.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	40.0 °C	50.0 °C	-
Wmax	0.232	0.232	-
Average residual	$0.04 \text{ kg} \cdot \text{m}^{-3}$	0.0004 mPa•s	-
Standard deviation of residual	$0.53 \text{ kg} \cdot \text{m}^{-3}$	0.0591 mPa•s	-
Number of points in the correlation	41	60	-
Number of inconsistent points	8	0	-
References	67, 70, 225, 233, 334	67, 233	
Comments	Data from Mullin ²³³ at $m = 2.2209$ and $t = 30$ °C were changed from (1713 to 1173) kg·m ⁻³ . Chenlo ⁶⁷ clearly overestimates the density, and his data are excluded (see also K ₂ HPO ₄ and K ₃ PO ₄).	The data published for this solute in our previous publication on viscosity were incorrect at $t = (44.95 \text{ and } 49.95)$ °C for Chenlo. ⁶⁷ There might be a local minimum in the apparent viscosity near $w = 0.1$, which would not be modeled correctly. The data are however a bit scattered and difficult to interpret.	

Table 51. KHCO₃ - Potassium Bicarbonate - 298-14-6

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	25.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	25.0 °C	120.0 °C
W _{max}	0.344	0.247	0.095
Average residual	$0.03 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.15 \text{ kg} \cdot \text{m}^{-3}$	0.0044 mPa•s	$0.0035 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	66	12	106
Number of inconsistent points	0	0	0
References	37, 229, 326, 356	252	37, 326
Comments	Data at lower concentration available in Sorenson. ³²⁶		Data at lower concentration available in Sorenson. ³²⁶

Table 52. KHSO₃ - Potassium Bisulfite - 298-14-6

_

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	-	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	25.0 °C	-	25.0 °C
w_{\max}	0.106	-	0.106
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.16 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0007 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	8	-	8
Number of inconsistent points	0	-	0
References	37		37

Table 53. KI - Potassium Iodide - 7681-11-0

	Density	Viscosity	Heat Capacity
t _{min} /°C t _{max} /°C W _{max} Average residual Standard deviation of residual Number of points in the correlation Number of inconsistent points References Comments	0.0 °C 100.0 °C 0.667 0.02 kg·m ⁻³ 0.47 kg·m ⁻³ 297 32 110, 178, 208, 229, 232, 247, 283, 288, 309, 314, 315, 341 Data from Prokash ²⁸³ assumed constant concentration and molarity measured at 25 °C. The data are inconsistent with the other data sets and have been excluded. Data from Swenson ³⁴¹ available at lower concentration. The Lengyel ²⁰⁸ and the Swenson ³⁴¹ data are not in good agreement at higher concentration, but there is not enough information to select one or the other.	5.0 °C 95.0 °C 0.627 -0.0001 mPa•s 0.0099 mPa•s 245 0 63, 85, 122, 178, 208, 232, 247, 311	5.0 °C 120.0 °C 0.476 0.0002 kJ·kg ⁻¹ ·K ⁻¹ 0.0115 kJ·kg ⁻¹ ·K ⁻¹ 180 1 110, 309, 341 Data from Swenson ³⁴¹ available at lower concentration. There is an unexplained inversion of Solute exp heat capacity in Swenson data at high temperature between $m = 4.0008$ and m = 5.4786 There is no mention of this in the original paper. The inversion is the cause of the relatively high standard deviation. There are not enough data from other references at high concentration to be able to check whether this is an error or not. The data were kept but are suspect.

Table 54. KNO₂ - Potassium Nitrite - 7758-09-0

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	20.0 °C	25.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	80.0 °C	25.0 °C	-
W _{max}	0.750	0.623	-
Average residual	$-0.04 \text{ kg} \cdot \text{m}^{-3}$	0.0011 mPa•s	-
Standard deviation of residual	1.06 kg·m ⁻³	0.0043 mPa•s	-
Number of points in the correlation	55	15	-
Number of inconsistent points	1	0	-
References	78, 325	78	
Comments	Data from Daniel ⁷⁸ at $M = 0.6005$ are shown as 1029.6. However, the calculated data are 1026.9, and we have corrected it assuming this is a typo.		

Table 55. KNO₃ - Potassium Nitrate - 7757-79-1

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	15.0 °C	5.0 °C
$t_{\rm max}/{\rm ^{o}C}$	95.0 °C	60.0 °C	120.0 °C
W _{max}	0.284	0.495	0.200
Average residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	0.0001 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.20 \text{ kg} \cdot \text{m}^{-3}$	0.0071 mPa•s	0.0010 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	179	146	147
Number of inconsistent points	32	3	0
References	40, 86, 98, 160, 189, 229, 244, 256, 261, 302	63, 86, 160, 171, 304, 331, 339	99, 244, 256
Comments	Korin ¹⁸⁹ has only 4 data points at much higher concentration than the balance of the data. His data seem inconsistent and have been excluded. Roy ³⁰² data are generally inconsistent and are excluded.		

Table 56. KOH - Potassium Hydroxide - 1310-58-3

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	4.0 °C	−14.1 °C	4.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	40.0 °C	120.0 °C
Wmax	0.519	0.519	0.465
Average residual	$0.06 \text{ kg} \cdot \text{m}^{-3}$	0.0282 mPa•s	$-0.0004 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.64 \text{ kg} \cdot \text{m}^{-3}$	0.1097 mPa•s	0.0018 kJ·kg ⁻¹ ·K ⁻¹
Number of points in the correlation	237	50	285
Number of inconsistent points	305	0	2
References	19, 141, 149, 222, 255, 300, 305, 322, 323, 350	149, 182, 323	131, 255, 300, 322
Comments	Data from Akerlof, ¹⁹ Hitchcock, ¹⁴⁹ Salavera, ³⁰⁵ and Tham ³⁵⁰ generally inconsistent		

Table 57. Li₂SO₄ - Lithium Sulfate - 10377-48-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	5.0 °C	25.0 °C
$t_{\rm max}/{\rm ^{\circ}C}$	65.0 °C	128.6 °C	25.0 °C
W _{max}	0.260	0.260	0.094
Average residual	$0.04 \text{ kg} \cdot \text{m}^{-3}$	0.0004 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.39 \text{ kg} \cdot \text{m}^{-3}$	0.0138 mPa•s	$0.0092 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	192	179	11
Number of inconsistent points	1	0	0
References	59-61, 146, 176, 258, 376	14, 59, 176	28

Table 58. LiCH₃CO₂ - Lithium Acetate - 546-89-4

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	15.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	45.0 °C	45.0 °C	-
<i>w</i> _{max}	0.047	0.039	-
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0002 mPa•s	-
Standard deviation of residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	0.0011 mPa•s	-
Number of points in the correlation	35	22	-
Number of inconsistent points	0	0	-
References	385	385	
Comments		There is an unexplained inversion in the (mass frac vs concentration) slope at 25 $^{\circ}$ C.	

Table 59. LiCl - Lithium Chloride - 7447-41-8

	Density	Viscosity	Heat Capacity
$\overline{t_{\min}}/^{\circ}C$	−5.0 °C	−5.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	127.1 °C	100.0 °C	130.0 °C
W _{max}	0.454	0.460	0.160
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	0.0141 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$1.13 \text{ kg} \cdot \text{m}^{-3}$	0.2060 mPa•s	$0.0025 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	592	651	166
Number of inconsistent points	4	12	0
References	47, 113, 128, 160, 166, 208, 218, 229, 247, 246, 292, 331, 332, 359, 374	44, 85, 128, 160, 208, 246, 247, 292, 311, 331, 367, 374	47, 110, 131, 303, 329
Comments	The data are scattered, especially at higher temperature. Data from Brown ⁴⁷ available at lower concentration. Data available at higher temperature and pressure in Majer. ²¹⁸ Majer has a lot of duplicate and triplicate data. His average Delta density is reported here.	The viscosity of LiCl solutions at high concentration is very high, and the data are somewhat scattered. The data from Lengyel ²⁰⁸ and Rehman ²⁹² seem inconsistent, but both data sets have been kept in the fit, except for Rehman at $m = 17.8$.	Data from Brown ⁴⁷ available at lower concentration.

Table 60. LiNO₃ - Lithium Nitrate - 7790-69-4

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	0.0 °C	20.0 °C
$t_{\rm max}/{\rm ^{o}C}$	110.0 °C	110.0 °C	20.0 °C
W _{max}	0.624	0.671	0.130
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	-0.0005 mPa•s	$-0.0006 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.85 \text{ kg} \cdot \text{m}^{-3}$	0.0394 mPa•s	0.0046 kJ•kg ⁻¹ •K ⁻¹
Number of points in the correlation	128	104	4
Number of inconsistent points	10	25	0
References	29, 50, 51, 302, 374, 384	29, 50, 51, 302, 374	
Comments	More data are available from	Data from Roy ³⁰² seem offset by about	
	Appleby ²⁹ at (18 and 25) °C, but	0.05 mPa · s. His viscosity also increases	
	data are not very good.	much too rapidly with concentration.	
		These data were therefore excluded.	

Table 61. LiOH - Lithium Hydroxide - 1310-65-2

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	20.0 °C	20.0 °C	25.0 °C
$t_{\rm max}/{\rm ^{o}C}$	75.0 °C	40.0 °C	25.0 °C
w _{max}	0.113	0.113	0.052
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	0.0061 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.35 \text{ kg} \cdot \text{m}^{-3}$	0.1227 mPa•s	$0.0006 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	119	29	15
Number of inconsistent points	5	0	0
References	141, 148, 300, 323, 342	148, 323, 342	132
Comments	Hitchcock ¹⁴⁸ used constant molarity concentrations at different temperatures. We assumed that he measured the concentrations at 20 °C and then reused the same solutions at different temperatures.	The data are very scattered.	

Table 62. Mg(CH₃CO₂)₂ - Magnesium Acetate - 142-72-3

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	15.0 °C	21.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	45.0 °C	45.0 °C	52.0 °C
W _{max}	0.122	0.042	0.140
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0005 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.04 \text{ kg} \cdot \text{m}^{-3}$	0.0018 mPa•s	$0.0006 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	33	22	3
Number of inconsistent points	0	0	0
References	385	385	235
Comments			The ICT ²³⁵ reports that the data represent the average Cp between (21 and 52) °C. The data were modeled at 36.5 °C.

Table 63. $Mg(NO_3)_2$ - Magnesium Nitrate - 10377-60-3

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	0.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	120.0 °C	120.0 °C
W _{max}	0.439	0.720	0.131
Average residual	$-0.07 \text{ kg} \cdot \text{m}^{-3}$	0.0290 mPa•s	$-0.0003 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.77 \text{ kg} \cdot \text{m}^{-3}$	0.2089 mPa•s	$0.0017 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	385	235	216
Number of inconsistent points	94	0	0
References	86, 147, 173, 174, 302, 319, 331, 369	86, 147, 302, 319, 369	173
Comments	The data from Wahab ³⁶⁹ at $m = 3.17$ are off by about 5 kg·m ⁻³ . Data from Sheerson ³¹⁹ available at higher temperature. His data are however inconsistent and excluded. Jubin ¹⁷¹ seems to underestimate the density. His densities were measured by volume and are not as accurate as other measurements. Excluded.		

Table 64. MgCl₂ - Magnesium Chloride - 7786-30-3

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	15.0 °C	5.0 °C
$t_{\rm max}/^{\rm o}{\rm C}$	98.7 °C	70.0 °C	120.0 °C
W _{max}	0.324	0.386	0.345
Average residual	$0.24 \text{ kg} \cdot \text{m}^{-3}$	0.0047 mPa•s	$-0.0004 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	0.76 kg·m ⁻³	0.0850 mPa•s	$0.0040 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	386	332	315
Number of inconsistent points	119	85	1
References	41, 49, 64, 73, 113, 160, 177, 228, 264, 267, 299, 307, 332, 357	18, 41, 106, 160, 177, 216, 271, 346	49, 108, 210, 264, 267, 306, 307
Comments	To keep the data set size reasonnable, data points where $w < 0.003$ are excluded. The densities from Bereck ⁴¹ are systematically higher than the densities from the other references. This data set has therefore been excluded. The densities from Isono ¹⁶⁰ at 3 and 4 molal seem systematically lower than the densities from the other references. This part of Isono's data has therefore been excluded.	Data from Berek ⁴¹ at 5.501 m are inconsistent. Data from Afzal ¹⁸ at 0.5 M and 30 °C assumed to be 0.96 mPa·s, not 1.96. Data from Afzal excluded because many points are inconsistent.	

Table 65. MgSO₄ - Magnesium Sulfate - 7487-88-9

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	15.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	125.0 °C	150.0 °C	130.0 °C
W _{max}	0.268	0.301	0.276
Average residual	0.06 kg·m ⁻³	0.0001 mPa•s	$0.0005 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.86 \text{ kg} \cdot \text{m}^{-3}$	0.0117 mPa•s	$0.0056 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	420	182	68
Number of inconsistent points	22	11	0
References	32, 31, 64, 73, 90, 107, 146, 147, 159, 169, 177, 191, 228, 229, 231, 265, 274, 275, 288, 310, 331, 382	32, 31, 63, 106, 147, 159, 177, 191	210, 265, 275, 278
Comments	To keep the data set size reasonnable, data points where $w < 0.003$ are excluded. Data available at higher temperature in Phutala. ^{274,275} Motin ²³¹ and Rakshit ²⁸⁸ excluded because inconsistent.	Data available at higher concentration in Chatterji ⁶³ ($w = 0.6$ and 0.7). Including these data in the overall data set however increases the standard deviation significantly. These data are therefore excluded.	Data at higher temperature available in Likke ²¹⁰ and Phutela. ²⁷⁵

Table 66. Mn(NO₃)₂ - Manganese(II) Nitrate - 10377-66-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	25.0 °C	5.0 °C
t _{max} /°C	95.0 °C	25.0 °C	120.0 °C
Wmax	0.084	0.349	0.084
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	-0.0005 mPa•s	$-0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	0.0012 mPa·s	0.0009 kJ•kg ⁻¹ •K ⁻¹
Number of points in the correlation	54	6	192
Number of inconsistent points	1	0	0
References	173	235	173
	Density	VISCOSILV	
	, ,		Theat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	25.0 °C	25.0 °C
$t_{\min}/^{\circ}C$ $t_{\max}/^{\circ}C$	15.0 °C 75.0 °C	25.0 °C 25.0 °C	25.0 °C 25.0 °C
$t_{\min}/^{\circ}C$ $t_{\max}/^{\circ}C$ w_{\max}	15.0 °C 75.0 °C 0.435	25.0 °C 25.0 °C 0.420	25.0 °C 25.0 °C 0.019
$t_{min}/^{\circ}C$ $t_{max}/^{\circ}C$ w_{max} Average residual	15.0 °C 75.0 °C 0.435 0.09 kg⋅m ⁻³	25.0 °C 25.0 °C 0.420 -0.0011 mPa•s	25.0 °C 25.0 °C 0.019 0.0000 kJ·kg ⁻¹ ·K ⁻¹
$t_{max}/^{\circ}C$ w_{max} W_{max} Average residual Standard deviation of residual	15.0 °C 75.0 °C 0.435 0.09 kg·m ⁻³ 0.61 kg·m ⁻³	25.0 °C 25.0 °C 0.420 -0.0011 mPa•s 0.0075 mPa•s	25.0 °C 25.0 °C 0.019 0.0000 kJ·kg ⁻¹ ·K ⁻¹ 0.0000 kJ·kg ⁻¹ ·K ⁻¹
$t_{max}/^{\circ}C$ $t_{max}/^{\circ}C$ w_{max} A verage residual Standard deviation of residual Number of points in the correlation	15.0 °C 75.0 °C 0.435 0.09 kg·m ⁻³ 0.61 kg·m ⁻³ 195	25.0 °C 25.0 °C 0.420 -0.0011 mPa•s 0.0075 mPa•s 14	25.0 °C 25.0 °C 0.019 0.0000 kJ·kg ⁻¹ ·K ⁻¹ 0.0000 kJ·kg ⁻¹ ·K ⁻¹ 9
$t_{min}/^{\circ}C$ $t_{max}/^{\circ}C$ w_{max} Average residual Standard deviation of residual Number of points in the correlation Number of inconsistent points	$\begin{array}{c} 15.0 \ ^{\circ}\text{C} \\ 75.0 \ ^{\circ}\text{C} \\ 0.435 \\ 0.09 \ \text{kg} \cdot \text{m}^{-3} \\ 0.61 \ \text{kg} \cdot \text{m}^{-3} \\ 195 \\ 0 \end{array}$	25.0 °C 25.0 °C 0.420 -0.0011 mPa•s 0.0075 mPa•s 14 0	25.0 °C 25.0 °C 0.019 0.0000 kJ·kg ⁻¹ ·K ⁻ 9 0

Table 68. MnSO₄ - Manganese(II) Sulfate - 10034-96-5

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	20.0 °C	20.0 °C	20.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	25.0 °C	80.0 °C	50.0 °C
Wmax	0.364	0.364	0.150
Average residual	$-0.19 \text{ kg} \cdot \text{m}^{-3}$	0.0010 mPa•s	$0.0007 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	2.11 kg·m ⁻³	0.0438 mPa•s	$0.0061 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	33	93	4
Number of inconsistent points	31	15	0
References	33, 34, 81, 147, 284, 313	33, 34, 81, 147	235
Comments	Deckwer ⁸¹ generally underestimates the density, while Schmelzer ³¹³ generally overestimates it. However, there is no sufficient evidence to decide between the two data sets. Bakeev ³⁴ generally overestimates the density and has been excluded.	Deckwer ⁸¹ concentration data are probably in error, as he is using constant molarity concentrations at different temperatures. We assumed that he measured the concentrations at 20 °C and then reused the same solutions at different temperatures. Therefore, we calculated the mass fraction at 20 °C.	The ICT ²³⁵ reports that the data represent the average Cp between (20 and 50) °C. The data were modeled at 35 °C.

Table 69. $Na_2C_2O_4$ - Sodium Oxalate - 62-76-0

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	0.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	50.0 °C	50.0 °C	25.0 °C
W _{max}	0.032	0.032	0.032
Average residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	0.0003 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.18 \text{ kg} \cdot \text{m}^{-3}$	0.0026 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	18	13	6
Number of inconsistent points	1	0	0
References	343, 354	343	354
Comments	Data available in Taft ³⁴³ and Tromans ³⁵⁴ at lower concentration.		

Table 70. Na₂CO₃ - Sodium Carbonate - 497-19-8

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	20.0 °C	25.0 °C
$t_{\rm max}/{\rm ^{o}C}$	100.1 °C	90.0 °C	25.0 °C
W _{max}	0.209	0.309	0.209
Average residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	0.0035 mPa•s	0.0001 kJ·kg ⁻¹ ·K ⁻¹
Standard deviation of residual	0.73 kg·m ⁻³	0.0540 mPa•s	$0.0005 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	167	63	23
Number of inconsistent points	23	0	0
References	144, 149, 214, 229, 250, 251, 265, 318	76, 149, 251	214, 265
Comments	Molarities for Palaty ²⁵¹ interpreted as being measured at 25 °C. Palaty ²⁵⁰ obviously uses the same experimental data but at 20 °C. There is no information allowing us to determine at which temperature the molarities were actually determined. The data from Hershey ¹⁴⁴ show scatter, especially at higher temperature. The data from Hitchcock ¹⁴⁹ are excluded because he significantly underestimates the density compared to other data sets. Data at higher pressure and temperature available from Sharygin. ³¹⁸	Molarities for Palaty ²⁵¹ interpreted as being measured at 25 °C.	

Table 71. Na₂CrO₄ - Sodium Chromate - 7775-11-3

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	0.2 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	90.0 °C	89.3 °C	-
W _{max}	0.500	0.500	-
Average residual	$0.16 \text{ kg} \cdot \text{m}^{-3}$	0.0075 mPa•s	-
Standard deviation of residual	2.82 kg \cdot m ⁻³	0.0479 mPa•s	-
Number of points in the correlation	47	48	-
Number of inconsistent points	0	0	-
References	140, 181, 183	140, 181	

Table 72. Na₂HPO₄ - Disodium Hydrogen Phosphate - 7782-85-6

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	20.0 °C	24.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	45.0 °C	50.0 °C	55.0 °C
Wmax	0.077	0.099	0.073
Average residual	$-0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0002 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.62 \text{ kg} \cdot \text{m}^{-3}$	0.0162 mPa•s	$0.0003 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	35	41	2
Number of inconsistent points	12	0	0
References	67, 325, 334, 379	67, 124	235
Comments	Data from Sohnel ³²⁵ inconsistent with the other data sets and excluded.		The ICT ²³⁵ reports that the data represent the average Cp between (24 and 55) °C. The data were modeled at 39.5 °C.

Table 73. Na₂MoO₄ - Sodium Molybdate - 7631-95-0

			Heat
	Density	Viscosity	Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	-	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	80.0 °C	-	25.0 °C
$w_{ m max}$	0.350	-	0.032
Average residual	$0.09 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.29 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	30	-	10
Number of inconsistent points	0	-	0
References	245, 325		245

Table 74. Na₂S - Sodium Sulfide - 1313-82-2

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	-	25.0 °C
$t_{\rm max}/{\rm ^{o}C}$	25.0 °C	-	25.0 °C
W _{max}	0.084	-	0.084
Average residual	$-0.01 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.38 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0016 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	8	-	8
Number of inconsistent points	0	-	0
References	37		37

Table 75. $Na_2S_2O_3$ - Sodium Thiosulfate - 7772-98-7

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	11.9 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	80.0 °C	50.0 °C	25.0 °C
Wmax	0.600	0.494	0.037
Average residual	0.16 kg•m ⁻³	-0.0012 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	0.51 kg·m ⁻³	0.1119 mPa•s	$0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	38	85	17
Number of inconsistent points	0	13	0
References	245, 325	175, 217	245
Comments		The data from Kalita ¹⁷⁵ at higher concentration do not seem to be very accurate. The experimental apparent density at $x = 0.18$ is lower than at x = 0.14, while if the trend was maintained it should have been lower. In no other solute can a "s" curve like this be seen. There is a high apparent density value at $w = 0$, a low around w = 0.1, another high around w = 0.6, followed by another low around w = 0.65. The model can fit all the data,	

w = 0.05. The model can fit a but at the cost of a significant

decrease in accuracy at lower

concentration. The fit has

been limited to w < 0.5.

Table 76. Na₂SO₃ - Sodium Sulfite - 7757-83-7

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	25.0 °C	-
$t_{\rm max}/{}^{\circ}{\rm C}$	80.0 °C	40.0 °C	-
W _{max}	0.200	0.060	-
Average residual	$-0.54 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	-
Standard deviation of residual	$2.82 \text{ kg} \cdot \text{m}^{-3}$	0.0029 mPa•s	-
Number of points in the correlation	36	20	-
Number of inconsistent points	0	0	-
References	325, 360	363	

Table 77. Na₂SO₄ - Sodium Sulfate - 7757-82-6

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	15.0 °C	25.0 °C
$t_{\rm max}/{\rm ^{o}C}$	125.0 °C	150.0 °C	140.4 °C
W _{max}	0.325	0.331	0.211
Average residual	$0.14 \text{ kg} \cdot \text{m}^{-3}$	0.0010 mPa•s	$-0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.47 \text{ kg} \cdot \text{m}^{-3}$	0.0064 mPa•s	$0.0040 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	402	222	106
Number of inconsistent points	16	3	0
References	64, 73, 82, 107, 109, 120, 160, 178, 191, 214, 228, 249, 265, 274, 309, 310, 376	75, 106, 109, 120, 160, 178, 191, 346	74, 210, 214, 245, 249, 265, 309
Comments	To keep the size of the data set reasonable, data where $w < 0.003$ are excluded. The data from Pabalan ²⁴⁹ were excluded. The data are probably good, but the pressure correction at 20 MPa becomes significant. Data at higher temp are available from the same reference. Data available in Phutela ²⁷⁴ at higher pressure and		Data at higher temperature available from Likke ²¹⁰ and Pabalan. ²⁴⁹

Table 78. Na₂WO₄ - Sodium Tungstate - 13472-45-2

temperature.

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	20.0 °C	-	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	80.0 °C	-	25.0 °C
$w_{\rm max}$	0.400	-	0.045
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.20 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	27	-	11
Number of inconsistent points	0	-	0
References	245, 325		245

Table 79. Na₃PO₄ - Sodium Phosphate - 7601-54-9

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	20.0 °C	25.0 °C
$t_{\rm max}/{\rm ^{o}C}$	80.0 °C	50.0 °C	25.0 °C
Wmax	0.300	0.076	0.028
Average residual	$0.00 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	$0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.62 \text{ kg} \cdot \text{m}^{-3}$	0.0026 mPa•s	$0.0007 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	29	35	7
Number of inconsistent points	5	0	0
References	67, 204, 325, 334	67	204
Comments	Chemlo ⁶⁷ systematically overestimates density and is excluded.	Only Chemlo ⁶⁷ data available. Use with caution.	

Table 80. NaAl(OH)₄ - Sodium Aluminate - 11138-49-1

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	22.0 °C	22.0 °C	-
$t_{\rm max}/{\rm ^{o}C}$	90.0 °C	75.0 °C	-
W _{max}	0.380	0.995	-
Average residual	$-0.15 \text{ kg} \cdot \text{m}^{-3}$	-0.0028 mPa•s	-
Standard deviation of residual	$2.02 \text{ kg} \cdot \text{m}^{-3}$	0.1297 mPa•s	-
Number of points in the correlation	219	113	-
Number of inconsistent points	84	0	-
References	188, 209, 324	209, 324	
Comments	The CAS number is for NaAlO ₂ . The form in solution is however NaAl(OH) ₄ . See detailed notes on the methodology used for this solute in the Supporting Information.	See detailed notes on the methodology used for this solute in the Supporting Information.	

Table 81. NaBr - Sodium Bromide - 7647-15-6

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	5.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	60.0 °C	120.0 °C
$w_{\rm max}$	0.548	0.540	0.439
Average residual	$0.14 \text{ kg} \cdot \text{m}^{-3}$	-0.0018 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.71 \text{ kg} \cdot \text{m}^{-3}$	0.0147 mPa•s	$0.0046 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	291	217	262
Number of inconsistent points	20	22	0
References	38, 88, 110, 113, 130, 133, 160, 179, 229, 314, 315, 322, 331, 359, 383	88, 122, 123, 159, 311, 347	110, 179, 322, 348, 383
Comments	Baxter ³⁸ and Doménech ⁸⁸ data generally not accurate and excluded	Goldsack ¹²² data at $m = 6$ and 7 mol·kg ⁻¹ inconsistent and excluded.	

Table 82. NaCH₃CO₂ - Sodium Acetate - 127-09-3

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	5.0 °C	25.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	55.0 °C	120.0 °C
W _{max}	0.082	0.456	0.038
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0061 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.14 \text{ kg} \cdot \text{m}^{-3}$	0.0509 mPa•s	$0.0010 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	93	25	133
Number of inconsistent points	7	0	0
References	25, 35, 36, 69, 89, 186, 187, 288, 296, 385	63, 69, 89, 296, 385	15, 25, 35
Comments	Data from Rakshit ²⁸⁸ and from Banipal ³⁶ are inconsistent and have been excluded. Data available at lower concentration from Ballerat-Brusserolles. ¹⁵		Data available at lower concentration from Ballerat-Brusserolles. ¹⁵ The data from Ackermann ³⁵ are old and are offset by about (0.01 to 0.02) $kJ \cdot kg^{-1} \cdot K^{-1}$ compared to more recent data. It also goes to much higher concentration, but because of the "offset" it must be excluded.

Table 83. NaCHO₂ - Sodium Formate - 141-53-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	25.0 °C	0.0 °C
$t_{\rm max}/{\rm ^{o}C}$	45.0 °C	25.0 °C	120.0 °C
W _{max}	0.406	0.008	0.162
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0000 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.15 \text{ kg} \cdot \text{m}^{-3}$	0.0002 mPa•s	$0.0033 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	99	5	51
Number of inconsistent points	4	0	1
References	69, 211, 187, 378	69	15
Comments		This fit is really more an indication than anything else as the maximum	
		available concentration is too low to be	

meaningful.

Table 84. NaCl - Sodium Chloride - 7647-14-5

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	5.0 °C	1.5 °C
$t_{\rm max}/^{\circ}{\rm C}$	140.0 °C	154.0 °C	120.0 °C
$w_{\rm max}$	0.266	0.264	0.261
Average residual	$0.07 \text{ kg} \cdot \text{m}^{-3}$	0.0006 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.32 \text{ kg} \cdot \text{m}^{-3}$	0.0045 mPa•s	$0.0049 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	869	552	356
Number of inconsistent points	13	17	0
References	26, 64, 73, 82, 107, 110, 113, 125, 133, 161, 176, 191, 198, 208, 220, 226, 229, 231, 244, 247, 266, 267, 299, 322, 358, 381	57, 106, 161, 125, 165, 176, 184, 185, 191, 201, 208, 230, 232, 247, 311, 340, 347, 381	26, 30, 100, 110, 210, 266, 267, 306, 322, 329, 348
Comments	To limit the data set size, only data where $w \ge 0.003$ are reported.		Data at higher temperature available in Likke. ²¹⁰ Data available at lower concentration in Allred, ²⁶ Fortier. ¹¹⁰

Table 85. NaClO₃ - Sodium Chlorate - 7775-09-9

	Density	Viscosity	Heat Capacity	
$t_{\rm min}/{\rm ^{o}C}$	25.0 °C	25.0 °C	25.0 °C	
$t_{\rm max}/^{\circ}{\rm C}$	35.0 °C	65.0 °C	25.0 °C	
W _{max}	0.501	0.583	0.272	
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	-0.0003 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
Standard deviation of residual	$0.39 \text{ kg} \cdot \text{m}^{-3}$	0.0181 mPa•s	$0.0004 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$	
Number of points in the correlation	48	46	13	
Number of inconsistent points	3	0	0	
References	56, 301	56, 63, 164	301	

Table 86. NaF - Sodium Fluoride - 7681-49-4

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	5.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	98.7 °C	55.0 °C	120.0 °C
$w_{\rm max}$	0.037	0.039	0.029
Average residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	0.0003 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.24 \text{ kg} \cdot \text{m}^{-3}$	0.0051 mPa•s	$0.0014 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	226	67	176
Number of inconsistent points	6	3	0
References	110, 195, 228, 229, 260, 309, 383	85, 122, 195, 238	110, 309, 383
Comments	The data from Krishnamurty ¹⁹⁵ are inconsistent and have been excluded.	Data available at lower concentration in Nightingale. ²³⁸ In his paper Nightingale refers to concentrations as molar, but in Table 2 they are labeled as mol/1000 g. We have assumed the text is correct.	Data at lower concentration available from Ziemer. ³⁸³

Table 87. NaH₂PO₄ - Sodium Dihydrogen Phosphate - 7758-80-7

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	20.0 °C	24.0 °C
$t_{\rm max}/{\rm ^{o}C}$	45.0 °C	50.0 °C	55.0 °C
W _{max}	0.357	0.300	0.200
Average residual	0.04 kg·m ⁻³	0.0016 mPa•s	$-0.0003 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.38 \text{ kg} \cdot \text{m}^{-3}$	0.0070 mPa•s	$0.0025 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	88	53	5
Number of inconsistent points	16	3	0
References	67, 224, 325, 334, 379	48, 67, 124	235
Comments			The ICT ²³⁵ reports that the data represent the average Cp between (24 and 55) °C. The data were modeled at 39.5 °C.

Table 88. NaHCO₃ - Sodium Bicarbonate - 144-55-8

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	0.0 °C	20.0 °C	25.0 °C
$t_{\rm max}/{}^{\circ}{\rm C}$	125.0 °C	30.0 °C	25.0 °C
W _{max}	0.126	0.084	0.083
Average residual	$0.03 \text{ kg} \cdot \text{m}^{-3}$	0.0001 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.85 \text{ kg} \cdot \text{m}^{-3}$	0.0020 mPa•s	$0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	145	12	20
Number of inconsistent points	181	0	0
References	37, 96, 144, 229, 250, 251, 265, 291, 318, 355	251	37, 265
Comments	Data from Rashkovskaya ²⁹¹ inconsistent and excluded. Data available at higher temperature in Ellis. ⁹⁶ Data available at higher temperature and pressure in Sharygin. ³¹⁸ Molarities from Palaty ²⁵¹ interpreted as being measured at 25 °C. Palaty ²⁵⁰ in his 1994 paper obviously use the same experimental data but reports values at 20 °C. There is no indication allowing us to determine at which temperature the molarities were determined. The data from Trypuc ³⁵⁵ are not very accurate but have been kept as they are the highest concentration available	Molarities from Palaty ²⁵¹ interpreted as being measured at 25 °C.	

Table 89. NaHS - Sodium Hydrogen Sulfide - 16721-80-5

-

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	10.0 °C	-	10.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	125.0 °C	-	40.0 °C
Wmax	0.053	-	0.052
Average residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.35 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0020 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	49	-	29
Number of inconsistent points	0	-	0
References	37, 96		37
Comments	Data at higher temperature available in Ellis. ⁹⁶		

Table 90. NaHSO₃ - Sodium Hydrogen Sulfite - 7631-90-5

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	10.0 °C	-	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	40.0 °C	-	25.0 °C
$w_{\rm max}$	0.243	-	0.093
Average residual	$-0.07 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$1.85 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0009 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	103	-	16
Number of inconsistent points	5	-	0
References	37, 71		37
Comments	The data sets from Barbero ³⁷ and		
	Choudary ⁷¹ seem inconsistent, but		
	it is not possible to evaluate which set		
	best fit the solution density. There		
	seems to be a lot of variability in		
	Choudary's data. It is however the		
	only data set at temperatures		
	different than 25 °C.		

Table 91. NaHSO₄ - Sodium Hydrogen Sulfate - 7681-38-1

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	25.0 °C	18.0 °C	21.0 °C
$t_{\rm max}/{}^{\circ}{\rm C}$	45.0 °C	18.0 °C	21.0 °C
Wmax	0.298	0.375	0.200
Average residual	$0.03 \text{ kg} \cdot \text{m}^{-3}$	0.0004 mPa•s	$0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.17 \text{ kg} \cdot \text{m}^{-3}$	0.0048 mPa•s	$0.0044 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	45	5	5
Number of inconsistent points	0	0	0
References	379	235	235

Table 92. NaI - Sodium Iodide - 7681-82-5

_

_

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	10.0 °C	5.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	100.0 °C	97.8 °C	100.0 °C
W _{max}	0.629	0.629	0.232
Average residual	$0.07 \text{ kg} \cdot \text{m}^{-3}$	0.0005 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.49 \text{ kg} \cdot \text{m}^{-3}$	0.0221 mPa•s	$0.0005 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	99	166	22
Number of inconsistent points	10	0	0
References	110, 208, 213, 229, 232, 308, 314, 315, 359	13, 85, 91, 122, 208, 232, 304, 311	110, 308
Comments	Data from Scott ³¹⁴ (1930) are at high concentration and seem to underestimate the density. The data from the same author 1934 paper seem bang on. Data at lower concentration available in Fortier. ¹¹⁰	Note that data from Satoh ³¹¹ are inconsistent if using <i>absolute</i> viscosity but are consistent if interpreted as <i>relative</i> viscosity. Data at higher pressure available in Abdulagatov. ¹³	Data at lower concentration available in Fortier. ¹¹⁰

Table 93. NaMnO₄ - Sodium Permanganate - 10101-50-5

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	1.4 °C	-	-
$t_{\rm max}/^{\circ}{\rm C}$	37.5 °C	-	-
$w_{ m max}$	0.256	-	-
Average residual	$-0.04 \text{ kg} \cdot \text{m}^{-3}$	-	-
Standard deviation of residual	$0.25 \text{ kg} \cdot \text{m}^{-3}$	-	-
Number of points in the correlation	20	-	-
Number of inconsistent points	0	-	-
References	372		

Table 94. NaNO₂ - Sodium Nitrite - 7632-00-0

	Density	Viscosity	Heat Capacity
t _{min} /°C	15.0 °C	-	_
$t_{\rm max}^{\rm max}/{\rm ^{\circ}C}$	20.0 °C	-	-
$w_{\rm max}$	0.200	-	-
Average residual	$0.01 \text{ kg} \cdot \text{m}^{-3}$	-	-
Standard deviation of residual	$0.16 \text{ kg} \cdot \text{m}^{-3}$	-	-
Number of points in the correlation	15	-	-
Number of inconsistent points	0	-	-
References	134, 235		
Comments	The data are very fragmentary.		
	Use with caution.		

Table 95. NaNO₃ - Sodium Nitrate - 7631-99-4

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	0.0 °C	10.0 °C	2.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	100.0 °C	60.0 °C	120.0 °C
W _{max}	0.489	0.552	0.460
Average residual	$0.02 \text{ kg} \cdot \text{m}^{-3}$	0.0001 mPa•s	$0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.81 \text{ kg} \cdot \text{m}^{-3}$	0.0300 mPa•s	$0.0027 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	259	338	206
Number of inconsistent points	7	2	0
References	10, 40, 86, 160, 180, 229, 256, 261, 287, 302	63, 86, 160, 165, 180, 217, 304, 338, 347	58, 99, 100, 256, 301
Comments	Data from Isono ¹⁶⁰ at $m = 8$ molal are systematically off by about 5 kg·m ⁻³ and have been excluded.		

Table 96. NaOH - Sodium Hydroxide - 1310-73-2

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	4.0 °C	12.5 °C	4.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	120.0 °C	70.0 °C	120.0 °C
W _{max}	0.503	0.560	0.303
Average residual	0.07 kg·m ⁻³	0.0164 mPa•s	$-0.0008 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	1.50 kg·m ⁻³	0.1152 mPa•s	$0.0060 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	517	180	322
Number of inconsistent points	292	0	0
References	20, 26, 141, 145, 149, 157, 188, 193, 214, 219, 229, 255, 265, 300, 305, 322–324, 362	149, 157, 194, 323, 324, 362	26, 35, 74, 132, 214, 255, 300, 322
Comments	Molarity from Vazquez ³⁶² interpreted to have been measured at 25 °C. Data available at lower concentration in Allred. ²⁶ Data from Arkelof, ²⁰ Krey, ¹⁹³ and Maksimova ²¹⁹ excluded because of scatter even if not all points have a high residual: their observed densities are significantly lower than the densities from the other data sets.	Molarities from Vazquez ³⁶² interpreted to have been measured at 25 °C.	Data available at lower concentration in Ballerat-Busserolles. ³⁵

Table 97. NH₃ - Ammonia - 7664-41-7

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	20.0 °C	19.9 °C	−13.2 °C
$t_{\rm max}/{\rm ^{\circ}C}$	140.7 °C	39.9 °C	100.4 °C
W _{max}	0.522	0.340	0.321
Average residual	$-0.11 \text{ kg} \cdot \text{m}^{-3}$	-0.0007 mPa•s	$-0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$2.26 \text{ kg} \cdot \text{m}^{-3}$	0.0127 mPa•s	$0.0054 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	205	25	51
Number of inconsistent points	128	0	13
References	151, 215, 243, 291, 305	43, 111, 206	25, 62, 112, 150
Comments	The H ₂ O–NH ₃ is highly ideal and not well described by our model. To keep the error reasonable we have decided to limit the fit above to the range $0 \le w_{\text{NH3}} < 0.53$. The available data at higher concentration are presented in the Supporting Information.		Data at higher pressure available in Fujita ¹¹² and Hnedkovsky. ¹⁵⁰ The fit covers the entire range $0 \le w_{\text{NH3}} \le 1$. A better fit could be obtained if the concentration range was more limited.

Table 98. NH₄Cl - Ammonium Chloride - 12125-02-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	12.5 °C	10.0 °C	10.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	100.0 °C	73.5 °C	40.0 °C
Wmax	0.400	0.324	0.141
Average residual	$0.10 \text{ kg} \cdot \text{m}^{-3}$	0.0005 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.52 \text{ kg} \cdot \text{m}^{-3}$	0.0024 mPa•s	$0.0003 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	364	265	58
Number of inconsistent points	2	9	0
References	24, 147, 160, 178, 229, 231, 259, 291	63, 79, 115, 122, 147, 159, 171, 178, 230, 254, 304	25, 207, 301

Table 99. NH4HCO3 - Ammonium Hydrogen Carbonate - 1066-33-7

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	19.9 °C	-	-
$t_{\rm max}/^{\circ}{\rm C}$	49.9 °C	-	-
Wmax	0.367	-	-
Average residual	$-1.61 \text{ kg} \cdot \text{m}^{-3}$	-	-
Standard deviation of residual	8.25 kg \cdot m ⁻³	-	-
Number of points in the correlation	96	-	-
Number of inconsistent points	0	-	-
References	355, 356		
Comments	Data available only at high concentration.		
	Use with caution at low concentration.		

Table 100. NH₄NO₃ - Ammonium Nitrate - 6484-52-2

_

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	15.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	60.0 °C	25.0 °C
Wmax	0.787	0.785	0.642
Average residual	$-0.02 \text{ kg} \cdot \text{m}^{-3}$	0.0013 mPa•s	$0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$1.19 \text{ kg} \cdot \text{m}^{-3}$	0.0110 mPa•s	$0.0021 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	152	277	17
Number of inconsistent points	46	24	0
References	16, 51, 52, 54, 115, 301,	51, 52, 54, 53, 63, 115,	301
Comments	302, 316 Data from Getman ¹¹⁵ and Roy inconsistent and excluded.	230, 365	

Table 101. Ni(NO₃)₂ - Nickel(II) Nitrate - 13138-45-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	24.7 °C	5.0 °C
$t_{\rm max}/{\rm ^{o}C}$	95.0 °C	102.7 °C	120.0 °C
w_{\max}	0.422	0.422	0.086
Average residual	$0.03 \text{ kg} \cdot \text{m}^{-3}$	0.0005 mPa•s	$0.0000 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.19 \text{ kg} \cdot \text{m}^{-3}$	0.0041 mPa•s	$0.0010 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	72	48	144
Number of inconsistent points	6	0	0
References	46, 86	11, 86	46
Comments	The data from Doan ⁸⁶ are not consistent at low concentration. It might also be inconsistent at high concentration, but there is nothing to compare it against. Use with caution for $w_{Ni(NO3)2} > 0.1$. Data available at lower concentration from Brown. ⁴⁶	Data at higher pressure and temperature available in Abdulagatov. ¹¹	

Table 102. NiCl₂ - Nickel(II) Chloride - 7718-54-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	14.9 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	50.0 °C	25.0 °C
W _{max}	0.411	0.424	0.411
Average residual	$-0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0047 mPa•s	$-0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.59 \text{ kg} \cdot \text{m}^{-3}$	0.1037 mPa•s	0.0011 kJ•kg ⁻¹ •K ⁻¹
Number of points in the correlation	253	160	30
Number of inconsistent points	12	0	0
References	87, 102, 143, 257, 267, 270, 279, 289, 313, 328, 330	18, 87, 216, 270	267, 328
Comments		Molarity from Afzal ¹⁸ was interpreted	

Molarity from Afzal¹⁸ was interpreted to have been measured at 25 °C.

Table 103. NiSO₄ - Nickel(II) Sulfate - 7786-81-4

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	15.0 °C	15.0 °C	41.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	60.0 °C	60.0 °C	41.0 °C
W _{max}	0.353	0.353	0.150
Average residual	$0.05 \text{ kg} \cdot \text{m}^{-3}$	-0.0009 mPa•s	$-0.0006 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.36 \text{ kg} \cdot \text{m}^{-3}$	0.0230 mPa•s	$0.0045 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	105	99	3
Number of inconsistent points	3	0	0
References	161, 273, 313	161, 273	235

Table 104. Pb(NO₃)₂ - Lead(II) Nitrate - 10099-74-8

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	18.0 °C	25.0 °C	-
$t_{\rm max}/{\rm ^{o}C}$	25.0 °C	50.0 °C	-
w_{\max}	0.332	0.375	-
Average residual	$-0.08 \text{ kg} \cdot \text{m}^{-3}$	0.0002 mPa•s	-
Standard deviation of residual	$1.48 \text{ kg} \cdot \text{m}^{-3}$	0.0598 mPa•s	-
Number of points in the correlation	13	14	-
Number of inconsistent points	5	0	-
References	86, 147, 288, 387	63, 86, 147	
Comments	Doan, ⁸⁶ Heyweiller, ³⁸⁷ and		
	Herz ¹⁴⁷ are consistent with each		
	other, while Rakshit ²⁸⁸ is not.		
	Rakshit has therefore been excluded,		
	but additional data would be welcome.		

Table 105. SO₂ - Sulfur Dioxide - 7446-09-5

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	-	25.0 °C
$t_{\rm max}/{}^{\circ}{\rm C}$	25.0 °C	-	103.1 °C
W _{max}	0.133	-	0.053
Average residual	$0.10 \text{ kg} \cdot \text{m}^{-3}$	-	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.29 \text{ kg} \cdot \text{m}^{-3}$	-	$0.0011 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	22	-	22
Number of inconsistent points	0	-	0
References	37, 317		37, 317
Comments			Data at higher temperature (up to 350 °C) available in Sharygin. ³¹⁷

Table 106. Sr(NO₃)₂ - Strontium Nitrate - 10042-76-9

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	25.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	25.0 °C	120.0 °C
w_{\max}	0.438	0.388	0.388
Average residual	$0.04 \text{ kg} \cdot \text{m}^{-3}$	0.0001 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.50 \text{ kg} \cdot \text{m}^{-3}$	0.0010 mPa•s	$0.0032 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	125	7	216
Number of inconsistent points	5	0	0
References	86, 173, 221, 331	86	173
Comments	Data from Sugden ³³¹ inconsistent and excluded		

Table 107. SrCl₂ - Strontium Chloride - 10476-85-4

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	10.0 °C	25.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	98.8 °C	91.3 °C	100.0 °C
W _{max}	0.284	0.454	0.142
Average residual	$-0.01 \text{ kg} \cdot \text{m}^{-3}$	-0.0014 mPa•s	$-0.0001 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$1.25 \text{ kg} \cdot \text{m}^{-3}$	0.0393 mPa•s	$0.0007 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	98	195	28
Number of inconsistent points	21	2	14
References	147, 160, 229, 264, 254, 277, 307	17, 18, 147, 160, 254, 347	108, 264, 307
Comments	Data from Paranjpe ²⁵⁴ inconsistent and excluded.		Data from Fedyainov ¹⁰⁸ inconsistent and excluded.

Table 108. Sucrose - 57-50-1

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	15.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	55.0 °C	55.0 °C	-
W _{max}	0.507	0.507	-
Average residual	$-0.02 \text{ kg} \cdot \text{m}^{-3}$	-0.0069 mPa•s	-
Standard deviation of residual	$0.07 \text{ kg} \cdot \text{m}^{-3}$	0.0245 mPa•s	-
Number of points in the correlation	82	81	-
Number of inconsistent points	0	0	-
References	159, 222	159	
Comments	As for ethanol, these data are presented as a "proof of concept" that the density model works with nonionic organic solutes. It should not be considered a definite review of this particular system.	These data are presented as a "proof of concept" that the viscosity model works with nonionic organic solutes. It should not be considered a definite review of this particular system.	

1752 Journal of Chemical & Engineering Data, Vol. 54, No. 6, 2009

Table 109. TiOSO₄ - Titanyl Sulfate - 13825-74-6

	Density	Viscosity	Heat Capacity
$t_{\min}/^{\circ}C$	25.0 °C	-	-
$t_{\rm max}/^{\circ}{\rm C}$	50.0 °C	-	-
$w_{\rm max}$	0.486	-	-
Average residual	$-0.05 \text{ kg} \cdot \text{m}^{-3}$	-	-
Standard deviation of residual	$1.79 \text{ kg} \cdot \text{m}^{-3}$	-	-
Number of points in the correlation	76	-	-
Number of inconsistent points	0	-	-
References	391		

Table 110. Zn(NO₃)₂ - Zinc Nitrate - 7779-88-6

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	5.0 °C	0.0 °C	5.0 °C
$t_{\rm max}/^{\circ}{\rm C}$	95.0 °C	50.0 °C	120.0 °C
W _{max}	0.595	0.582	0.077
Average residual	$0.04 \text{ kg} \cdot \text{m}^{-3}$	-0.0004 mPa•s	$-0.0002 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Standard deviation of residual	$0.37 \text{ kg} \cdot \text{m}^{-3}$	0.0381 mPa•s	$0.0007 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Number of points in the correlation	283	222	144
Number of inconsistent points	106	0	0
References	46, 86, 163, 368	86, 368	46
Comments	Data available at lower concentration in Brown, ⁴⁶ Jain, ¹⁶³ and Wahab. ³⁶⁸ Data from Jain inconsistent and excluded		Data available at lower concentration in Brown. ⁴⁶

Table 111. ZnCl₂ - Zinc Chloride - 7646-85-7

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	25.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	75.0 °C	25.0 °C	-
$w_{\rm max}$	0.520	0.520	-
Average residual	$-0.01 \text{ kg} \cdot \text{m}^{-3}$	0.0050 mPa•s	-
Standard deviation of residual	$0.65 \text{ kg} \cdot \text{m}^{-3}$	0.0114 mPa•s	-
Number of points in the correlation	191	13	-
Number of inconsistent points	0	0	-
References	143, 281, 290, 371	371	

Table 112. ZnSO₄ - Zinc Sulfate - 7733-02-0

	Density	Viscosity	Heat Capacity
$t_{\rm min}/^{\circ}{\rm C}$	15.0 °C	15.0 °C	-
$t_{\rm max}/^{\circ}{\rm C}$	60.0 °C	55.0 °C	-
Wmax	0.368	0.318	-
Average residual	$0.04 \text{ kg} \cdot \text{m}^{-3}$	-0.0001 mPa•s	-
Standard deviation of residual	$1.01 \text{ kg} \cdot \text{m}^{-3}$	0.0311 mPa•s	-
Number of points in the correlation	221	46	-
Number of inconsistent points	35	138	-
References	23, 34, 147, 161, 286, 336	34, 147, 161, 336	
Comments	Data from Bakkev ³⁴ inconsistent	The data from Bakeev ³⁴ and	
	and excluded.	Suryanarayana ³³⁶ are not consistent	
		with the data from Isono ¹⁴⁷ and	
		Herz. ¹⁶¹ The latter look more	
		self-consistent and are generally more	
		reliable than the former, but this is	
		not based on any statistical analysis	

. Therefore, the results should be used

with caution.

and in the Supporting Information. The solutes are listed in alphabetical order of their formula, and their common name and CAS number are included. These tables present basic statistical data (average residual, standard deviation of the residuals, number of data points used and not used in the calculation of the coefficients), maximum mass fraction, minimum and maximum temperature of the data used in the calculation of the coefficients, references, and comments. To save space, the actual coefficients and the predicted value at w = 0.1 and t = 25 °C and w = 0.2 and t = 100 °C are not listed but are found in the file _PropertyAqueousSolutions.xls in the Supporting Information.

Acknowledgment

Edward Cooper contributed to the initial data gathering while working on our density paper. He also came upon equations 10 and 11 and demonstrated that they were promising equations to use in order to fit the solute heat capacity.

Supporting Information Available:

Calculation spreadsheets for all the data presented in this paper are available, each solute or system having its own Excel spreadsheet. The Excel file "_PropertiesAqueousSolution.xls" contains a summary of all the data and a Visual Basic program that allows Excel to calculate the density, viscosity, or heat capacity of a solution. The references are listed in the file ReferenceMaster.xls. Finally, a file named _Read_Me_First.doc is included and should be referred to for more details, especially regarding security and the execution of macros. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- Pitzer K. S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd ed.; CRC Press: Boca Raton, FL, 1991.
- (2) Könisberger, E. Solubility equilibria. From data optimization to process simulation. *Pure Appl. Chem.* 2002, 74, 1831–1841.
- (3) Laliberté, M.; Cooper, W. E. Model for Calculating the Density of Aqueous Electrolyte Solutions. J. Chem. Eng. Data 2004, 49, 1141– 1151.
- (4) Laliberté, M. Model for Calculating the Viscosity of Aqueous Solutions. J. Chem. Eng. Data 2007, 52, 321–335 (with corrections in 2007, 52, 1507–1508).
- (5) International Association for the Properties of Water and Steam, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, Lucerne, Switzerland, 2007 (http://www.iapws.org/relguide/IF97-Rev.pdf).
- (6) Archer, D. G.; Carter, R. W. Thermodynamic Properties of the NaCl + H₂O System. 4. Heat Capacities of H₂O and NaCl(aq) in Cold-Stable and Supercooled States. J. Phys. Chem. B 2000, 112, 8563– 8584.
- (7) Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, 1969.
- (8) Reynolds, J. G.; Carter, R. Density model for sodium hydroxidesodium aluminate solutions. *Hydrometallurgy* 2007, 89, 233–241.
- (9) Reynolds, J. G.; Carter, R. The Laliberté-Cooper density model: Selfconsistency and a new method of parameterization. *Fluid Phase Equilib.* 2008, 266, 14–20.
- (10) Abdulagatov, I. M.; Azizov, N. D. Densities and Apparent Molar Volumes of Aqueous NaNO₃ Solutions at Temperatures from 292 to 573 K and at Pressures Up to 30 MPa. J. Solution Chem. 2003, 32, 573–599.
- (11) Abdulagatov, I. M.; Zeinalova, A. B.; Azizov, N. D. Viscosity of aqueous Ni(NO₃)₂ solutions at temperatures from (297 to 475) K and at pressures up to 30 MPa and concentration between (0.050 and 2.246) mol kg⁻¹. *J. Chem. Thermodyn.* **2006**, *38*, 179–189.
 (12) Abdulagatov, I. M.; Zeinalova, A. A.; Azizov, N. D. Viscosity of
- (12) Abdulagatov, I. M.; Zeinalova, A. A.; Azizov, N. D. Viscosity of the Aqueous Ca(NO₃)₂ Solutions at Temperatures from 298 to 573 K and at Pressure up to 40 MPa. *J. Chem. Eng. Data* **2004**, *49*, 1444– 1450.
- (13) Abdulagatov, I. M.; Zeinalova, A. B.; Azizov, N. D. Viscosity of Aqueous Electrolyte Solutions at High Temperatures and High Pressures. Viscosity B-coefficient. Sodium Iodide. J. Chem. Eng. Data 2006, 51, 1645–1659.
- (14) Abdulagatov, I. M.; Azizov, N. D. Viscosity for Aqueous Li₂SO₄ Solutions at Temperatures from 298 to 575 K and at Pressure up to 30 MPa. J. Chem. Eng. Data 2003, 48, 1549–1556.
- (15) Ackermann, T.; Schreiner, F. Molwärmen und Entropien einiger Fettsäuren und ihrer Anionen in wäβriger Lösung (Molar heat and entropies of some fatty acids and their anions in aqueous solution). Z. Elektrochem. 1958, 62, 1143–1151.
- (16) Adams, L. H. Equilibrium in Binary Systems Under Pressure. III. The Influence of Pressure on the Solubility of Ammonium Nitrate in Water at 25°C. J. Am. Chem. Soc. 1932, 54, 4520–4537.
- (17) Abdulagatov, I. M.; Aziov, N. D. Experimental Study on the Effect of Temperature, Pressure, and Concentration on the Viscosity of Aqueous SrCl₂ Solutions in the Range of (293 to 473) K and (0.1 to 20) MPa. J. Chem. Eng. Data **2007**, 52, 841–850.
- (18) Afzal, M.; Saleem, M.; Mahmood, M. T. Temperature and Concentration Dependence of Viscosity of Aqueous Electrolytes from 20 to 50 °C. Chlorides of Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Co²⁺, Ni²⁺, Cu²⁺, and Cr³⁺. J. Chem. Eng. Data **1989**, *34*, 339–346.
- Cu²⁺, and Ct³⁺. J. Chem. Eng. Data 1989, 34, 339–346.
 (19) Akerlof, G.; Bender, P. The Density of Aqueous Solutions of Potassium Hydroxide. J. Am. Chem. Soc. 1941, 63, 1085–1088.
- (20) Akerlof, G.; Kegeles, G. The density of aqueous solutions of sodium hydroxide. J. Am. Chem. Soc. 1939, 61, 1027–1032.
- (21) Akerlof, G; Teare, J. A. Note on the Density of Aqueous Solutions of Hydrochloric Acid. J. Am. Chem. Soc. **1938**, 60, 1226–1228.
- (22) Alamelu, S.; Suryanarayanara, C. V. A study of viscosity of aqueous solutions of copper sulphate and zinc sulphate. *Acta Chim. Acad. Hung.* **1959**, *21*, 333.
- (23) Albright, J. G.; Miller, D. G. Mutual Diffusion Coefficient of ZnSO₄ at 25°C. J. Solution Chem. 1975, 4, 809–816.
- (24) Albright, J. G.; Mitchell, J. P.; Miller, D. G. Interdiffusion coefficients, densities, and refractive indices of ammonium chloride + water and ammonium sulfate + water at 25°C. J. Chem. Eng. Data 1994, 39, 195–200.

- (25) Allred, G. C.; Woolley, E. A. Heat Capacities of aqueous acetic acid, sodium acetate, ammonia, and ammonium chloride at 238.15, 298.15 and 313.15 K: dCp0 for ionization of acetic acid and for dissociation of ammonium ion. J. Chem. Thermodyn. **1981**, *13*, 155–164.
- (26) Allred, G. C.; Woolley, E. M. Heat capacities of aqueous HCl, NaOH and NaCl at 283.15, 298.15 and 313.15 K: dCp for ionization of water. J. Chem. Thermodyn. 1981, 13, 147–154.
- (27) Ambrus, J. H.; Moynihan, C. T.; Macedo, P. B. The temperature dependence of viscosity and conductivity of concentrated aqueous calcium nitrate solutions. J. Electrochem. Soc. **1972**, 119, 192–198.
- (28) Apelblat, A. Enthalpy of solution of lithium sulfate and lithium sulfate monohydrate in water at 298.15 K. J. Chem. Thermodyn. 1985, 17, 769–773.
- (29) Appleby, M. P. The viscosity of salt solutions. J. Chem. Soc. (Trans.) 1910, 2000–2025.
- (30) Archer, D. G.; Carter, R. W. Thermodynamic properties of the NaCl + H₂O system. 4. Heat capacities of H₂O and NaCl(aq) in coldstable and supercooled states. *J. Phys. Chem. B* 2000, *104*, 8563– 8584.
- (31) Asmus, A. Experiments on Falkenhagen's theory of the viscosity of dilute aqueous solutions of strong electrolyte. Z. Physik 1938, 108, 491.
- (32) Asmus, A. The viscosities of aqueous solutions of strong electrolytes of high valence type. Ann. Phys., Ser. 5 1939, 35, 1–22.
- (33) Asmus, E. The viscosities of aqueous solutions of strong electrolytes of high valence types. Ann Phys. 1939, 35, 1–22.
- (34) Bakeev, M. I.; Zharmenov, A. A.; Andamasov, R. S.; Baikenova, N. A.; Abdygalimova, S. Sh. Electrical Conductivity and Viscosity of the Binary Systems MeSO₄-H₂O (Me=Mn²⁺, Fe²⁺, Co²⁺, Zn²⁺, Cd²⁺) at 25-75 Degree and the Structure of Electrolyte Solutions. *Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Khim.* **1994**, *6*, 25-30.
 (35) Ballerat-Busserolles, K.; Ford, T. D.; Call, T. G.; Woolley, E. M.
- (35) Ballerat-Busserolles, K.; Ford, T. D.; Call, T. G.; Woolley, E. M. Apparent molar volumes and heat capacities of aqueous acetic acid and sodium acetate at temperatures from *T* = 278.15 K to *T* = 393.15 K at the pressure 0.35 MPa. *J. Chem. Thermodyn.* **1999**, *31*, 741–762.
- (36) Banipal, T. S.; Kaur, D.; Banipal, P. K. Apparent Molar Volumes and Viscosities of Some Amino Acids in Aqueous Sodium Acetate Solutions at 298.15 K. J. Chem. Eng. Data 2004, 49, 1236–1246.
- (37) Barbero, J. A.; Hepler, L. G.; McCurdy, K. G.; Tremaine, P. R. Thermodynamics of aqueous carbon dioxide and sulfur dioxide: heat capacities, volumes, and the temperature dependence of ionization. *Can. J. Chem.* **1983**, *61*, 2509–2519.
- (38) Baxter, G. P.; Wallace, C. C. Changes in volume upon solution in water of the halogen salts of the alkali metals. II. J. Am. Chem. Soc. 1916, 38, 70–105.
- (39) Bell, J. T.; Helton, D. M.; Rogers, T. G. Densities of aqueous potassium chloride and uranyl sulfate from 25° to 374°. J. Chem. Eng. Data 1970, 15, 44–46.
- (40) Berchiesi, M. A.; Berchiesi, G.; Lobbia, G. G. Apparent Molal Volumes of Alkali Metal Nitrates at 30°C. J. Chem. Eng. Data 1974, 19, 326–328.
- (41) Berecz, E.; Bader, I. Physicochemical study of ternary aqueous electrolyte solutions. VII. Acta. Chim. Acad. Sci. Hung. 1973, 77, 285.
- (42) Bernarducci, E. E.; Morss, L. R.; Miksztal, A. R. Partial Molal Heat Capacity of Aqueous Ferrous Chloride from Measurements of Integral Heat of Dilution. J. Solution Chem. 1979, 8, 717–727.
- (43) Blanchard, A. A.; Pushee, H. B. Viscosity of solutions of the metal ammonia salts. J. Am. Chem. Soc. 1912, 34, 28–32.
- (44) Bogatykh, S. A.; Evnovitch, I. D. The viscosity of aqueous solutions of LiCl, LiBr, and CaCl₂ applicable to the conditions of drying of gases. *Zh. Prikl. Khim.* **1963**, *36*, 1867.
- (45) Bousfield, W. R. The study of the density and viscosity of aqueous solutions, with special reference to nitric acid, Part II. Viscosities. J. Chem. Soc. (Trans.) 1915, 107, 1781–1797.
- (46) Brown, B. R.; Merkley, E. D.; McRae, B. R.; Origlia-Luster, M. L.; Woolley, E. M. Apparent molar volumes and apparent molar heat capacities of aqueous nickel(II) nitrate, copper(II) nitrate, and zinc(II) nitrate at temperatures from (278.15 to 393.15) K at the pressure 0.35 MPa. J. Chem. Thermodyn. 2004, 36, 437–446.
- (47) Brown, B. R.; Origlia-Luster, M. L.; Niederhauser, T. L.; Woolley, E. M. Apparent molar volumes and apparent molar heat capacities of aqueous lithium chloride, rubidium chloride, and cesium chloride at temperatures from 278.15 to 393.15 K at the pressure 0.35 MPa. J. Chem. Thermodyn. 2004, 36, 331–339 (corrections in 2004, 36, 1025).
- (48) Burkell, J. E.; Spinks, J. W. T. Measurements of self-diffusion in aqueous solutions of sodium dihydrogen phosphate. *Can. J. Chem.* **1952**, *30*, 311–319.
- (49) Call, T. G.; Ballerat-Busserolles, K.; Origlia, M. L.; Ford, T. D.; Woolley, E. M. Apparent Molar Volumes and Heat Capacities of Aqueous Magnesium Chloride and Cadmium Chloride at Temper-

atures from 278.15 to 393.15 K at the Pressure 0.35 MPa: a Comparison of Ion-Ion Interactions. *J. Chem. Thermodyn.* **2000**, *32*, 1525–1538.

- (50) Campbell, A. N.; Debus, G. H.; Kartzmark, E. M. Conductances of aqueous lithium nitrate solutions at 25 and 110 °C. *Can. J. Chem.* 1955, 33, 1508–1514.
- (51) Campbell, A. N.; Friesen, R. J. Conductance in the range of medium concentration. *Can. J. Chem.* **1959**, *37*, 1288–1293.
- (52) Campbell, A. N.; Gray, A. P.; Kartzmark, E. M. Conductances, densities, and fluidities of solutions of silver nitrate and of ammonium nitrate at 35°. *Can. J. Res.* **1953**, *31*, 617–630.
- (53) Campbell, A. N.; Kartzmark, E. M. Conductances of strong solutions of strong electrolytes. *Can. J. Res.* **1950**, 28B, 43.
- (54) Campbell, A. N.; Kartzmark, E. M. The Conductances of Strong Solutions of Strong Electrolytes at 95°C. *Can. J. Chem.* 1952, 30, 128–134.
- (55) Campbell, A. N.; Kartzmark, E. M.; Bisset, D.; Bednas, M. E. The conductances of aqueous solutions of sulphuric acid at 50° and 75°. *Can. J. Chem.* **1953**, *31*, 303–305.
- (56) Campbell, A. N.; Kartzmark, E. M.; Oliver, B. G. The electrolytic conductances of sodium chlorate and of lithium chlorate in water and in water-dioxane. *Can. J. Chem.* **1966**, *44*, 925–934.
- (57) Carman, P. C. Transport in concentrated solutions of 1:1 electrolytes. J. Phys. Chem. 1969, 73, 1095–1105.
- (58) Carter, R. W.; Archer, D. G. Heat Capacity of NaNO₃(aq) in Stable and Supercooled States. Ion Association in the Supercooled Solution. *Phys. Chem. Chem. Phys.* **2000**, *2*, 5138–5145.
- (59) Cartón, A.; Sobrón, F.; Bolado, S.; Gerbolés, J. I. Density, Viscosity, and Electrical Conductivity of Aqueous Solutions of Lithium Sulfate. *J. Chem. Eng. Data* **1995**, 40, 987–991.
- (60) Carton, A.; Sobron, F.; Bolado, S.; Tabares, J. Composition and density of saturated solutions of lithium sulfate + water + ethanol. *J. Chem. Eng. Data* **1994**, *39*, 61–62.
- (61) Carton, A.; Sobron, F.; Bolado, S.; Tabares, J. Composition and density of saturated solutions of lithium sulfate + water + methanol. *J. Chem. Eng. Data* **1994**, *39*, 733–734.
- (62) Chan, J. P.; Giauque, W. F. The Entropy of NH₃•2H₂O. Heat Capacity from 15 to 300K. J. Phys. Chem. **1964**, 68, 3053–3057.
- (63) Chatterji, A. C.; Gopal, R. The variation of relative viscosity with temperature. J. Indian Soc. 1947, 24, 455.
- (64) Chen, C.-T. A.; Chen, J. H.; Millero, F. J. Densities of NaCl, MgCl₂, Na₂SO₄, and MgSO₄ Aqueous Solutions at 1 atm. from 0 to 50°C and from 0.001 to 1.5 m. J. Chem. Eng. Data **1980**, 25, 307–310.
- (65) Chenlo, F.; Moreira, R.; Pereira, G.; Vázquez, M. J. Viscosidad de disoluciones acusas de Fe₂(SO₄)₃, Fe₂(SO₄)₃ - Na₂SO₄ y Fe₂(SO₄)₃ -NaCl a differentes concentrationes y temperaturas (Viscosity of aqueous solutions of Fe₂(SO₄)₃, Fe₂(SO₄)₃ - Na₂SO₄ and Fe₂(SO₄)₃ -NaCl at different concentrations and temperatures). *Afinidad* **1997**, *54*, 126–128.
- (66) Chenlo, F.; Moreira, R.; Pereira, G.; Vazquez, M. J. Viscosities of Solutions of K2SO4, Na₂SO₄, KCl, NaCl, KNO₃, and NaNO₃ in (K₂CO₃ + KHCO₃) and (Na₂CO₃ + NaHCO₃) Buffers. *J. Chem. Eng. Data* **1997**, *42*, 93–97.
- (67) Chenlo, F.; Moreira, R.; Pereira, G.; Vázquez, M. J. Viscosity of Binary and Ternary Aqueous Systems of NaH₂PO₄, Na₂HPO₄, KH₂PO₄, K₂HPO₄, and K₃PO₄. J. Chem. Eng. Data **1996**, 41, 906– 909.
- (68) Chertkov, B. A.; Pekareva, T. I. Density and viscosity of aqueous (NH₄)₂SO₃, NH₄HSO₃, and (NH₄)₂SO₄ solutions. J. Appl. Chem. USSR **1961**, 34, 135.
- (69) Chmielewska, A.; Wypych-Stasiewicz, A.; Bald, A. Viscosimetric studies of aqueous solutions of salts of carboxylic acids. *J. Mol. Liq.* 2005, *122*, 110–115.
- (70) Chomjakow, S.; Jaworowskaja, S.; Schirokich, P. Heats of solution and dilution of potassium and ammonium phosphate. Z. Phys. Chem. 1933, A167, 35.
- (71) Choudary, N. V.; Jasra, R. V. Densities of Aqueous Solutions of Sodium Bisulfite and Sodium 2-Methalallyl Sulfate. J. Chem. Eng. Data 1994, 39, 181–183.
- (72) Christensen, J. H.; Reed, R. B. Density of Aqueous Solutions of Phosphoric Acid. Measurements at 25°C. *Ind. Eng. Chem.* 1955, 47, 1277–1279.
- (73) Connaughton, L. M.; Hershey, J. P.; Millero, F. J. PVT properties of concentrated aqueous electrolytes: V. Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100°C. J. Solution Chem. **1986**, 15, 989–1002.
- (74) Conti, G.; Gianni, P.; Papini, A.; Matteoli, E. Apparent molar heat capacity and relative enthalpy of aqueous NaOH between 323 and 523K. J. Solution Chem. 1988, 17, 481–497.
- (75) Correla, R. J.; Kestin, J. Viscosity and density of aqueous sodium sulfate and potassium sulfate solutions in the temperature range 20– 90 °C and the pressure range 0–30 Mpa. J. Chem. Eng. Data 1981, 26, 43–47.

- (76) Correla, R. J.; Kestin, J. Viscosity and Density of Aqueous Na₂CO₃ and K₂CO₃ Solutions in the temperature Range 20–90 °C and the Pressure Range 0–30 MPa. J. Chem. Eng. Data **1980**, 25, 201–206.
- (77) Cupples, H. L. Surface Tension of Aluminium Sulfate Solutions. J. Phys. Chem. 1946, 50, 256–260.
- (78) Daniel, V.; Albright, J. G. Interdiffusion Coefficients, Densities, and Viscosities of KNO₂ + H₂O and KClO₃ + H₂O at 25 °C. *J. Chem. Eng. Data* **1995**, *40*, 519–522.
- (79) Das, P. K. Viscosity and apparent molal volume of aqueous solutions of ammonium chloride and ammonium bromide at 35 °. J. Indian Chem. Soc. 1954, 31, 170.
- (80) Davies, C. W. The conductivity of electrolytes. III. The correlation of strong and weak electrolytes. J. Phys. Chem. 1925, 29, 977–986.
- (81) Deckwer, W. D. Density, viscosity, vapor pressure, and hydrogen solubility of aqueous MnSO4 solutions. J. Chem. Eng. Data 1980, 25, 75–76.
- (82) Dedick, E. A.; Hershey, J. P.; Sotolongo, S.; Stade, D. J.; Millero, F. J. The PVT Properties of Concentrated Aqueous Electrolytes IX. The Volume Properties of KCl and K₂SO₄ and their Mixtures with NaCl and Na₂SO₄ as a Function of Temperature. *J. Solution Chem.* **1990**, *19*, 353–374.
- (83) Degremont, Memento Technique de l'eau, Paris, 1989.
- (84) Demichowicz-Pigoniowa, J. Dependence of Density, Viscosity and Electric Conductivity of Aqueous CuSO₄ Solutions on Temperature and Concentration. Ann. Soc. Chim. Polonorum 1973, 47, 2183–2190.
- (85) Desnoyers, J. E.; Perron, G. The viscosity of aqueous solutions of alkali and tetraalkylammonium halides at 25 °C. J. Solution Chem. 1972, 1, 199–212.
- (86) Doan, T. H.; Sangster, J. Viscosities of concentrated aqueous solutions of some 1:1, 2:1, and 3:1 nitrates at 25 °C. J. Chem. Eng. Data 1981, 26, 141–144.
- (87) Dolian, F. E. The Viscosities of Solutions of Chlorides in Certain Solvents. J. Phys. Chem. **1937**, *41*, 1129–1138.
- (88) Doménech, J.; Rivera, S. Viscosity B-Coefficient for Sodium Bromide in Formamide-Water Mixtures. Z. Phys. Chem. N. F. 1983, 136, 153– 161.
- (89) Drucker, C. Viscometric studies of chemical equilibria. Ark. Kemi Min. Geol. 22A 1946, 21, 1.
- (90) Ducker, K.-H. Partial molar volumes of magnesium sulphate in aqueous solutions at 25°. *Ber. Bunsenges. Phys. Chem.* 1970, 74, 416.
- (91) Dunlop, P. J.; Stokes, R. H. The diffusion coefficients of sodium and potassium iodides in aqueous solutions at 25°. J. Am. Chem. Soc. 1951, 73, 5456–5457.
- (92) Easton, M. F.; Mitchell, A. G.; Wynne-Jones, W. F. K. The Behaviour of Mixtures of Hydrogen Peroxide and Water. *Trans. Faraday Soc.* 1952, 48, 796–801.
- (93) Edwards, O. W.; Huffman, E. O. Viscosity of aqueous solutions of phosphoric acid at 25°C. J. Chem. Eng. Data 1958, 3, 145.
- (94) Egan, E. P.; Luff, B. B. Density of Aqueous Solutions of Phosphoric Acid. Measurements at 15° to 80°C. *Ind. Eng. Chem.* **1955**, 47, 1280– 1280.
- (95) Egan, E. P.; Luff, B. B.; Wakefield, Z. T. Heat Capacity of Phosphoric Acid Solutions, 15 to 80. J. Phys. Chem. 1958, 62, 1091–1095.
- (96) Ellis, A.; McFadden, I. Partial molal volumes of ions in hydrothermal solutions. *Geochim. Cosmochim. Acta* 1972, 36, 413–426.
- (97) Ellis, R. N.; Stokes, R. H.; Wright, A. C.; Spiro, M. Transference Numbers and Conductance in Concentrated Copper (II) Chloride Solutions at 25°C. Aust. J. Chem. **1983**, *36*, 1913–1921.
- (98) Enea, O.; Singh, P. P.; Woolley, E. M.; McCurdy, K. G.; Hepler, L. G. Heat Capacities of Aqueous Nitric Acid, Sodium Nitrate, and Potassium Nitrate at 298.15 K: ΔC°p of Ionization of Water. J. Chem. Thermodyn. 1977, 9, 731–734.
- (99) Enea, O.; Singh, P. P.; Woolley, E. M.; McCurdy, K. G.; Hepler, L. G. Heat capacities of aqueous nitric acid, sodium nitrate, and potassium nitrate at 298.15 K: ΔCp° of ionization of water. *J. Chem. Thermodyn.* **1977**, *9*, 731–734.
- (100) Epikhin, Y. A.; Stakhanova, M. S. Volume and heat capacity changes in aqueous salt solutions. V. The sodium chloride-sodium nitratewater and sodium chloride-sodium perchlorate-water systems. *Russ. J. Phys. Chem.* **1967**, *41*, 2148.
- (101) Ernst, S.; Gepert, M.; Manikowski, R. Apparent Molar Compressibilities of Aqueous Solutions of Cu(NO₃)₂, CuSO₄, and CuCl₂ from 288.15 to 313.15 K. J. Chem. Eng. Data **1999**, 44, 1199–1203.
- (102) Ernst, S.; Manikowski, R. Measurements of the Speed of Sound and Density of Aqueous Solutions of the First-Row Transition Metal Halides. 1. Apparent and Molar Compressibilities and Volumes of Aqueous NiCl2 and NiBr2 within the Temperature Range 291.15 to 297.15 K. J. Chem. Eng. Data 1997, 42, 647–650.
- (103) Ernst, S.; Manikowski, R.; Bebek, M. Measurements of the Speed of Sound and Density of Aqueous Solutions of the First-Row Transition Metal Halides. 1. Apparent and Molar Compressibilities

- (104) Ewing, W. W.; Herty, C. H. III Partial molal volumes of cadmium nitrate and water in concentrated aqueous solutions. J. Phys. Chem. 1953, 57, 245–246.
- (105) Ewing, W. W.; Mikovsky, R. J. Calcium nitrate. V. Partial molal volumes of water and calcium nitrate in concentrated solutions. J. Am. Chem. Soc. 1950, 72, 1390–1393.
- (106) Ezrokhi, L. L. Viscosity of aqueous solutions of the individual salts of sea water systems. J. Appl. Chem. USSR 1952, 25, 917.
- (107) Fabuss, B. M.; Korosi, A.; Huq, A. K. M. S. Densities of Binary and Ternary Aqueous Solutions of NaCl, Na2SO4, and MgSO4, of Sea Waters, and Sea Water Concentrates. J. Chem. Eng. Data 1966, 3, 325–331.
- (108) Fedyainov, N. V. Specific heat of two- and three-component aqueous solutions of beryllium subgroup metal chlorides at 25°C. *Russ. J. Phys. Chem.* **1970**, *44*, 1817.
- (109) Fleischmann, W.; Mersmann, A. Solubility, density and viscosity for sodium sulfate-methanol-water systems. J. Chem. Eng. Data 1984, 29, 452–456.
- (110) Fortier, J.-L.; Leduc, P.-A.; Desnoyers, J. E. Thermodynamic Properties of Alkali Halides. II. Enthalpies of Dilution and Heat Capacities in Water at 25 °C. J. Solution Chem. 1974, 3, 323–349.
- (111) Frank, M. J. W.; Kuipers, J. A. M.; van Swaaij, W. P. M. Diffusion Coefficients and Viscosities of CO₂ + H₂O, CO₂ + CH₃OH, NH₃ + H₂O, and NH₃ + CH₃OH Liquid Mixtures. *J. Chem. Eng. Data* **1996**, *41*, 297–302.
- (112) Fujitaa, I.; Suzukia, T.; Uematsu, M. Isobaric specific heat capacity of $\{xH_2O + (1-x)NH_3\}$ with x = (0.0000, 0.1566, 0.1597, 0.3030, 0.3048, 0.4956, 0.7061, and 0.8489) at T = (280, 300, 320, and 360) K over the pressure range from (0.1 to 15) MPa. *J. Chem. Thermodyn.* **2008**, *40*, 260–264.
- (113) Gates, J. A.; Wood, R. H. Densities of Aqueous Solutions of NaCl, MgCl₂, KCl, NaBr, LiCl, and CaCl₂ from 0.05 to 5.0 mol kg-1 and 0.1013 to 40 MPa at 298.15K. J. Chem. Eng. Data **1985**, 30, 44–49.
- (114) Gates, J. A.; Wood, R. H. Density and apparent molar volume of aqueous calcium chloride at 323–600 K. J. Chem. Eng. Data 1989, 34, 53–56.
- (115) Getman, F. H. A study of the solutions of some salts exhibiting negative viscosity. J. Am. Chem. Soc. 1908, 30, 721–737.
- (116) Giauque, W. F.; Hornung, E. W.; Kunzler, J. E.; Rubin, T. R. The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300° K. J. Am. Chem. Soc. **1960**, 82, 62–70.
- (117) Giguère, P. A.; Geoffrion, P. Changes of Density of Hydrogen Peroxide Solutions on Cooling and Freezing. *Can. J. Res.* **1950**, *28B*, 599–607.
- (118) Gillespie, R. J.; Wasif, S. Solutions in sulphuric acid. Part XI. The densities and viscosities of some sulfuric acid solutions. J. Chem. Soc. 1953, 21, 5–221.
- (119) Ginzburg, D. M.; Pikulina, N. S.; Litvin, V. P. Density of Potassium Carbonate Solutions. J. Appl. Chem. USSR 1964, 37, 2353–2357.
- (120) Glass, H. M.; Madgin, W. M. Viscosities of aqueous solutions of electrolytes. Part I. Sodium sulphate solutions over the temperature range 25 - 40 °C. J. Chem. Soc. 1934, 112, 4–1128.
- (121) Goldsack, D. E.; Franchetto, A. A. The Viscosity of Concentrated Electrolyte Solutions. III. A Mixture Law. *Electrochim. Acta* 1977, 22, 1287–1294.
- (122) Goldsack, D. E.; Franchetto, R. C. The Viscosity of Concentrated Electrolyte Solutions. II. Temperature Dependence. *Can. J. Chem.* **1978**, *56*, 1442–1450.
- (123) Goldsack, D. E.; Franchetto, R. The Viscosity of Concentrated Electrolyte Solutions. I. Concentration Dependence at Fixed Temperature. *Can. J. Chem.* **1977**, *55*, 1062–1072.
- (124) Gonçalves, C. B.; Trevisan, N., Jr.; Meirelles, A. J. A Kinematic Viscosity of Systems Containing Polyethylene Glycol + Salt + Water at 298.2 K. J. Chem. Eng. Data 2004, 49, 177–181.
- (125) Gonçalves, F.; Kestin, J. The Viscosity of NaCl and KCl solutions in the range 25–50 °C. *Ber. Bunsenges. Phys. Chem.* 1977, 81, 1156– 1161.
- (126) González, B.; Domínguez, A.; Tojo, J. Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure. J. Chem. Eng. Data 2004, 49, 1590–1596.
- (127) Granados, K.; Gracia-Fadrique, J.; Amigo, A.; Bravo, R. Refractive Index, Surface Tension, and Density of Aqueous Mixtures of Carboxylic Acids at 298.15 K. J. Chem. Eng. Data 2006, 135, 6– 1360.
- (128) Green, W. H. Studies in the viscosity and the conductivity of some aqueous solutions. Part I. Solutions of sucrose, hydrogen chloride and lithium chloride. J. Chem. Soc. (Trans.) 1908, 93, 2023–2048.

- (129) Grimes, C. E.; Kestin, J.; Khalifa, H. E. Viscosity of aqueous potassium chloride solutions in the temperature range 25–150 °C and the pressure range 0–30 MPa. *J. Chem. Eng. Data* **1979**, *24*, 121–126.
- (130) Grzybkowski, W.; Atkinson, G. Thermodynamics of concentrated electrolyte mixtures. Part 8. Apparent molal volumes, adiabatic compressibilities, and hydration numbers of aqueous zinc bromide, calcium bromide, and sodium bromide at 25.degree.C. J. Chem. Eng. Data 1986, 31, 309–312.
- (131) Gucker, F. T.; Schminke, K. H. A study of the heat capacity and related thermodynamic properties of aqueous solutions of lithium chloride, hydrochloric acid and potassium hydroxide at 25°. J. Am. Chem. Soc. 1932, 54, 1358–1373.
- (132) Gucker, F. T.; Schminke, K. H. The heat capacity and related thermodynamic properties of aqueous solutions. II. Lithium and Sodium Hydroxides at 25°. J. Am. Chem. Soc. 1933, 55, 1013–1019.
- (133) Gucker, F. T.; Stubley, D.; Hill, D. J. The Isentropic Compressibilities of Aqueous Solutions of Some Alkali Halides at 298.15K. J. Chem. Thermodyn. 1975, 7, 865–869.
- (134) Gunther, P.; Perschke, W. Comparison of some physical constants of thyocyanate, azide and nitrite solutions. J. Chem. Soc. 1930, 100– 104.
- (135) Haase, R.; Lehnert, G.; Jansen, H.-J. Transport numbers at high electrolyte concentrations. II. Measurements. Z. Phys. Chem. N. F. 1964, 42, 32.
- (136) Haase, R.; Saurmann, P.-F.; Dücker, K.-H. Conductivities of Concentrated Electrolyte Solutions. II. Nitric Acid. Z. Phys. Chem. N. F. 1965, 46, 129–139.
- (137) Haase, R.; Saurmann, P.-F.; Dücker, K.-H. Conductivities of Concentrated Electrolyte Solutions. IV. Hydrochloric acids. Z. Phys. Chem. N. F. 1965, 47, 224.
- (138) Haase, R.; Saurmann, P.-F.; Dücker, K.-H. Conductivity of Concentrated Electrolyte Solutions. V. Sulfuric Acid. Z. Phys. Chem. N. F. 1966, 48, 206–212.
- (139) Harkins, W. D.; Paine, H. M. Intermediate and complex ions, V. The solubility product and activity of the ions in bi-valent salts. J. Am. Chem. Soc. 1919, 41, 1155–1168.
- (140) Hartford, W. H. Properties of technically important hexavalent chromium compounds. *Ind. Eng. Chem.* **1949**, *41*, 1993–1997.
- (141) Herrington, T. M.; Pethybridge, A. D.; Roffey, M. G. Densities of aqueous lithium, sodium and potassium hydroxides from 25 to 75 °C at 1 atm. J. Chem. Eng. Data 1986, 31, 31–34.
- (142) Herrington, T. M.; Pethybridge, A. D.; Roffey, M. G. Densities of hydrochloric, hydrobromic, hydriodic, and perchloric acids from 25 to 75 °C at 1 atm. *J. Chem. Eng. Data* **1985**, *30*, 264–267.
- (143) Herrington, T. M.; Roffey, M. G.; Smith, D. P. Densities of Aqueous Electrolytes MnCl₂, CoCl₂, NiCl₂, ZnCl₂ and CdCl₂ from 25 to 72°C at 1 atm. J. Chem. Eng. Data **1986**, 31, 221–225.
- (144) Hershey, J. P.; Sotolongo, S.; Millero, F. J. Densities and Compressibilities of Aqueous Sodium Carbonate and Bicarbonate from 0 to 45°C. J. Solution Chem. 1983, 12, 233–254.
- (145) Hershey, J. P.; Sotolongo, S.; Millero, F. J. Densities and Compressiblities of Aqueous HCl and NaOH from 0 to 45°C. The Effect of Pressure on the Ionization of Water. J. Solution Chem. 1984, 13, 825–848.
- (146) Hervello, M. F.; Sanchez, A. Densities of (Lithium, Magnesium, or Copper(II)) Sulfates in Ethanol-Water Solutions. J. Chem. Eng. Data 2007, 52, 906–909.
- (147) Herz, W. Internal Friction of Salt Solutions. Z. Anorg. Chemie 1914, 89, 393–396.
- (148) Hitchcock, L. B. Mechanism of gas-liquid reaction. Batch absorption of carbon dioxide by stirred alkaline solutions. *Ind. Eng. Chem.* 1937, 29, 302–308.
- (149) Hitchcock, L. B.; McIlhenny, J. S. Viscosity and Density of Pure Alkaline Solutions and their Mixtures. *Ind. Eng. Chem.* 1935, 27, 461–466.
- (150) Hnedkovský, L.; Wood, R. H. Apparent molar heat capacities of aqueous solutions of CH₄, CO₂, H₂S and NH₃ at temperatures from 304 to 704 K and pressures to 28 MPa. *J. Chem. Thermodyn.* **1997**, 29, 731–737.
- (151) Hnedkovský, L.; Wood, R. H.; Majer, V. Volumes of aqueous solutions of CH₄, CO₂, H₂S and NH₃ at temperatures from 298.15 to 705 K and pressures to 35 MPa. *J. Chem. Thermodyn.* **1996**, 28, 125–142.
- (152) Holemann, P.; Kohner, H. The dependence of equivalent refraction of strong electrolytes in solution upon temperature. Z. Phys. Chem. B 1931, 13, 338.
- (153) Hovey, J. K.; Hepler, L. G. Apparent and partial molar heat capacities and volumes of aqueous HClO₄ and HNO₃ from 10 to 55 °C. *Can. J. Chem.* **1989**, *67*, 1489–1495.
- (154) Hovey, J. K.; Hepler, L. G. Thermodynamics of sulphuric acid: apparent and partial molar heat capacities and volumes of aqueous

HSO₄⁻ from 10–55 °C and calculation of the second dissociation constant to 350 °C. *J. Chem. Soc., Faraday Trans.* **1990**, *86*, 2831–2839.

- (155) Hovey, J. K.; Hepler, L. G.; Tremaine, P. R. Apparent molar heat capacities and volumes of aqueous HClO₄, HNO₃, (CH₃)₄NOH and K₂SO₄ at 298.15 K. *Thermochim. Acta* **1988**, *126*, 245–253.
- (156) Huckaba, C. E.; Keyes, F. G. The Density of Aqueous Hydrogen Peroxide Solutions. J. Am. Chem. Soc. 1948, 70, 2578–2581.
- (157) Huckel, E.; Schaaf, H. Concentration and temperature dependence of the viscosity of aqueous solutions of strong electrolytes. IV. HCl, NaOH, N(CH₃)₄I, and N(C₂H₅)₄I solutions. Z. Phys. Chem. N. F. **1959**, 21, 326.
- (158) Ishii, T.; Fujita, S. Properties of potassium sulfate aqueous solution and crystals. J. Chem. Eng. Data 1978, 23, 19–23.
- (159) Isono, T. Densities, Viscosities, and Electrolytic Conductivities of Concentrated Aqueous Electrolyte Solutions of 31 Solutes in the Temperature Range 15–55°C and Empirical Equations for the Relative Viscosity. *Rikagaku Kenkyusho Hokoku* 1985, 61, 53–79.
- (160) Isono, T. Densities, Viscosities, and Electrolytic Conductivity of Concentrated Aqueous Electrolyte Solutions at Several Temperatures. Alkaline-Earth Chlorides, LaCl₃, Na₂SO₄, NaNO₃, NaBr, KNO₃, KBr, and Cd(NO₃)₂. J. Chem. Eng. Data **1984**, 29, 45–52.
- (161) Isono, T. Measurements of Density, Viscosity, and Electrolytic Conductivity of Concentrated Aqueous Electrolyte Solutions. *Rika-gaku Kenkyusho Hokoku* 1980, 56, 103–114.
- (162) Jacopetti, M. M. Conductimetric behavior of potassium chloride solutions. *Gazz. Chim. Ital.* **1940**, 70, 95.
- (163) Jain, S. K.; Jain, A. K.; Gupta, A. K.; Singh, V. V. Densities and Refractive Indices of Aqueous Zinc Nitrate Solutions. J. Chem. Eng. Data 1985, 30, 301–304.
- (164) Janssen, L. J. J. Physical properties of aqueous solutions containing NaClO₃ and/or NaClO₄. J. Appl. Electrochem. **1995**, 25, 291–293.
- (165) Janz, G. J.; Oliver, B. G.; Lakshiminarayanan, G. R.; Mayer, G. E. Electrical conductance, diffusion, viscosity, and density of sodium nitrate, sodium perchlorate, and sodium thiocyanate in concentrated aqueous solutions. J. Phys. Chem. 1970, 74, 1285–1289.
- (166) Jones, G.; Bradshaw, B. C. The transference number of lithium chloride as a function of the concentration. J. Am. Chem. Soc. 1932, 54, 138–150.
- (167) Jones, G.; Colvin, J. H. The viscosity of solutions of electrolytes as a function of their concentration. VIISilver nitrate, potassium sulfate and potassium chromate. J. Am. Chem. Soc. **1940**, 62, 338–340.
- (168) Jones, G.; Dole, M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 1929, 51, 2950–2664.
- (169) Jones, G.; Ray, W. A. The surface tension of solutions of electrolytes as a function of the concentration. IV. Magnesium sulfate. J. Am. Chem. Soc. 1942, 64, 2744–2745.
- (170) Jones, G.; Stauffer, R. E. The viscosity of solutions of electrolytes as a function of the concentration. VI. Potassium bromide and lanthanum chloride. J. Am. Chem. Soc. **1940**, 62, 335–337.
- (171) Jones, G.; Talley, S. K. The viscosity of aqueous solutions as a function of the concentration. J. Am. Chem. Soc. **1933**, 55, 624–642.
- (172) Jones, G.; Talley, S. K. The viscosity of solutions of electrolytes as a function of the concentration. II. Potassium bromide and potassium chloride. *J. Am. Chem. Soc.* **1933**, *55*, 4124–4125.
- (173) Jones, J. S.; Ziemer, S. P.; Brown, B. R.; Woolley, E. M. Apparent molar volumes and apparent molar heat capacities of aqueous magnesium nitrate, strontium nitrate, and manganese nitrate at temperatures from 278.15 to 393.15 K and at the pressure 0.35 MPa. *J. Chem. Thermodyn.* 2007, *39*, 550–560.
- (174) Jubin, R. T.; Marleyu, J. L.; Counce, R. M. Density study of magnesium nitrate-water-nitric acid solutions at different temperatures. J. Chem. Eng. Data 1986, 31, 86–88.
- (175) Kalita, G.; Dass, N. N.; Mahiuddin, S. Mixed anion effect in sodium thiocyanate + sodium thiosulfate + water systems. *Can. J. Chem.* **1998**, *76*, 1836–1843.
- (176) Kaminsky, M. Concentration and Temperature Dependence of the Viscosity of Aqueous Solutions of Strong Electrolytes. II. NaCl, Li₂SO₄, FeCl₂, and CeCl₃ Solutions. Z. Phys. Chem. N. F **1956**, 8, 173–191.
- (177) Kaminsky, M. Concentration and Temperature Dependence of the Viscosity of Aqueous Solutions of Strong Electrolytes. III. KCl, K₂SO₄, MgCl₂, BeSO₄, and MgSO₄ Solutions. Z. Phys. Chem. N. F. **1957**, *12*, 206–231.
- (178) Kaminsky, M. Experimental Investigations of the Concentration and Temperature Dependence of the Viscosity of Aqueous Solutions of Strong Electrolytes. I. Potassium Iodide, Ammonium Chloride, and Sodium Sulphate Solutions. Z. Phys. Chem. N. F. 1955, 5, 154–191.
- (179) Karapet'yants, M. Kh.; Vasilev, V. A.; Mikkhailin, B. V.; Strakhov, V. N. Specific heat and density of aqueous sodium and rubidium bromide solutions at 25°C. *Russ. J. Phys. Chem.* **1979**, *53*, 111–112.

- (180) Kartzmark, E. M. Conductances, Densities, and Viscosities of Solutions of Sodium Nitrate in Water and in Dioxane-Water at 25°C. *Can. J. Chem.* **1972**, *50*, 2845–2850.
- (181) Kearley, R. A. Some physical properties of sodium chromate, sodium dichromate, and potassium dichromate, and their aqueous solutions. *J. Chem. Eng. Data* **1964**, *9*, 548–551.
- (182) Kelly, W. R.; Borza, P. F.; Harriger, R. D. Densities and viscosities of potassium hydroxide solutions at low temperature. J. Chem. Eng. Data 1965, 10, 233–234.
- (183) Kelly, W. R.; Morgan, T. R. Specific conductances of aqueous sodium chromate. J. Chem. Eng. Data 1965, 10, 290–291.
- (184) Kestin, J.; Khalifa, H. E.; Abe, Y.; Grimes, C. E.; Sookiazian, H.; Wakeham, W. A. Effect of pressure on the viscosity of aqueous sodium chloride solutions in the temperature range 20–150 °C. *J. Chem. Eng. Data* **1978**, *23*, 328–336.
- (185) Kestin, J.; Khalifa, H. E.; Ro, S.-T.; Wakeham, W. A. Preliminary data on the pressure effect on the viscosity of sodium chloride-water solutions in the range 10–40 °C. J. Chem. Eng. Data 1977, 22, 207– 214.
- (186) Kharat, S. J. Density, viscosity and ultrasonic velocity studies of aqueous solutions of sodium acetate at different temperatures. J. Mol. Liq. 2008, 140, 10–14.
- (187) King, E. J. Volume changes for ionization of formic, acetic, and butyric acids and the glycinium ion in aqueous solution at 25 °C. J. Phys. Chem. 1969, 73, 1220–1232.
- (188) Königsberger, E.; Bevis, S.; Hefter, G.; May, P. M. Comprehensive Model of Synthetic Bayer Liquors. Part 2. Densities of Alkaline Aluminate Solutions to 90 °C. J. Chem. Eng. Data 2005, 50, 1270– 1276.
- (189) Korin, E.; Soifer, L. Phase Diagram for the System $K_2Cr_2O_7 + KNO_3 + H_2O$ in the Temperature Range 10 C to 40 °C. J. Chem. Eng. Data **1997**, 42, 508–510.
- (190) Korin, E.; Soifer, L. Solubility of Potassium Dichromate in Dilute Aqueous Methanol and 2-Propanol Solutions in the Temperature Range 283 to 303 K. J. Chem. Eng. Data 1998, 43, 823–825.
- (191) Korosi, A.; Fabuss, B. M. Viscosities of Binary Aqueous Solutions of NaCl, KCl, Na₂SO₄, and MgSO₄ at Concentrations and Temperatures of Interest in Desalination Processes. *J. Chem. Eng. Data* **1968**, *13*, 548–552.
- (192) Kortüm, G.; Reber, H. Density, viscosity, and dielectric constant of pure hydrocyanic acid and of hydrocyanic acid - water mixtures at 0°. Z. Elektrochem. **1961**, 65, 809.
- (193) Krey, J. Vapour Pressure and Density of the System Water-Sodium Hydroxide. Z. Phys. Chem. N. F. **1972**, 81, 252–273.
- (194) Krings, W. The viscosity and density of sodium hydroxide solutions to high concentrations and at high temperatures. Z. Anorg. Chem. 1948, 255, 294.
- (195) Krishnamurty, B. Ultrasonic Studies in Electrolytes: Part I Alkali Halides. Ind. Res. (India) 1950, 9B, 215–219.
- (196) Krumgalz, B. S.; Malester, I. A.; Ostrich, I. J.; Millera, F. J. Heat Capacities of Concentrated Multicomponent Aqueous Electrolyte Solutions at Various Temperatures. J. Solution Chem. 1992, 21, 635– 649.
- (197) Krumgalz, B. S.; Millero, F. J. Physico-Chemical Study of Dead Sea Waters II. Density Measurements and Equation of State of Dead Sea Waters at 1 atm. *Marine Chem.* **1982**, *11*, 477–492.
- (198) Kumar, A. Mixture densities of aqueous potassium chloride with sodium chloride up to ionic strength 4.5 mol kg-1 and at 298.15 K. J. Chem. Eng. Data 1988, 33, 198–199.
- (199) Kumar, A.; Atkinson, G. Thermodynamics of Concentrated Electrolyte Mixtures. 3. Apparent Molal Volume, Compressibilities, and Expansibilities of NaCl-CaCl₂ Mixtures from 5 to 35 °C. J. Phys. Chem. **1983**, 87, 5504–5507.
- (200) Kumar, A.; Atkinson, G.; Howell, R. D. Thermodynamics of Concentrated Electrolyte Mixtures. II. Densities and Compressibilities of Aqueous NaCl-CaCl₂ at 25°C. J. Solution Chem. **1982**, 11, 857– 870.
- (201) Kume, T.; Tanaka, M. Concentrated solutions of electrolytes: viscosity. *Nippon Kagasu Zasshi* **1960**, *81*, 534.
- (202) Kunzler, J. E.; Giauque, W. F. Aqueous Sulfuric Acid. Heat Capacity. Partial Specific Heat Content of Water at 25 and -20. J. Am. Chem. Soc. 1952, 74, 3472-3476.
- (203) Lanman, E. H.; Mair, B. J. The compressibility of aqueous solutions. J. Am. Chem. Soc. 1934, 56, 390–393.
- (204) Larson, J. W.; Zeeb, K. G.; Hepler, L. G. Heat capacities and volumes of dissociation of phosphoric acid (1st, 2nd, and 3rd), bicarbonate ion and bisulfate ion in aqueous solution. *Can. J. Chem.* **1982**, *60*, 2141–2150.
- (205) Laurence, V. D.; Wolfenden, J. H. The viscosity of solutions of strong electrolytes. J. Chem. Soc. 1934, 1144–1147.
- (206) Leaist, D. G. Proton-coupled transport of ammonia in aqueous hydrochloric acid. Aust. J. Chem. 1985, 38, 249–260.

- (208) Lengyel, S.; Tamás, J; Giber, J.; Holderith, J. Study of Viscosity of Aqueous Alkali Halide Solutions. *Acta Chim. Acad. Sci. Hung.* 1964, 40, 125–143.
- (209) Li, J.; Prestidge, C. A.; Addai-Mensah, J. Viscosity, Density, and Refractive Index of Aqueous Sodium and Potassium Aluminate Solutions. J. Chem. Eng. Data 2000, 45, 665–671.
- (210) Likke, S.; Bromley, L. A. Heat Capacities of Aqueous NaCl, KCl, MgCl₂, MgSO₄, and Na₂SO₄ Solutions Between 80° and 200°C. *J. Chem. Eng. Data* **1973**, *18*, 189–195.
- (211) Luhdemann, R. The dependence on concentration of the equivalent refraction of a few salts and acids in aqueous solutions. Z. Phys. Chem. Abt. 1935, B29, 133.
- (212) Maass, O.; Hatcher, W. H. The properties of pure hydrogen peroxide. J. Am. Chem. Soc. 1920, 42, 2548–2569.
- (213) MacInnes, D. A.; Dayhoff, M. O. The Partial Molal Volumes of Potassium Chloride, Potassium and Sodium Iodides and Iodine in Aqueous Solution at 25°C. J. Am. Chem. Soc. 1952, 74, 1017–1020.
- (214) Magalhães, M. C. F.; Königsberger, E.; May, P. M.; Hefter, G. Heat Capacities of Concentrated Aqueous Solutions of Sodium Sulfate, Sodium Carbonate, and Sodium Hydroxide at 25 °C. J. Chem. Eng. Data 2002, 47, 590–598.
- (215) Magee, J. E.; Kagawa, N. Specific Heat Capacity at Constant Volume for {xNH₃ + (1 - x)H₂O} at Temperatures from 300 to 520 K and Pressures to 20 Mpa. *J. Chem. Eng. Data* **1998**, *43*, 1082–1090.
- (216) Mahiuddin, S.; Ismail, K. Concentration Dependence of the Viscosity of Aqueous Electrolytes. A Probe into Higher Concentration. J. Phys. Chem. 1983, 87, 5241–5244.
- (217) Mahiuddin, S.; Ismail, K. Temperature and concentration dependence of the viscosity of aqueous sodium nitrate and sodium thiosulphate electrolytic systems. *Fluid Phase Equilib.* **1996**, *123*, 231–243.
- (218) Majer, V.; Inglese, A.; Wood, R. H. Volumetric properties of LiCl(aq) from 0,05 to 3,0 mol·kg-1, 322 to 550 K, and 0,8 to 32,6 Mpa. *J. Chem. Thermodyn.* **1989**, *21*, 321–329.
- (219) Maksimova, I. N.; Yushkevich, V. F. Electrical Conductivity of Sodium Hydroxide Solutions at High Temperatures. Z. Fiz. Khim. 1963, 37, 903–907.
- (220) Manohar, S.; Puchalska, D.; Atkinson, G. Pressure-Volume-Temperature Properties of Aqueous Mixed Electrolyte Solutions: NaCl + BaCl₂ from 25 C to 140 °C. J. Chem. Eng. Data **1994**, 39, 150– 154.
- (221) Martinez-Andreu, A.; Vercher, E.; Pena, M. P. Apparent Molar Volumes of Strontium Nitrate and Copper(II) Chloride in Ethanol + Water at 298.15 K. J. Chem. Eng. Data 1999, 44, 86–92.
- (222) Mashovets, V. P.; Dibrov, I. A.; Krumgal'z, B. S.; Mateeva, R. P. Density of Aqueous KOH Solutions at High Temperatures over a Wide Range of Concentrations. J. Appl. Chem. USSR 1965, 38, 2344– 2347.
- (223) Mason, C. M. The activity and osmotic coefficient of trivalent metal chlorides in aqueous solution from vapor pressure measurements at 25°C. J. Am. Chem. Soc. 1938, 60, 1638–1647.
- (224) Mason, C. M.; Culvern, J. B. Electrical conductivity of orthophosphoric acid and of sodium and potassium dihydrogen phosphates at 25 °C. J. Am. Chem. Soc. 1949, 71, 2387–2393.
- (225) Mason, C. M.; Culvern, J. B. Electrical conductivity of orthophosphoric acid and of sodium and potassium phosphates at 25 °C. J. Am. Chem. Soc. 1949, 71, 2387–2393.
- (226) Millero, F. J. The apparent and partial volume of aqueous sodium chloride solutions at various termperature. J. Phys. Chem. 1970, 74, 356–362.
- (227) Millero, F. J.; Gombar, F.; Oster, J. The partial molal volume and compressibility change for the formation of the calcium sulfate ion pair at 25°C. J. Solution Chem. 1977, 6, 269–280.
- (228) Millero, F. J.; Knox, J. H. Apparent Molal Volumes of Aqueous NaF, Na₂SO₄, KCl, K₂SO₄, MgCl₂, and MgSO₄ Solutions at 0° and 50°C. *J. Chem. Eng. Data* **1973**, *18*, 407–411.
- (229) Millero, F. J.; Ward, G. K.; Chetirkin, P. V. Relative Sound Velocities of Sea Salts at 25°C. J. Acoust. Soc. Am. 1977, 61, 1492–1498.
- (230) Monica, D. M.; Ceglie, A.; Agostiano, A. A conductivity equation for concentrated aqueous solutions. *Electrochim. Acta* **1984**, *29*, 933– 937.
- (231) Motin, M. A. Temperature and Concentration Dependence of Apparent Molar Volumes and Viscosities of NaCl, NH₄Cl, CuCl₂, and MgSO₄ in Pure Water and Water + Urea Mixtures. *J. Chem. Eng. Data* **2004**, *49*, 94–98.
- (232) Mulcahy, D. E.; Steel, B. J. Relative viscosity and density data for some alkali halides in aqueous 20 % sucrose solution at 25 °C. J. Chem. Eng. Data 1985, 30, 191–194.
- (233) Mullin, J. W.; Amatavivadhana, A. Growth kinetics of ammonium and potassium - dihydrogen phosphate crystals. J. Appl. Chem. 1967, 17, 151.

- (234) Myhre, C. E. L.; Nielsen, C. J.; Saastad, O. W. Density and Surface Tension of Aqueous H2SO4 at Low Temperature. J. Chem. Eng. Data 1998, 43, 617–622.
- (235) National Research Council, International Critical Tables of Physical and Numerical Data, Physics, Chemistry, and Technology; McGraw-Hill: New York, 1928.
- (236) Nickels, L.; Allmand, A. J. The electrical conductivities and viscosities at 25 °C of solutions of potassium, sodium, and lithium chlorides, in water and in one-tenth molar hydrochloric acid. *J. Phys. Chem.* **1937**, *41*, 861–872.
- (237) Niederhauser, T. L.; Woolley, E. M. Apparent molar volumes and apparent molar heat capacities of aqueous barium nitrate at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa. *J. Chem. Thermodyn.* 2004, *36*, 325–330.
- (238) Nightingale, E. R., Jr.; Benck, R. F. Viscosity of Aqueous Sodium Fluoride and Sodium Periodate Solutions. Ionic Energies and Entropies of Activation for Viscous Flow. J. Phys. Chem. **1959**, 63, 1777–1781.
- (239) Nikam, P. S.; Aher, J. S.; Kharat, S. J. Viscosities of Ammonium Sulfate, Potassium Sulfate, and Aluminum Sulfate in Water and Water + N,N-Dimethylformamide Mixtures at Different Temperatures. *J. Chem. Eng. Data* **2008**, *50*, 2469–2472.
- (240) Nishikata, E.; Ishii, T.; Ohta, T. Viscosities of aqueous hydrochloric acid solutions, and densities and viscosities of aqueous hydroiodic acid solutions. *J. Chem. Eng. Data* **1981**, *26*, 254–256.
- (241) Nowlan, M.-F.; Doan, T. H.; Sangster, J. Prediction of the Viscosity of Mixed Electrolyte Solutions from Single-Salt Data. *Can. J. Chem. Eng.* **1980**, *58*, 637–642.
- (242) Oakes, C. S.; Simonson, J. M.; Bodnar, R. J. The system NaCl-CaCl₂-H₂O. 2. Densities for Ionic Strengths of 0.1–19.2 mol.kg-1 at 298.15 and 308.15 K and at 0.1 Mpa. J. Chem. Eng. Data 1990, 35, 304–309.
- (243) Oguchi, K.; Ibusuki, Y. The pVTx Properties of Aqueous Solutions of Ammonia in the Range of Around 50 mol% of Ammonia. *14th International Conference on the Properties of Water and Steam in Kyoto*, 2002; pp 103–106.
 (244) Olofsson, I. V. Apparent molar heat capacities and volumes of
- (244) Olofsson, I. V. Apparent molar heat capacities and volumes of aqueous NaCl, KCl, and KNO3 at 298.15 K. Comparison of Picker flow calorimeter with other calorimeters. J. Chem. Thermodyn. 1979, 11, 1005–1014.
- (245) Olofsson, I. V.; Spitzer, J. J.; Hepler, L. G. Apparent molar heat capacities and volumes of aqueous electrolytes at 25 °C: Na₂SO₄, K₂SO₄, Na₂S₂O₃, Na₂S₂O₈, K₂S₂O₈, K₂CrO₄, Na₂MoO₄, and Na₂WO₄. *Can. J. Chem.* **1978**, *56*, 1871–1873.
- (246) Ostroff, A. G.; Snowden, B. S, Jr; Woessner, D. E. Viscosities of protonated and deuterated water solutions of alkali metal chlorides. *J. Phys. Chem.* **1969**, *73*, 2784–2785.
- (247) Out, D. J. P.; Los, J. M. Viscosity of Aqueous Solutions of Univalent Electrolytes from 5 to 95°C. J. Solution Chem. 1980, 9, 19–35.
- (248) Pabalan, R. T.; Pitzer, K. S. Apparent molar heat capacity and other thermodynamic properties of aqueous potassium chloride solutions to high temperatures and pressures. *J. Chem. Eng. Data* **1988**, *33*, 354–362.
- (249) Pabalan, R. T.; Pitzer, K. S. Heat capacity and other thermodynamic properties of Na₂SO₄ (aq) in hydrothermal solutions and the solubilities of sodium sulfate minerals in the system Na-Cl-SO₄-OH-H₂O to 300 °C. *Geochim. Cosmochim. Acta* **1988**, *52*, 2393–2404.
- (250) Palatý, Z. Density of Aqueous Solutions of Na₂CO₃ NaHCO₃. Collect. Czech. Chem. Commun. **1994**, 59, 1571–1583.
- (251) Palatý, Z. Viscosity and density of aqueous solutions of Na₂CO₃/ NaHCO₃. Chem. Biochem. Eng. Q. **1991**, 5, 145–150.
- (252) Palatý, Z. Viscosity of Diluted Aqueous K₂CO₃/KHCO₃ Solutions. *Chem. Biochem. Eng. Q.* **1993**, 7, 155–159.
- (253) Palaty, Z. Viscosity of diluted aqueous NaOH/Na₂CO₃ solutions. *Chem. Eng. Sci.* **1989**, 44, 1585–1589.
- (254) Paranjpe, G. R.; Rajderkar, E. B. The temperature-variation of the viscosities of aqueous solutions of strong electrolytes. J. Univ. Bombay 1935, 3, 21.
- (255) Patterson, B. A.; Call, T. G.; Jardine, J. J.; Origlia-Luster, M. L.; Woolley, E. M. Thermodynamics for Ionization of Water at Temperatures from 278.15 to 393.15 K and at the Pressure 0.35 MPa: Apparent Molar Volumes of Aqueous KCl, KOH, and NaOH and Apparent Molar Heat Capacities of Aqueous HCl, KCl, KOH, and NaOH. J. Chem. Thermodyn. 2001, 33, 1237–1262.
- (256) Patterson, B. A.; Woolley, E. M. Thermodynamics for Ionization of Water at Temperatures from 278.15 to 393.15 K and at the Pressure 0.35 MPa: Apparent Molar Volumes and Apparent Molar Heat Capacities of Aqueous Solutions of Potassium and Sodium Nitrates and Nitric Acid. J. Chem. Thermodyn. 2002, 34, 535–556.
- (257) Pearce, J. N.; Eckstrom, H. C. The Vapor Pressure and some Thermodynamic Properties of Aqueous Solutions of Nickel Chloride at 25°C. J. Phys. Chem. 1937, 41, 563–565.

- (258) Pearce, J. N.; Eckstrom, H. C. Vapor Pressures and Partial Molal Volumes of Aqueous Solutions of the Alkali Sulfates at 25°C. J. Am. Chem. Soc. 1937, 59, 2689–2691.
- (259) Pearce, J. N.; Pumplin, G. G. The Apparent and Partial Molal Volume of Ammonium Chloride and of Cupric Sulfate in Aqueous Solutions at 25°C. J. Am. Chem. Soc. **1937**, 59, 1221–1222.
- (260) Pedersen, T. G.; Dethlefsen, C.; Hvidt, A. Volumetric Properties of Aqueous Solutions of Alkali Halides. *Carlsberg Res. Commun.* 1984, 49, 445–455.
- (261) Pena, M. P.; Vercher, E.; Martinez-Andreu, A. Apparent Molar Volumes of Potassium Nitrate and Sodium Nitrate in Ethanol + Water at 298.15 K. J. Chem. Eng. Data 1998, 43, 626–631.
- (262) Pena, M. P.; Vercher, E.; Martinez-Andreu, A. Partial Molar Volumes of Cobalt(II) Chloride in Ethanol + Water at 298.15 K. J. Chem. Eng. Data 1996, 41, 752–754.
- (263) Perfetti, E.; Pokrovski, G. L.; Ballerat-Busserolles, K.; Majer, V.; Gibert, F. Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and revised thermodynamic properties of As(OH)_{3(aq)}, AsO(OH)_{3(aq)} and iron sulfarsenide minerals. *Geochim. Cosmochim. Acta* **2008**, *72*, 713–731.
- (264) Perron, G.; Desnoyers, J. E. Apparent Molal Volumes and Heat Capacities of Alkaline Earth Chlorides in Water at 25°C. *Can. J. Chem.* **1974**, *52*, 3738–3741.
- (265) Perron, G.; Desnoyers, J. E.; Millero, F. J. Apparent molal volumes and heat capacities of some sulfates and carbonates in water at 25 °C. *Can. J. Chem.* **1975**, *53*, 1134–1138.
- (266) Perron, G.; Fortier, J.- L.; Desnoyers, J. E. Apparent Molar Heat Capacities and Volumes of Aqueous NaCl from 0.01 to 3 mol kg-1 in the Temperature Range 274.65 to 318.15 K. J. Chem. Thermodyn. 1975, 7, 1177–1184.
- (267) Perron, G.; Roux, A.; Desnoyers, J. E. Heat capacities and volumes of NaCl, MgCl₂, CaCl₂, and NiCl₂ up to 6 molal in water. *Can. J. Chem.* **1981**, *59*, 3049–3054.
- (268) Phang, S. The density, Viscosity and Transference Number of Aqueous Cobalt Chloride at 298.15 K. Aust. J. Chem. 1980, 33, 641– 645.
- (269) Phang, S. The Density, Viscosity, and Transference Number of Aqueous Manganese Chloride at 298.15 K. Aust. J. Chem. 1980, 33, 413–417.
- (270) Phang, S. Viscosity and Transference Number Measurements of Concentrated Nickel Chloride Solutions at 298.15K. Aust. J. Chem. 1979, 32, 1149–1153.
- (271) Phang, S.; Stokes, R. H. Density, viscosity, conductance, and transference number of concentrated aqueous magnesium chloride at 25 °C. J. Solution Chem. 1980, 9, 497–505.
- (272) Phibbs, M. K.; Giguère, P. A. Hydrogen peroxide and its analogues. I. Density, refractive index, viscosity, and surface tension of deuterium peroxide - deuterium oxide solutions. *Can. J. Chem.* **1951**, 29, 173–181.
- (273) Phillips, V. R. Specific Gravity, Viscosity, and Solubility for Aqueous Nickel Sulfate Solutions. J. Chem. Eng. Data 1972, 17, 357–360.
- (274) Phutela, R. C.; Pitzer, K. S. Densities and apparent molar volumes of aqueous magnesium sulfate and sodium sulfate to 473 K and 100 bar. J. Chem. Eng. Data **1986**, *31*, 320–327.
- (275) Phutela, R. C.; Pitzer, K. S. Heat capacity and other thermodynamic properties of aqueous magnesium sulfate to 473 K. J. Phys. Chem. 1986, 90, 895–901.
- (276) Pigoniowa, J. D. Temperature dependence of viscosity of aqueous solutions of cadmium sulphate. Ann. Soc. Chim. Polonorum 1962, 36, 1677.
- (277) Pilar Peña, M.; Vercher, E.; Martínez-Andreu, A. Apparent Molar Volumes of Strontium Chloride in Ethanol + Water at 298.15 K. J. Chem. Eng. Data 1997, 42, 187–189.
- (278) Poczopko, S.; Orzesko, W. Calorimetric Investigations of MgSO₄-CO(NH₂)₂-H₂O System at 25 °C. *Roczniki Chemii* **1972**, *46*, 259– 268.
- (279) Pogue, R. F.; Atkinson, G. Solution Thermodynamics of First-Row Transition Elements. 1. Apparent Molal Volumes of Aqueous NiCl₂, Ni(ClO₄)₂, CuCl₂, and Cu(ClO₄)₂, from 15 to 55°C. J. Chem. Eng. Data **1988**, 33, 370–376.
- (280) Pogue, R. F.; Atkinson, G. Solution Thermodynamics of First-Row Transition Elements. 2. Apparent Molal Volumes of Aqueous MnCl₂, Mn(ClO₄)₂, CoCl₂, Co(ClO₄)₂, FeCl₂, and Fe(ClO₄)₂, from 15 to 55°C. *J. Chem. Eng. Data* **1989**, *34*, 227–232.
- (281) Pogue, R. F.; Atkinson, G. Solution Thermodynamics of First-Row Transition Elements. 3. Apparent Molal Volumes of Aqueous ZnCl₂ and Zn(ClO₄)₂ from 15 to 55°C and an Examination of Solute-Solute and Solute-Solvent Interactions. J. Solution Chem. **1989**, 18, 249– 264.
- (282) Pogue, R.; Atkinson, G. Apparent Molal Volumes and Heat Capacities of Aqueous HCl and HClO₄ at 15–55 °C. J. Chem. Eng. Data 1988, 33, 495–499.

- (283) Prokash, S.; Shivapuri, T. N.; Ichhaporia, F. M. Temperature effect on the molecular solution volumes of urea, potassium iodide, potassium chloride, and potassium chromate. *J. Indian Chem. Soc.* **1963**, *40*, 700.
- (284) Przepiera, A.; Zielenkiewicz, A. Apparent Molar Volumes of Aqueous Solution in the MnSO₄ + H₂SO4 System. *Bull. Pol. Acad. Sci. Chem.* 2000, 48, 267–272.
- (285) Puchalska, D.; Atkinson, G. Densities and apparent molal volumes of aqueous BaCl₂ solutions from 15 to 140 °C and from 1 to 200 bar. *J. Chem. Eng. Data* **1991**, *36*, 449–452.
- (286) Puchalska, D.; Atkinson, G.; Routh, S. Solution Thermodynamics of First-Row Transition Elements. 4. Apparent Molal Volumes of Aqueous ZnSO₄ and CuSO₄ Solutions from 15 to 55°C. *J. Solution Chem.* **1993**, *22*, 625–639.
- (287) Puchkov, L. V.; Matashkin, V. G. Densities of LiNO₃-H₂O and NaNO₃-H₂O Solutions at Temperatures in the Range 25–300°C. *J. Appl. Chem. USSR* **1970**, *43*, 1848–1851.
- (288) Rakshit, J. N. Contraction of solution of various substances in water and ethyl alcohol. Z. Electrochem. Angew. Phys. Chem. 1925, 31, 97.
- (289) Rard, J. A. Densities and Apparent Molal Volumes of Aqueous Nickel Chloride at 25 °C. J. Chem. Eng. Data 1986, 31, 183–185.
- (290) Rard, J. A.; Miller, D. G. Densities and Apparent Molal Volumes of Aqueous Manganese, Cadmium, and Zinc Chlorides at 25 °C. *J. Chem. Eng. Data* **1984**, *29*, 151–156.
- (291) Rashkovskaya, E. A.; Chernen'kaya, E. I. Densities of Solutions of NH₄HCO₃, NaHCO₃, NH₄Cl and Ammonia in the 20–100° Range. *J. Appl. Chem. USSR* **1967**, *40*, 301–308.
- (292) Rehman, H.-ur-; Ansari, M. S. Density, Viscosity, and Electrical Conductivity Measurements on the Ternary System H₂O + C₂H₅OH + LiCl over the Entire Ranges of Solvent Composition and LiCl Solubility from (-5 to +50) °C. J. Chem. Eng. Data 2008, 53, 2072– 2088.
- (293) Reilly, P. J.; Stokes, R. H. The Diffusion Coefficients of Cadmium Chloride and Cadmium Perchlorate in Water at 25 °C. Aust. J. Chem. 1971, 24, 1361–1367.
- (294) Rhodes, F. H.; Barbour, C. B. The viscosity of mixtures of sulfuric acid and water. *Ind. Eng. Chem.* **1923**, *15*, 850–852.
- (295) Rice, M. J., Jr.; Kraus, C. A. Conductance and viscosity of concentrated aqueous sal solutions at 50.5 °C. *Proc. Natl. Acad. Sci.* **1953**, *39*, 802.
- (296) Rivett, A. C. D. The contribution of magnesium acetate solutions. J. Chem. Soc. 1926, 1063–1069.
- (297) Rizzo, P.; Albraight, J. G.; Miller, D. G. Measurements of Interdiffusion Coefficients and Densities for the System HCl + H2O at 25 °C. J. Chem. Eng. Data 1997, 42, 623–630.
- (298) Rodnyanskii, I. M.; Korobkov, V. I.; Galinker, I. S. Specific volumes of aqueous electrolyte solutions at high temperatures. *Russ. J. Phys. Chem.* **1962**, *36*, 1192.
- (299) Romankiw, L. A.; I-Ming, C. Densities of aqueous sodium chloride, potassium chloride, magnesium chloride, and calcium chloride binary solutions in the concentration range 0.5–6.1 m at 25, 30, 35, 40, and 45 °C. J. Chem. Eng. Data **1983**, 28, 300–305.
- (300) Roux, A. H.; Perron, G.; Desnoyers, J. E. Capacités calorifiques, volumes, expansibilités et compressibilités des solutions aqueuses concentrées de LiOH, NaOH et KOH. *Can. J. Chem.* **1984**, *62*, 878– 885.
- (301) Roux, A.; Musbally, G. M.; Perron, G.; Singh, P. P.; Woolley, E. M.; Hepler, L. G. Apparent Molal Heat Capacities and Volumes of Aqueous Electrolytes at 25°C: NaClO₃, NaClO₄, NaNO₃, NaBrO₃, NaIO₃, KClO₃, KBrO₃, KIO₃, NH₄NO₃, NH₄Cl, and NH₄ClO₄. *Can. J. Chem.* **1978**, *56*, 24–28.
- (302) Roy, M. N.; Jha, A.; Choudhury, A. Densities, Viscosities and Adiabatic Compressibilities of Some Mineral Salts in Water at Different Temperatures. J. Chem. Eng. Data 2004, 49, 291–296.
- (303) Rüterjans, H.; Schreiner, F.; Sage, U. Ackermann, Th. Apparent Molal Heat Capacities of Aqueous Solutions of Alkali Halides and Alkylammonium Salts. J. Phys. Chem. 1969, 73, 986–994.
- (304) Sahu, B.; Behera, B. Viscosity of concentrated aqueous solutions of 1:1 electrolytes. *Indian J. Chem.* **1980**, *19A*, 1153.
- (305) Salavera, D.; Libotean, S.; Patil, K. R.; Esteve, X.; Coronas, A. Densities and Heat Capacities of the Ammonia + Water + NaOH and Ammonia + Water + KOH Solutions. *J. Chem. Eng. Data* **2006**, *51*, 1020–1025.
- (306) Saluja, P. P. S.; Jobe, D. J.; LeBlanc, J. C.; Lemire, R. J. Apparent Molar Heat Capacities and Volumes of Mixed Electrolytes: [NaCl(aq) + CaCl₂(aq)], [NaCl(aq) + MgCl₂(aq)], and [CaCl₂(aq) + MgCl₂(aq)]. J. Chem. Eng. Data **1995**, 40, 398–406.
- (307) Saluja, P. P. S.; LeBlanc, J. C. Apparent Molar Heat Capacities and Volumes of Aqueous Solutions of MgCl₂, CaCl₂, and SrCl₂ at Elevated Temperatures. J. Chem. Eng. Data **1987**, 32, 72–76.

- (308) Saluja, P. P. S.; LeBlanc, J. C.; Hume, H. B. Apparent molar heat capacities and volumes of aqueous solutions of several 1:1 electrolytes at elevated temperatures. *Can. J. Chem.* **1986**, *64*, 926–931.
- (309) Saluja, P. P. S.; Lemire, R. J.; LeBlanc, J. C. High-Temperature Thermodynamics of Aqueous Alkali-Metal Salts. J. Chem. Thermodyn. 1992, 24, 181–203.
- (310) Sanchez, M. M.; Dominguez, B.; Raposo, R. R.; Vivo, A. Densities and Molar Volumes of Na₂SO₄ and MgSO₄ in Ethanol + Water Mixtures at 15, 25, and 35 °C. J. Chem. Eng. Data **1994**, 39, 453– 456.
- (311) Satoh, T.; Kayashi, K. The viscosity of concentrated aqueous solutions of strong electrolytes. *Bull. Chem. Soc. Jpn.* **1961**, *34*, 1260.
- (312) Savino, M. R.; Vitagliano, V. Diffusion and viscosity in aqueous solutions of H₂SO₄ at 25°. *Consiglio Nazionale delle Ricerche, Ser. II, Rendiconti. Sez. A* 1962, 2, 341.
- (313) Schmelzer, N.; Einfeldt, J. Density Measurements in Some Aqueous and Non-Aqueous Electrolyte Solutions at 25°C. Wiss. Z. Uni. Rostock 1989, 38, 81–82.
- (314) Scott, A. F.; Durham, E. J. Studies in the solubilities of the soluble electrolytes. J. Phys. Chem. 1930, 34, 1424–1438.
- (315) Scott, A. F.; Obenhaus, V. M.; Wilson, R. W. The Compressibility Coefficients of Solutions of Eight Alkali Halides. J. Phys. Chem. 1934, 38, 931–940.
- (316) Sharma, R. C.; Gaur, H. C. Densities and Molar Volumes of the Ammonium Nitrate-Water System. J. Chem. Eng. Data 1977, 22, 41–44.
- (317) Sharygin, A. V.; Inglese, A.; Sedlbauer, J.; Wood, R. H. Apparent molar heat capacities of aqueous solutions of phosphoric acid and sulfur dioxide from 303 to 623 K and a pressure of 28 MPa. *J. Solution Chem.* **1997**, *26*, 183–197.
- (318) Sharygin, A. V.; Wood, R. H. Volumes and heat capacities of aqueous solutions of sodium carbonate and sodium bicarbonate from the temperatures 298.15 to 623 K and pressures to 28 MPa. *J. Chem. Thermodyn.* **1998**, *30*, 1555–1570.
- (319) Sheerson, A. L.; Filipova, Z. M.; Miniovich, M. A. Density and viscosity of concentrated magnesium nitrate solutions in the range 100–150 °C. J. Appl. Chem. USSR 1965, 38, 2063.
- (320) Silva, J. W.; Chenevey, J. E. Specific Gravity of Aluminum Sulfate Solutions. Ind. Eng. Chem. 1945, 37, 1016–1018.
- (321) Simon, A.; Weist, M. Acidium salts. Raman-spectroscopic and viscometric investigations of the structures of anhydrous nitric, phosphoric, and perchloric acids as well as phosphoric acid perchlorate. *Z. Anorg. Chem.* **1952**, *268*, 301.
- (322) Singh, P. P.; Woolley, E. M.; McCurdy, K. G.; Hepler, L. G. Heat capacities of aqueous electrolytes: eight 1:1 electrolytes and ΔCp0 for ionization of water at 298 K. *Can. J. Chem.* **1976**, *54*, 3315– 3318.
- (323) Sipos, P. M.; Hefter, G.; May, P. M. Viscosities and Densities of Highly Concentrated Aqueous MOH Solutions (M+ = Na+, K+, Li+, Cs+, (CH3)₄N+) at 25.0 °C. J. Chem. Eng. Data 2000, 45, 613–617.
- (324) Sipos, P.; Stanley, A.; Bevis, S.; Hefter, G.; May, P. M. Viscosities and Densities of Concentrated Aqueous NaOH/NaAl(OH)₄ Mixtures at 25 °C. J. Chem. Eng. Data **2001**, 46, 657–661.
- (325) Sohnel, P.; Novotny, P; Solc, Z. Densities of aqueous solutions of 18 inorganic substances. J. Chem. Eng. Data 1984, 29, 379–382.
- (326) Sorenson, E. C.; Woolley, E. M. Thermodynamics of proton dissociation from aqueous bicarbonate: apparent molar volumes and apparent molar heat capacities of potassium carbonate and potassium bicarbonate at *T*=(278.15 to 393.15) K and at the pressure 0.35 MPa. *J. Chem. Thermodyn.* 2004, *36*, 289–298.
- (327) Spitzer, J. J.; Olofsson, I. V.; Singh, P. P.; Hepler, L. G. Apparent molar heat capacities and volumes of aqueous electrolytes at 25°C: NaIO₃, KMnO₄, and MnCl₂. *Thermochim. Acta* **1979**, 28, 155–160.
- (328) Spitzer, J. J.; Singh, P. P.; McCurdy, K. G.; Hepler, L. G. Apparent Molar Heat Capacities and Volumes of Aqueous Electrolytes: CaCl₂, Cd(NO₃)₂, CoCl₂, Cu(ClO₄)₂, Mg(ClO₄)₂, and NiCl₂. J. Solution Chem. **1978**, 7, 81–86.
- (329) Stakhanova, M. S. A comparative study of the specific heats and densities of aqueous electrolyte solutions. *Russ. J. Phys. Chem.* **1964**, *38*, 1306.
- (330) Stokes, R. H.; Phang, S.; Mills, R. Density, Conductance, Transference Numbers, and Diffusion Measurements in Concentrated Solutions of Nickel Chloride. J. Solution Chem. 1979, 8, 489–500.
- (331) Sugden, J. N. The hydratation of strong electrolytes, the viscosity of their aqueous solutions, and the dilution law. J. Chem. Soc. 1926, 174–196.
- (332) Suhrmann, R.; Wiedersich, I. The effect of foreign ions on the conductivity of hydrogen ions in aqueous solutions. Z. Annorg. Allg. Chem. 1953, 272, 167.
- (333) Sulston, W. J. The temperature variation of the viscosity of aqueous solutions of strong electrolytes. *Proc. Phys. Soc. (London)* **1935**, 47, 657.

- (334) Surdo, A. L.; Bernstrom, K.; Jonsson, C. A.; Millero, F. J. Molal volume and adiabatic compressibility of aqueous phosphate solutions at 25 °C. *J. Phys. Chem.* **1979**, *83*, 1255–1262.
- (335) Suryanarayana, C. V.; Alamelu, S. Electrical Conductance of Concentrated Aqueous Solutions of Copper Sulfate. *Bull. Chem. Soc. Jpn.* **1959**, *32*, 333–339.
- (336) Suryanarayana, C. V.; Alamelu, S. Electrical Conductance of Concentrated Aqueous Solutions of Zinc Sulphate. *Acta Chim. Hung.* 1959, 20, 91–102.
- (337) Suryanarayana, C. V.; Venkatesan, V. K. A new viscosity relationship in a wide concentration range of aqueous solutions of potassium chloride. *Bull. Chem. Soc. Jpn.* **1958**, *31*, 442.
- (338) Suryanarayana, C. V.; Venkatesan, V. K. A new viscosity relationship in highly concentrated aqueous solutions of silver nitrate and sodium nitrate. *Acta Chim. Acad. Sci. Hung.* **1958**, *16*, 149.
- (339) Suryanarayana, C. V.; Venkatesan, V. K. Electrical conductance of concentrated solutions of strong electrolytes. *Acta Chim. Acad. Sci. Hung.* 1958, 17, 327.
- (340) Suryanarayana, C. V.; Venkatesan, V. K. The viscosity of concentrated aqueous solutions of sodium chloride. *Trans. Faraday Soc.* **1958**, *54*, 1709.
- (341) Swenson, D. M.; Woolley, E. M. Apparent molar volumes and apparent molar heat capacities of aqueous KI, HIO₃, NaIO₃, and KIO₃ at temperatures from 278.15 to 393.15 K and at the pressure 0.35 MPa. *J. Chem. Thermodyn.* **2008**, *40*, 54–66.
- (342) Taboada, M. E.; Véliz, D. M.; Galleguillos, H. R.; Graber, T. A. Solubility, Density, Viscosity, Electrical Conductivity, and Refractive Index of Saturated Solutions of Lithium Hydroxide in Water + Ethanol. *J. Chem. Eng. Data* **2005**, *50*, 187–190.
- (343) Taft, R.; Welch, F. H. Physical Properties of Aqueous Solutions of Sodium Oxalate, Sodium Malonate, and Sodium Succinate, I. *Tr. Kansas Acad. Sci.* **1951**, *54*, 233–246.
- (344) Tamas, J. Density of some aqueous electrolyte solutions. *Acta Chim. Acad. Sci. Hung.* **1964**, *40*, 117.
- (345) Tanaka, M. Concentrated solutions of electrolytes. Viscosities. II. Nippon Kagaku Zasshi 1961, 82, 147.
- (346) Tanaka, M. Viscosites of concentrated aqueous solutions of sodium sulfate, potassium sulfate, magnesium chloride, strontium chloride, and barium chloride. *Nippon Kagaku Zasshi* **1962**, *83*, 645.
- (347) Tanaka, M. Viscosities of concentrated aqueous solutions of sodium chloride, sodium bromide and sodium nitrate. *Nippon Kagaku Zasshi* **1962**, *I*, 639.
- (348) Tanner, J. E.; Lamb, F. W. Specific heats of aqueous solutions of NaCl, NaBr, and KCl: comparisons with related thermal properties. *J. Solution Chem.* **1978**, *7*, 303–316.
- (349) Teng, H.; Yamasaki, A.; Chum, M.-K.; Lee, H. Solubility of liquid CO₂ in water at temperatures from 278 to 293 K and pressures from 6.44 to 29.49 MPa and densities of the corresponding aqueous solutions. J. Chem. Thermodyn. **1997**, 29, 1301–1310.
- (350) Tham, M. K.; Gubbins, K. E.; Walker Jr., R. D. Densities of Potassium Hydroxide Solutions. J. Chem. Eng. Data 1967, 12, 525– 526.
- (351) Tollert, H. Viscosity of aqueous solutions of the cerium earth nitrates in the determination of their basicity. Z. Phys. Chem. A 1939, 184, 165.
- (352) Torók, T. I.; Berecz, E. Volumetric Properties and Electrolytic Conductances of Aqueous Ternary Mixtures of Hydrogen Chloride and some Transition Metal Chlorides at 25 °C. *J. Solution Chem.* **1989**, *18*, 1117–1131.
- (353) Tremaine, P. R.; Sway, K.; Barbero, J. A. The apparent molar heat capacity of aqueous hydrochloric acid from 10 to 140 °C. J. Solution Chem. 1986, 15, 1–22.
- (354) Tromans, A.; Königsberger, E.; May, P. M.; Hefter, G. Heat Capacities and Volumes of Aqueous Dicarboxylate Salt Solutions of Relevance to the Bayer Process. *J. Chem. Eng. Data* 2005, *50*, 2019–2025.
- (355) Trypuc, M.; Kielkowska, U. Solubility in the NH₄HCO₃ + NaHCO₃ + H2O System. J. Chem. Eng. Data **1998**, 43, 201–204.
- (356) Trypuc, M.; Kielkowska, U.; Stefanowicz, D. Solubility Investigations in the KHCO₃ + NH₄HCO₃ + H₂O System. J. Chem. Eng. Data 2001, 46, 800–804.
- (357) Vasilev, Y. A.; Fedyainov, N. V.; Kurenkov, V. V. Specific Heats and Specific Volumes of Isopiestic Aqueous Solutions of Beryllium-Subgroup Metal Chlorides. *Russ. J. Phys. Chem.* **1973**, *47*, 2799– 2803.
- (358) Vaslow, F. The apparent molal volumes of the alkali metal chlorides in aqueous solutions and evidence for salt-induced structure transitions. J. Phys. Chem. **1966**, 70, 2286–2294.
- (359) Vaslow, F. The Apparent Molal Volumes of the Lithium and Sodium Halides. Critical Type Transitions in Aqueous Solution. J. Phys. Chem. 1969, 73, 3745–3750.
- (360) Vázquez, G.; Alvarez, E.; Cancela, A.; Navaza, J. M. Density, Viscosity, and Surface Tension of Aqueous Solutions of Sodium

Sulfite and Sodium Sulfite + Sucrose from 25 to 40 °C. J. Chem. Eng. Data **1995**, 40, 1101–1105.

- (361) Vazquez, G.; Alvarez, E.; Navaza, J. M. Density, Viscosity, and Surface Tension of Sodium Carbonate + Sodium Bicarbonate Buffer Solutions in the Presence of Glycerine, Glucose, and Sucrose from 25 to 40 °C. J. Chem. Eng. Data **1998**, 43, 128–132.
- (362) Vazquez, G.; Alvarez, E.; Varela, R.; Cancela, A.; Navaza, J. M. Density and Viscosity of Aqueous Solutions of Sodium Dithionite, Sodium Hydroxide, Sodium Dithionite + Sucrose, and Sodium Dithionite + Sodium Hydroxide + Sucrose from 25 C to 40 °C. J. Chem. Eng. Data 1996, 41, 244–248.
- (363) Vercher, E.; Rojo, F. J.; Martinez-Andreu, A. Apparent Molar Volumes of Calcium Nitrate in 1-Propanol + Water at 298.15 K. J. Chem. Eng. Data 1999, 44, 1212–1215.
- (364) Vinal, G. W.; Craig, D. N. The viscosity of sulphuric-acid solutions used for battery electrolytes. J. Research Natl. Bur. Stand. 1933, 10, 781.
- (365) Wahab, A.; Mahiuddin, S. Electrical conductivity, speeds of sound, and viscosity of aqueous ammonium nitrate solutions. *Can. J. Chem.* 2001, 79, 1207–1212.
- (366) Wahab, A.; Mahiuddin, S. Isentropic Compressibility and Viscosity of Aqueous and Methanolic Calcium Chloride Solutions. J. Chem. Eng. Data 2001, 46, 1457–1463.
- (367) Wahab, A.; Mahiuddin, S. Isentropic Compressibility and Viscosity of Aqueous and Methanolic Lithium Chloride Solutions. *Can. J. Chem.* **2002**, *80*, 175–182.
- (368) Wahab, A.; Mahiuddin, S. Isentropic Compressibility, Electrical Conductivity, Shear Relaxation Time, Surface Tension, and Raman Spectra of Aqueous Zinc Nitrate Solutions. *J. Chem. Eng. Data* 2004, 49, 126–132.
- (369) Wahab, A.; Mahiuddin, S.; Hefter, G.; Kunz, W. Densities, Ultrasonic Velocities, Viscosities, and Electrical Conductivities of Aqueous Solutions of Mg(OAc)₂ and Mg(NO₃)₂. J. Chem. Eng. Data 2006, 51, 1609–1616.
- (370) Wakefield, Z. T.; Luff, B. B.; Reed, R. B. Heat capacity and enthalpy of phosphoric acid. J. Chem. Eng. Data **1972**, 17, 420–423.
- (371) Weingärtner, H.; Müller, K. J.; Hertz, H. G.; Edge, A. V. J.; Mills, R. Unusual Behavior of Transport Coefficients in Aqueous Solutions of Zinc Chloride. J. Phys. Chem. 1984, 88, 2173–2178.
- (372) White, J. C.; Miller, R. R. Densities and Freezing Points of Sodium Permanganate Solutions. J. Am. Chem. Soc. 1953, 75, 3282–3283.
- (373) Wicke, E.; Eigen, M.; Ackermann, Th. Über den Zustand des Protons (Hydroniumions) in wäβriger Lösung (On the condition of the proton in aqueous solution). Z. Phys. Chem. 1954, 1, 340–364.
- (374) Wimby, J. M.; Berntsson, T. S. Viscosity and Density of Aqueous Solutions of LiBr, LiCl, ZnBr2, CaCl2, and LiNO3. 1. Single Salt Solutions. J. Chem. Eng. Data 1994, 39, 68–72.
- (375) Wirth, H. E. The Partial Molal Volume of Acetic Acid in Sodium Acetate and in Sodium Chloride Solutions. J. Am. Chem. Soc. 1948, 70, 462–465.

- (376) Wirth, H. E.; Lo Surdo, A. Temperature Dependence of Volume Changes on Mixing Electrolyte Solutions. J. Chem. Eng. Data 1968, 13, 226–231.
- (377) Woolf, L. A.; Hoveling, A. W. Mutual diffusion coefficients of aqueous copper (II) sulfate solutions at 25 °C. J. Phys. Chem. 1970, 74, 2406–2408.
- (378) Zafarani-Moattar, M. T.; Hamzehzadeh, Sh. Measurement and Correlation of Densities, Ultrasonic Velocities, and Compressibilities for Binary Aqueous Poly(ethylene glycol), Disodium Succinate, or Sodium Formate and Ternary Aqueous Poly(ethylene glycol) Systems Containing Disodium Succinate or Sodium Formate at *T* = (298.15, 308.15, and 318.15. *J. Chem. Eng. Data* **2005**, *50*, 603–607.
- (379) Zafarani-Moattar, M. T.; Mehrdad, A. Measurement and Correlation of Density for PEG + H2O + NaHSO4, NaH2PO4, and Na2HPO4 at Three Temperatures. J. Chem. Eng. Data 2000, 45, 386–390.
- (380) Zhang, H.-L.; Chen, G.-H.; Han, S.-J. Viscosity and Density of H₂O+NaCl+CaCl₂ and H₂O+KCl+CaCl₂ at 298.15K. *J. Chem. Eng. Data* **1997**, *42*, 526–530.
- (381) Zhang, H.-L.; Han, S-J. Viscosity and Density of Water + Sodium Chloride + Potassium Chloride Solutions at 298.15 K. J. Chem. Eng. Data 1996, 41, 516–520.
- (382) Zhuo, K.; Chen, Y.; Wang, W.; Wang, J. Volumetric and Viscosity Properties of MgSO₄/CuSO₄ in Sucrose + Water Solutions at 298.15 K. J. Chem. Eng. Data 2008, 50, 2022–2028.
- (383) Ziemer, S. P.; Niederhauser, T. L.; Sargent, J. D.; Woolley, E. M. Apparent molar volumes and apparent molar heat capacities of aqueous sodium bromide and sodium fluoride at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 2004, 36, 147–154.
- (384) Zodejs, Z.; Sacchetto, G. A. Theory of volumetric behaviour of hydrous melts. The systems LiNO₃ - H₂O and NH₄NO₃ - H₂O. *J. Chem. Soc., Faraday Trans. I* 1982, 78, 3529–3535.
- (385) Banipal, T. S.; Singh, K.; Banipal, P. K.; Sood, A. K.; Singh, P.; Singh, G.; Patyar, P. Volumetric and Viscometric Studies of Some Metal Acetates in Aqueous Solutions at *T* = (288.15 to 318.15) K. *J. Chem. Eng. Data* **2008**, *53*, 2758–2765.
- (386) Franz, B. Die specifischen Gewichte einiger wässrigen Lösungen (Of the specific weight of some aqueous solutions). *Praktische Chem.* 1872, 5, 274–308.
- (387) Heydweiller, A. Elektrische Leitfähigkeit und Dichte wäβriger Elektrolytlösungen (Electrical conductivity and density of aqueous electrolytic solutions). Z. Anorg. Allg. Chem. **1921**, 116 (1), 42–44.
- (388) Königsberger, E.; Königsberger, L.-C.; Szilágyi, I.; May, P. M. Measurement and Prediction of Physicochemical Properties of Liquors Relevant to the Sulfate Process for Titania Production. 1. Densities in the TiOSO₄ + FeSO₄ + H₂SO₄ + H₂O System. *J. Chem. Eng. Data* **2009**, *54*, 520–525.

Received for review October 31, 2008. Accepted February 18, 2009.

JE8008123