Isobaric Vapor–Liquid Equilibria for the Binary Systems Benzene + Methyl Ethanoate, Benzene + Butyl Ethanoate, and Benzene + Methyl Heptanoate at 101.31 kPa^{\dagger}

Miguel A. Postigo,*,* Alejandra B. Mariano,* Andréa F. Jara, and Natasha Zurakoski

Laboratorio de Fisicoquímica, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400-8300 Neuquén, Argentina

Isobaric vapor-liquid equilibria for the binary systems benzene + methyl ethanoate, benzene + butyl ethanoate, and benzene + methyl heptanoate, at the pressure of (101.31 ± 0.02) kPa, have been determined using an all-glass recirculation still. From experimental data, the activity coefficients were calculated and satisfactorily correlated as a function of the mole fraction using the excess Gibbs energy model equations proposed by Margules, van Laar, Wilson, NRTL, and UNIQUAC. The predictive group-contribution models UNIFAC and ASOG were applied. The thermodynamic consistency of the data was verified with two point-to-point tests. The binary systems showed positive deviations from Raoult's law, and no azeotrope was observed at this pressure.

Introduction

In the chemical industry, vapor-liquid equilibrium (VLE) data are very important in the design and operation of separation processes. These VLE data can be estimated using generalized methods for calculation of the properties of mixtures or can be obtained experimentally. The accuracy of a process simulation depends strongly on the thermodynamic models used to describe the physical behavior of the involved components, and the highest quality experimental data reported in this work contribute to this purpose.

As part of a wide experimental and theoretical study on thermodynamic and physicochemical properties of binary and ternary liquid mixtures containing aromatic hydrocarbons and linear esters, and with the aim of studying in depth the behavior of these kinds of mixtures, we report in this work the isobaric VLE for binary mixtures of benzene + methyl ethanoate, benzene + butyl ethanoate, and benzene + methyl heptanonate. Temperature and mole fractions for the liquid and vapor phases were directly measured at isobaric conditions of $P = (101.31 \pm 0.02)$ kPa. The calculated properties, such as activity coefficients, were correlated by Margules,¹ van Laar,² Wilson,³ NRTL,⁴ and UNIQUAC⁵ models. Furthermore, experimental VLE compositions were predicted by two group-contribution methods, ASOG^{6,7} and the three versions of the UNIFAC (UNIFAC-1,⁸ UNIFAC-2,⁹ and UNIFAC-3^{10,11}).

Experimental Section

The chemicals used were provided by Merck (benzene > 99.7 % and methyl ethanoate > 99.0 %), by Aldrich (butyl ethanoate > 98.0 %), and by Fluka (methyl heptanoate > 99.0 %). These liquids were stored over molecular sieves, Fluka 0.3 nm, to reduce the presence of water. Before use they were degassed in an ultrasonic bath. To test the purity of the liquids, density

Table 1.	Density ρ and	Refractive I	ndex $n_{\rm D}$ at	T = 298.1	5 K and
Boiling T	emperature $T_{\rm h}$	at $P = 101.2$	31 kPa, for	the Pure	Liquids ^a

	$\rho/\text{kg}\cdot\text{m}^{-3}$		n	D	$T_{\rm b}/{ m K}$	
liquid	exptl	lit. ^b	exptl	lit. ^b	exptl	lit. ^b
benzene	873.67	873.60	1.49765	1.49792	352.97	353.244
methyl ethanoate	927.36	927.90	1.35893	1.35890	330.03	330.018
butyl ethanoate	876.35	876.36	1.39191	1.39180	398.10	399.211
methyl heptanoate	875.88	875.69 ^c	1.40945	-	443.63	445.84 ^d

^{*a*} Experimental and literature values. ^{*b*} Ref 12. ^{*c*} Ref 13. ^{*d*} Value obtained from PhysProps version 1.6.1, G&P Engineering Software.

Table 2. Intrinsic Properties of the Pure Liquids

liquid	$\frac{P_{\rm c}}{\rm kPa}$	$\frac{10^4 V_{\rm c}}{\rm m^3 \cdot mol^{-1}}$	$\frac{T_{\rm c}}{\rm K}$	ω	$Z_{\rm RA}$
benzene	4898 ^a	2.59^{a}	562.16 ^{<i>a</i>}	0.212^{b}	$\begin{array}{c} 0.2696^c \\ 0.2550^c \\ 0.254^d \\ 0.247^d \end{array}$
methyl ethanoate	4690 ^a	2.28^{a}	506.8 ^{<i>a</i>}	0.324^{b}	
butyl ethanoate	2950 ^a	4.03^{a}	579.0 ^{<i>a</i>}	0.417^{b}	
methyl heptanoate	2563 ^e	5.94^{e}	624.48 ^{<i>e</i>}	0.495^{f}	

^{*a*} Ref 19. ^{*b*} Ref 20. ^{*c*} Ref 18. ^{*d*} Value calculated with the equation Z_{RA} = 0.29056 - 0.08775 ω .²⁰ ^{*e*} Value obtained from PhysProps version 1.6.1, G&P Engineering Software. ^{*f*} Calculated from our experimetal data, with Pitzer's equation.²¹

and refractive index at T = 298.15 K were measured and compared with literature values as presented in Table 1.

The experimental equipment used for vapor—liquid equilibrium measurements is a dynamic cell with recirculation of both phases. The entire apparatus is built in glass, and it has a low capacity, 60 cm³ of mixture. A first version of the apparatus was presented by De Alfonso et al.¹⁴ The boiling of the liquid mixture is achieved by warming the solution employing an electric heating wire. This main apparatus is connected to auxiliary equipment to control and measure the thermodynamic variables that characterize the equilibrium conditions, pressure, and temperature. The details of the equipment and support systems have been described previously.¹⁵

The uncertainties in the measured temperatures and pressures were ± 0.02 K and ± 0.02 kPa, respectively. The composition

^{*} Corresponding author. E-mail: postigo@uncoma.edu.ar.

[†] Part of the "Gerhard M. Schneider Festschrift".

^{*} CONICET member.

Table 3. Experimental Vapor Pressures, P_i^0 , for Methyl Heptanoate

<i>T</i> /K	P_i^0/kPa	<i>T</i> /K	P ⁰ _i /kPa
421.35	53.32	437.59	89.31
421.92	54.65	438.29	90.65
422.77	55.99	438.73	91.98
424.10	58.65	439.35	93.31
425.03	59.99	439.95	94.72
425.50	61.32	440.47	95.87
426.33	62.65	441.35	97.31
427.31	63.99	442.13	98.64
427.75	65.32	442.46	99.98
428.38	66.65	442.96	101.31
428.92	67.98	442.72	98.55
436.39	86.65	443.94	101.31
436.99	87.98		

Table 4. Antoine Constants for the Pure Liquids

liquid	Α	<i>B</i> /K	C/K
benzene	$\begin{array}{c} 6.0305^{a} \\ 6.1299^{a} \\ 6.1534^{a} \\ 6.1627^{b} \end{array}$	1211.03 ^a	-52.36^{a}
methyl ethanoate		1130.00 ^a	-56.15^{a}
butyl ethanoate		1368.50 ^a	-69.15^{a}
methyl heptanoate		1416.46 ^b	-101.76^{b}

^a Ref 20. ^b Calculated from our experimetal data.

of the liquid and vapor phases was determined by densimetry, using standard curves, $\rho = \rho(x)$, for the mixtures studied. These

Figure 1. (a) Experimental (T, x, y) for the binary systems at P = 101.31 kPa for benzene (1) + methyl ethanoate (2) and the corresponding fitting curves using UNIFAC-3. (b) Experimental: \bullet , γ_1 ; \bigcirc , γ_2 ; \blacktriangle , G^E/RT ; and -, fitting curves using UNIFAC-3 at P = 101.31 kPa.

Table 5. Isobaric Vapor–Liquid Equilibrium Data (T, x_1, y_1) and Calculated Values $(\gamma_1, \gamma_2, G^E/RT)$ for the Binary Systems at P = 101.31 kPa

<i>T</i> /K	x_1	<i>y</i> 1	γ_1	γ_2	$G^{\rm E}/RT$				
Benzene (1) + Methyl Ethanoate (2)									
330.22	0.0261	0.0154	1.238	1.009	0.014				
330.48	0.0498	0.0305	1.273	1.009	0.021				
330.84	0.0785	0.0496	1.297	1.008	0.028				
331.44	0.1202	0.0771	1.290	1.005	0.035				
331.98	0.1598	0.1017	1.256	1.006	0.042				
332.45	0.2059	0.1272	1.219	1.019	0.052				
333.07	0.2540	0.1596	1,195	1.024	0.062				
333.90	0.3057	0.1961	1.186	1.024	0.069				
336.03	0.4357	0.2853	1.127	1.047	0.078				
337.38	0.5070	0.3402	1.104	1.060	0.079				
339.76	0.6275	0.4362	1.057	1,113	0.075				
342.56	0.7310	0.5500	1.045	1.129	0.065				
344.46	0.7971	0.6272	1.029	1.171	0.055				
345.23	0.8196	0.6560	1.022	1.188	0.049				
347.18	0.8702	0.7396	1.021	1 181	0.040				
350 35	0.9471	0.8839	1.018	1 179	0.026				
351 75	0.9769	0.9495	1.016	1.179	0.020				
551.75	0.9709	$(1) \perp \mathbf{D}$	1.010	(2)	0.017				
207.10	Benze	(1) + But = 0.0(17)	lyi Ethanoat	e (2)	0.007				
397.19	0.0189	0.0617	1.067	1.008	0.007				
395.18	0.0437	0.1361	1.064	1.007	0.009				
391.75	0.0884	0.2533	1.057	1.007	0.011				
389.71	0.1168	0.3181	1.052	1.007	0.012				
384.15	0.1979	0.4765	1.059	1.004	0.015				
3/9.//	0.2/12	0.5846	1.054	1.004	0.017				
375.27	0.3600	0.6814	1.035	1.012	0.020				
372.14	0.4351	0.7410	1.009	1.032	0.022				
369.75	0.4894	0.7830	1.009	1.036	0.022				
367.22	0.5565	0.8238	0.998	1.055	0.023				
365.52	0.6005	0.8495	0.999	1.061	0.023				
362.54	0.6821	0.8914	1.001	1.068	0.022				
359.71	0.7651	0.9276	1.006	1.067	0.019				
358.58	0.7999	0.9410	1.008	1.063	0.018				
356.81	0.8599	0.9608	1.007	1.076	0.016				
355.47	0.9077	0.9751	1.006	1.090	0.014				
354.25	0.9501	0.9875	1.009	1.060	0.012				
100 10	Benzen	e(1) + Meth	yl Heptano	ate (2)	0.005				
439.48	0.0094	0.0841	1.300	1.002	0.005				
436.46	0.0194	0.1650	1.307	1.002	0.007				
429.68	0.0434	0.3299	1.306	0.998	0.010				
421.19	0.0768	0.5011	1.307	0.992	0.013				
411.67	0.1230	0.6516	1.272	0.986	0.018				
402.14	0.1870	0.7661	1.197	0.987	0.023				
391.25	0.2935	0.8601	1.088	1.008	0.031				
386.83	0.3450	0.8894	1.060	1.019	0.033				
381.65	0.4065	0.9177	1.051	1.029	0.037				
377.14	0.4788	0.9381	1.020	1.061	0.040				
372.88	0.5483	0.9542	1.010	1.086	0.043				
367.54	0.6478	0.9708	1.001	1.124	0.042				
364.95	0.6998	0.9775	1.001	1.143	0.041				
362.74	0.7479	0.9826	1.001	1.165	0.039				
359.60	0.8222	0.9892	1.001	1.187	0.031				
357.16	0.8837	0.9935	1.003	1.230	0.026				
355.02	0.9467	0.9969	1.000	1.418	0.018				

experimental data are reported as Supporting Information. The density measurements were made using an Anton Paar DSA-5000 densimeter with an uncertainty of \pm 0.01 kg·m⁻³. The temperature of the cell was controlled with an internal thermostat.

Results and Discussion

The correlations of density and concentration values for the mixtures were carried out using a polynomial equation of the type¹⁶

$$\rho = x_1 \rho_1 + x_2 \rho_2 + x_1 x_2 \sum_{i=0}^n a_i (2x_1 - 1)^i \tag{1}$$

where ρ is the density of the mixture; ρ_1 and ρ_2 are the densities of components 1 and 2, respectively; x_1 and x_2 are the mole

Figure 2. (a) Experimental (T, x, y) for the binary systems at P = 101.31 kPa for benzene (1) + butyl ethanoate (2) and the corresponding fitting curves using UNIFAC-1. (b) Experimental: \bullet , γ_1 ; \bigcirc , γ_2 ; \blacktriangle , G^E/RT ; and -, fitting curves using UNIFAC-1 at P = 101.31 kPa.

fractions of components 1 and 2, respectively; and a_i are the adjustable parameters.

Equation 1 was then used to calculate the concentration in each of the equilibrium states. The uncertainties of the calculation of the mole fractions for both the liquid phase and the vapor phase were better than ± 0.001 .

Experimental values of (*P*, *T*, *x*₁, *y*₁) were obtained directly in the isobaric VLE experiment for the binary systems methyl ethanoate, butyl ethanoate, and methyl heptanoate with benzene at *P* = (101.31 ± 0.02) kPa. From these values, considering the nonideal behavior of the vapor phase, the activity coefficients, γ_i , of the components of the liquid phase were calculated from the following equation

$$\gamma_{i} = \frac{y_{i}P}{x_{i}P_{i}^{0}} \exp \frac{(B_{ii} - V_{i}^{L})(P - P_{i}^{0})}{RT} \exp \frac{y_{j}^{2}P\delta_{ij}}{RT}$$
(2)

where

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{3}$$

The second virial coefficients were calculated using the Tsonopoulos¹⁷ empirical equation. The molar liquid volumes, V_i^L , of pure compounds were estimated using the modified Rackett equation.¹⁸ All the required parameters are listed in Table 2.

Figure 3. (a) Experimental (T, x, y) for the binary systems at P = 101.31 kPa for benzene (1) + methyl heptanoate (2) and the corresponding fitting curves using UNIFAC-1. (b) Experimental: $\bullet, \gamma_1; \bigcirc, \gamma_2; \blacktriangle, G^E/RT$; and -, fitting curves using UNIFAC-1 at P = 101.31 kPa.

Table 6. Results of Thermodynamic Consistency Tests of VLE Data for the Binary Systems at P = 101.31 kPa

	point-to-point tests		
	Fredenslund ²² Wisniak		
binary systems	$\delta y_1{}^a$	$D \%^b$	
benzene (1) + methyl ethanoate (2)	0.009	1.17	
benzene (1) + butyl ethanoate (2)	0.009	4.32	
benzene (1) + methyl heptanoate (2)	0.009	4.13	

^{*a*} The criterion for passing the test is $\delta y_1 < 0.010$ absolute in mole fraction. ^{*b*} The criterion for passing the test is D < 5 %.

The vapor pressures, P_i^0 , were calculated by the Antoine equation. Experimental vapor pressures of methyl heptanoate, determined experimentally in the temperature range of T = (421.35 to 443.94) K in our laboratory, are presented in Table 3. From the experimental vapor pressure data, we obtained the Antoine constants for methyl heptanoate, which were not available in the literature consulted for the work range. There are data of vapor pressures for methyl heptanoate but in other temperature ranges.²² These new Antoine constants, together with the Antoine constants for the other pure components, collected from the literature, are given in Table 4.

The experimentally observed values (T, x_1, y_1) and the calculated values $(\gamma_1, \gamma_2, G^E/RT)$ are compiled in Table 5 and are also shown in Figures 1, 2, and 3.

Table 7. Constants and Standard Deviations, $\sigma(\gamma_i)$, for Van Laar, Margules, Wilson, NRTL ($\alpha = 0.5$), and UNIQUAC Models

Marg	ules1	Van	Laar ²	Wil	son ³	NI	RTL^4	UNIÇ	UAC ⁵
			B	enzene $(1) + N$	lethyl Ethanoate	e (2)			
A_{12}	0.1489	A_{12}	0.0762	Λ_{12}	0.9419	$ au_{12}$	-0.1451	$ au_{12}$	1.3792
A_{21}	0.1924	A_{21}	0.3432	Λ_{21}	0.7538	$ au_{21}$	0.4505	$ au_{21}$	0.4260
$\sigma(\gamma_1)$	0.06	$\sigma(\gamma_1)$	0.16	$\sigma(\gamma_1)$	0.03	$\sigma(\gamma_1)$	0.05	$\sigma(\gamma_1)$	0.04
$\sigma(\gamma_2)$	0.15	$\sigma(\gamma_2)$	0.24	$\sigma(\gamma_2)$	0.09	$\sigma(\gamma_2)$	0.03	$\sigma(\gamma_2)$	0.02
			E	Benzene $(1) + I$	Butyl Ethanoate	(2)			
A_{12}	0.0802	A_{12}	0.0277	Λ_{12}	1.2635	$ au_{12}$	0.0454	$ au_{12}$	1.2908
A_{21}	0.0441	A_{21}	0.1017	Λ_{21}	0.6817	$ au_{21}$	0.0392	$ au_{21}$	0.5609
$\sigma(\gamma_1)$	0.06	$\sigma(\gamma_1)$	0.02	$\sigma(\gamma_1)$	0.02	$\sigma(\gamma_1)$	0.01	$\sigma(\gamma_1)$	0.01
$\sigma(\gamma_2)$	0.02	$\sigma(\gamma_2)$	0.04	$\sigma(\gamma_2)$	0.02	$\sigma(\gamma_2)$	0.02	$\sigma(\gamma_2)$	0.01
			Be	nzene $(1) + M$	ethyl Heptanoat	e (2)			
A_{12}	0.1020	A_{12}	0.0538	Λ_{12}	1.3050	$ au_{12}$	0.1108	$ au_{12}$	1.3584
A_{21}	0.0899	A_{21}	0.1620	Λ_{21}	0.5980	$ au_{21}$	0.1771	$ au_{21}$	1.4220
$\sigma(\gamma_1)$	0.05	$\sigma(\gamma_1)$	0.11	$\sigma(\gamma_1)$	0.10	$\sigma(\gamma_1)$	0.05	$\sigma(\gamma_1)$	0.04
$\sigma(\gamma_2)$	0.06	$\sigma(\gamma_2)$	0.05	$\sigma(\gamma_2)$	0.07	$\sigma(\gamma_2)$	0.03	$\sigma(\gamma_2)$	0.04

The thermodynamic consistency of the data was verified using the point-to-point tests proposed by Fredenslund et al.²³ and the one from Wisniak.²⁴ The results of these consistency tests are shown in Table 6. These systems proved to be consistent according to both methods. The criterion for passing the tests of consistency are: for Fredenslund,²³ $\delta y_1 < 0.010$ absolute in mole fraction, and for Wisniak,²⁴ D < 5 %.

The data were correlated using the Margules,¹ van Laar,² Wilson,³ NRTL,⁴ and UNIQUAC⁵ equations for the liquid-phase activity coefficients. Margules¹ and van Laar² constants are calculated by linear regression of activity coefficient data using eqs 4 and 5, respectively.

$$\frac{x_1 \log \gamma_1 + x_2 \log \gamma_2}{x_1 x_2} = A_{12} + x_1 (A_{21} - A_{12})$$
(4)

$$\frac{x_1}{x_1 \log \gamma_1 + x_2 \log \gamma_2} = \frac{1}{A_{12}} + \frac{1}{A_{21}} \frac{x_1}{x_2}$$
(5)

where x_1 and x_2 are the mole fractions of components 1 and 2, respectively; γ_1 and γ_2 are the activity coefficients of components 1 and 2, respectively; and A_{12} and A_{21} are the constants of the models.

Wilson³ constants are calculated by nonlinear regression based on the method proposed by Apelblat and Wisniak.²⁵

The constants of the NRTL⁴ and UNIQUAC⁵ models are found by least-squares minimizing the objective function

$$OF = \min \sum_{i=1}^{n} \left[(\ln \gamma_{1,i}^{\text{calcd}} - \ln \gamma_{1,i}^{\text{exptl}})^2 + (\ln \gamma_{2,i}^{\text{calcd}} - \ln \gamma_{2,i}^{\text{exptl}})^2 \right]$$
(6)

where *n* is the number of data points. The nonrandom parameter, α , in the NRTL model was fixed in 0.5, and the structural parameters *r* and *q* for UNIQUAC are obtained from atomic and molecular structure data: the van der Waals group volumes, $V_{\rm k}$, and surface areas, $A_{\rm k}$.²⁶

The model constants and the standard deviations between the experimental and the calculated values of activity coefficients are reported in Table 7, showing that, in general, the deviations obtained are reasonably small.

Theoretical Predictions. Group contribution methods ASOG^{6,7} and the three versions of the UNIFAC (UNIFAC-1,⁸ UNIFAC-2,⁹ and UNIFAC-3^{10,11}) were used to estimate the VLE values for the mixtures presented in this work. In Table 8, the average deviations in vapor-phase compositions and bubble point temperatures between the experimental and predicted values are reported. From the examination of the standard deviations, in

Table 8. Average Deviations between the Calculated and Experimental Vapor Phase Mole Fractions Δy_1 and Temperature $\Delta T/K$ Using Predictive Models and the Corresponding Standard Deviation in Activity Coefficients σ (γ_i)

predictive model	$\Delta T/K$	Δy	$\sigma\left(\gamma_{1} ight)$	$\sigma(\gamma_2)$			
	Benzene (1) + Methyl Ethanoate (2)						
UNIFAC-1 ⁸	0.71	0.0069	0.096	0.036			
UNIFAC-2 ⁹	0.77	0.0097	0.092	0.048			
UNIFAC-3 ^{10,11}	0.15	0.0098	0.048	0.033			
ASOG ^{6,7}	0.24	0.0097	0.028	0.027			
	Benzene (1) + Butyl Ethanoate (2)						
UNIFAC-1 ⁸	2.66	0.0326	0.226	0.234			
UNIFAC-29	1.64	0.0155	0.126	0.120			
UNIFAC-3 ^{10,11}	1.65	0.0168	0.136	0.117			
ASOG ^{6,7}	1.29	0.0137	0.116	0.073			
	Benz	tene $(1) + Met$	hyl Heptanoa	te (2)			
UNIFAC-1 ⁸	5.93	0.0533	0.391	0.429			
UNIFAC-29	4.60	0.0358	0.327	0.242			
UNIFAC-3 ^{10,11}	4.06	0.0347	0.315	0.222			
ASOG ^{6,7}	4.03	0.0352	0.330	0.187			

employing the different models for the systems investigated, presented in Table 8, it can be remarked that:

(a) models UNIFAC-3 and ASOG provide better results to predict the vapor-liquid equilibrium of the mixture benzene + methyl ethanoate, whereas

(b) for the mixtures benzene + butyl ethanoate and benzene + methyl heptanoate, only UNIFAC-1 predicts γ_i greater than unity, in agreement with experimental results, while UNIFAC-2, UNIFAC-3, and ASOG predict γ_i less than 1.

Figures 1, 2, and 3 present comparisons of the experimental and predicted VLE data for the binary systems investigated. Also see the Supporting Information.

Conclusions

Vapor-liquid equilibrium data at P = 101.31 kPa for the binary systems benzene + methyl ethanoate, benzene + butyl ethanoate, and benzene + methyl heptanoate were determined. The experimental data for the three systems evidence that these systems do not form an azeotrope at this pressure. The activity coefficient data show that the systems investigated do not deviate significantly from ideality.

The experimental results were correlated using well-known equations for the reduction of the data of VLE, such as the Margules, van Laar, Wilson, NRTL, and UNIQUAC. The equations appeared to be suitable for correlating the data for the mixtures considered here, except the Van Laar equation for the systems benzene + methyl ethanoate and benzene + methyl hepatanoate and the Wilson equation for the benzene + methyl heptanoate system, where the deviations obtained were slightly high.

The UNIFAC and ASOG group contribution methods have been employed to estimate the isobaric VLE of the binary systems. UNIFAC-3 and ASOG provide good results to predict the vapor-liquid equilibrium of the mixture benzene + methyl ethanoate. For the mixtures benzene + butyl ethanoate and benzene + methyl heptanoate, only UNIFAC-1 gives result in concordance with experimental values of γ_i , in the sense that they are greater than one, but this model is the one that gives the highest deviation in all the properties compared for these two systems. The predictions with any of the models are unacceptable for these two systems. The poor results to predict the vapor-liquid equilibrium of the mixtures benzene + butyl ethanoate and benzene + methyl heptanoate can be due to that there are not enough data for these types of mixtures to estimate the group contribution parameters.

Supporting Information Available:

Experimental densities for the binary mixtures benzene + methyl ethanoate, benzene + butyl ethanoate, and benzene + methyl heptanoate, used to calculate VLE compositions. Figures with experimental and predicted γ_i values for the binary systems investigated. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- Margules, M. Uber die Zusammen Setzung der Gesattigten Dampfe von Mischugen: Sistzungber. Wien Acad. 1895, 104, 1234–1278.
- (2) Van Laar, J. J. Vapour Pressure of Binary Mixtures. Z. Phys. Chem. 1910, 72, 723–751.
- (3) Wilson, G. M. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127–130.
- (4) Renon, H.; Prausnitz, J. M. Local Composition in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1968, 14, 135–144.
- (5) Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: a New Expression for the Excess Energy of Partly or Completely Miscible Systems. *AIChE J.* **1975**, *21*, 116–128.
- (6) Kojima, K.; Tochigi, K. Prediction of Vapor-Liquid Equilibria by the ASOG Method; Kodansha Ltd.: Tokio, 1979.
- (7) Tochigi, K.; Tiegs, D.; Gmehling, J.; Kojima, K. Determination of New ASOG Parameters. J. Chem. Eng. Jpn. 1990, 23, 453–463.
- (8) Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. Group Contribution Estimation of Activity Coefficients in Non-ideal Liquid Mixtures. *AIChE J.* 1975, 21, 1086–1099.

- (9) Larsen, B. L.; Rasmussen, P.; Fredenslund, A. A. A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing. *Ind. Eng. Chem. Res.* **1987**, *26*, 2274–2286.
- (10) Weidlich, U.; Gmehling, J. A. A modified UNIFAC model. I. Prediction of VLE, H^E and γ[∞]. *Ind. Eng. Chem. Res.* **1987**, 26, 1372– 1381.
- (11) Gmehling, J.; Li, J.; Schiller, M. A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties. *Ind. Eng. Chem. Res.* **1993**, *32*, 178–193.
- (12) Riddick J. A.; Bunger W. B. Organic Solvents. Thechniques of Chemistry; Wiley-Interscience: New York, 1970.
- (13) Camacho, A. G.; Postigo, M. A. Molar and Partial Molar Excess Volumes of Benzene in Methyl Ester Solutions at 25 °C. J. Solution Chem. 1998, 27, 719–729.
- (14) De Alfonso, C.; Ezama, R.; Losada, P.; Calama, M. A.; Llanas, B.; Pintado, M.; Saenz de la Torre, A. F. Equilibrio Isobárico Líquido-Vapor. III. Desarrollo y Ensayo de un Aparato de Equilibrio de Pequeña Capacidad. *Anal. Quím.* **1983**, *79*, 243–253.
- (15) Leonetti, J.; Camacho, A.; Postigo, M. Isobaric Vapor-Liquid Equilibrium of Benzene with Dichloromethane at 86.65, 93.32 and 99.99 kPa. *Latin Am. Appl. Res.* **1999**, *29*, 77–82.
- (16) Redlich, O.; Kister, A. T. Thermodynamics of Non Electrolyte Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
- (17) Tsonopoulos, C. Empirical Correlation of Second Virial Coefficients. AIChE J. 1974, 20, 263–272.
- (18) Spencer, C. F.; Danner, R. P. J. Improved Equation for Prediction of Saturated Liquid Density. J. Chem. Eng. Data 1972, 17, 236–241.
- (19) TRC, Thermodynamic Tables Non Hydrocarbons; Thermodynamic Research Center, Texas A&M University: College Station, 1993.
- (20) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. *The properties of gases and liquids*, 3rd ed.; McGraw Hill Book Company, 1977.
- (21) Lewis, G. N.; Randall, M. *Thermodynamics*; McGraw-Hill: New York, 1961.
- (22) TRC, Thermodynamic Tables Non Hydrocarbons, Thermodynamic Research Center, Texas A&M University: College Station, 1998.
- (23) Fredenslund, A. A.; Gmehling, J.; Rasmussen, P. Vapour-Liquid Equilibria Using UNIFAC. A Group-Contribution Method; Elsevier: Amsterdam, 1977.
- (24) Wisniak, J. A New Test for the Thermodynamic Consistency of Vapour-liquid Equilibrium. Ind. Eng. Chem. Res. 1993, 32, 1531– 1533.
- (25) Apelblat, A.; Wisniak, J. A Simple Method for Evaluating the Wilson Constants. *Ind. Eng. Chem. Res.* **1989**, 28, 324–328.
- (26) Bondi, A. Physical Properties of Molecular Crystals, Liquids and Glasses; Wiley: New York, 1968.

Received for review November 27, 2008. Accepted March 28, 2009.

JE800915D