Phase Equilibria, Volume Properties, Surface Tension, and Viscosity of the (FLiNaK)_{eut} + K₂NbF₇ Melts

B. Kubíková,* M. Kucharík, R. Vasiljev, and M. Boča

Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia

Physicochemical properties of the system (FLiNaK)_{eut} (1) + K₂NbF₇ (2) were investigated. Phase equilibria were studied by a thermal analysis method. Density of the investigated system was measured by the Archimedean method. On the basis of these data, molar volumes were calculated for selected temperatures, and the partial molar volume of K₂NbF₇ in (FLiNaK)_{eut} was evaluated adopting the value \bar{V}_2 /cm³·mol⁻¹ = (121.1 ± 0.4) at 1073 K, indicating volume contraction. Surface tension was measured by the maximal bubble pressure method, and viscosity was measured using the computerized torsion pendulum method.

Introduction

Molten fluoride systems of niobium have been extensively analyzed to obtain data on basic physicochemical properties comprising phase diagrams, density, surface tension, or viscosity. The most complete set of data on the mentioned properties is available for the systems MF + K₂NbF₇ (MF = LiF + NaF,¹⁻⁶ LiF + KF,⁷⁻¹¹ NaF + KF¹²⁻¹⁵). From this set of data, some comparison can be done on the influence of different cations on the studied properties. Moreover, all of these data can be used in practical applications during electrolysis of molten mixtures.¹⁶

Systems that consist of fluorides of alkaline metals, fluoroniobates, with the addition of its oxide have also been investigated^{17–22} with the purpose of incorporating additional components that would influence the electroactivity of the molten mixture.

Extensive corrosion activity at high temperature represents relatively important disadvantages in the use of these systems. The lowering of the working temperature can be achieved by substitution of a binary fluoride system with a eutectic ternary system (LiF + NaF + KF)_{eut} (1) = FLINAK_{eut}. An investigation of the above system with respect to practical applications was done previously.^{23,24}

The objective of this work was to extend the data set of physicochemical properties also for the most acceptable system $(FLiNaK)_{eut}$ (1) + K_2NbF_7 (2) from an industrial point of view.

Experimental Section

For the preparation of mixtures, the following chemicals were used: LiF (Ubichem, p.a.), NaF (Merck, 99 %), KF (Fluka, 99.5 %), and K_2NbF_7 (prepared in the Institute of Chemistry KSC RAS, Apatity, Russia, min. 99.5 %). LiF and NaF were dried at 773 K for 2 h, and KF and K_2NbF_7 were dried under vacuum at 403 K for 24 h. Handling of all salts was done in a glovebox under dry nitrogen atmosphere (Messer 99.99 %).

The phase equilibrium of the investigated system was determined by means of a thermal analysis (TA) method. Detailed descriptions of the experimental device can be found

Table 1. Experimental Characteristic TA Temperatures in the Molten (FLiNaK)_{eut} (1) + K_2NbF_7 (2) System

<i>x</i> ₁	T_1/K	T_2/K	$T_{\rm pk}/{ m K}$
1.0			725
0.975	723		729
0.925	724		769
0.85	723		845
0.75	719		914
0.7	721		916
0.65		902	920
0.6			900
0.5		908	933
0.4		896	947
0.3		900	954
0.2		901	970
0.1		908	982
0.0			994

elsewhere.^{2,19} Temperatures of particular thermal effects for certain compositions are summarized in Table 1.

The density of the studied melts was measured using the Archimedean method. Both arrangement of the experimental device and measuring procedure have been described in detail elsewhere.²⁵ The temperature dependence of the density of particular mixtures was expressed in the form of the linear equation

$$\rho = a - bT \tag{1}$$

where $\rho/g \cdot cm^{-3}$ is density and *T*/K is the temperature. For each measurement, one heating and two cooling curves were recorded. For each curve, coefficients $a/g \cdot cm^{-3}$ and $b/g \cdot cm^{-3} \cdot K^{-1}$ were obtained from the linear regression. The values of the constants *a* and *b* together with the standard deviations of approximations (sd/g \cdot cm^{-3}) obtained by the linear regression analysis of the experimentally obtained data are summarized in Table 2.

The surface tension of the $(FLiNaK)_{eut}(1) + K_2NbF_7(2)$ melts was determined using the maximum bubble pressure method. A description of the experimental device with measuring procedure can be found in another published work.²⁷ The temperature dependence of the surface tension of particular mixtures was expressed by the linear equation

^{*} Corresponding author. E-mail: uachkubi@savba.sk.

$$\gamma = a - bT \tag{2}$$

where $\gamma/\text{mN}\cdot\text{m}^{-1}$ is the surface tension and *T*/K is the temperature. The values of the constants $a/\text{mN}\cdot\text{m}^{-1}$ and $b/\text{mN}\cdot\text{m}^{-1}\cdot\text{K}^{-1}$ in eq 2 obtained from the linear regression analysis, together with the values of the standard deviations of approximation (sd/mN·m⁻¹) for the investigated (FLiNaK)_{eut} (1) + K₂NbF₇ (2) melts, are given in Table 3.

The viscosity of the (FLiNaK)_{eut} $(1) + K_2NbF_7$ (2) system was measured using the torsion pendulum method. Both the arrangement of the experimental device and the corresponding measuring procedure have been described in detail elsewhere.²⁸ The temperature dependence of the viscosity of the individual melts was described using the equation

$$\ln\{\eta\} = a + b/T \tag{3}$$

where $\{\eta\}$ is the numerical value of the viscosity expressed in mPa·s and *T*/K is temperature. The values of the constants *a*/mPa·s and *b*/mPa·s·K obtained by linear regression analysis, together with the values of the standard deviations of approximation (sd) and the measured temperature range for the investigated melts, are summarized in Table 4.

Results and Discussion

The schematic phase diagram of the $(FLiNaK)_{eut}$ (1) + K_2NbF_7 (2) system is shown in Figure 1. On the right part of the phase diagram, the temperatures of primary crystallization decrease with increasing content of $(FLiNaK)_{eut}$ (1) up to $x_1 = 0.60$. The average eutectic temperature in this range is $T_1 = 902$ K. In the concentration range $x_1 = 0.60$ to

Table 2. Composition, x_i , Regression Coefficients, a and b, and the Standard Deviations (sd) of the Density, ρ , of the Investigated (FLiNaK)_{eut} (1) + K₂NbF₇ (2) System

	а	$b \cdot 10^{4}$	sd•104	Т	
x_1	g•cm ⁻³	$g \cdot cm^{-3} K^{-1}$	g·cm ⁻³	К	ref
1.00	2.579	6.2	2.9	940 to 1170	26
0.80	3.014	7.0	6.7	940 to 1050 (c)	
0.80	2.962	6.3	19.7	970 to 1080 (h)	
0.80	3.012	6.9	7.1	980 to 1080 (c)	
0.50	3.256	8.3	4.5	960 to 1100 (c)	
0.50	3.166	7.4	21.6	960 to 1090 (h)	
0.50	3.246	8.2	2.3	960 to 1090 (c)	
0.25	3.436	9.1	10.2	1000 to 1150 (c)	
0.25	3.354	8.3	41.0	1000 to 1100 (h)	
0.25	3.379	8.7	7.0	1000 to 1110 (c)	
0.00	3.577	10.9	11.5	1023 to 1133	8

Table 3. Regression Coefficients *a* and *b* of the Temperature Dependence of the Surface Tension and the Standard Deviation of Approximation (sd) of Individual Melts of the $(FLiNaK)_{eut}$ (1) + K_2NbF_7 (2) System

	а	b	sd	Т	
x_1	$\overline{mN \cdot m^{-1}}$	$mN \cdot m^{-1} \cdot K^{-1}$	$mN \cdot m^{-1}$	K	ref
1.00	272.61	0.10	0.03	770 to 1040	26
0.80	176.55	0.05	0.53	960 to 1050	
0.50	221.45	0.11	0.60	950 to 1050	
0.25	206.75	0.11	0.34	980 to 1050	
0.00	164.14	0.08	0.59	1043 to 1150	15

Table 4. Regression Coefficients *a* and *b* and the Standard Deviations (sd) of the Viscosity of Investigated Melts of the $(FLiNaK)_{eut}$ (1) + K₂NbF₇(2) System

x_1	a/mPa∙s	b/mPa∙s•K	$sd \cdot 10^2/mPa \cdot s$	<i>T</i> /K	ref
1.00	-3.52	4327	2.4	770 to 1025	
0.80	-3.10	4149	0.6	950 to 1072	
0.50	-3.43	4810	0.3	710 to 830	
0.25	-4.23	5774	0.3	1055 to 1170	
0.00	-4.42	6091	0.3	1035 to 1150	22

Figure 1. Schematic phase diagram of the $(FLiNaK)_{eut}$ (1) + K_2NbF_7 (2) system.

Table 5. Calculated Data of the Density, ρ , and the Molar Volume, V, of the Molten (FLiNaK)_{eut} (1) + K₂NbF₇ (2) System

	ρ_{1023K}	$ ho_{1073\mathrm{K}}$	ρ_{1123K}	V _{1023 K}	V _{1073 K}	V _{1123 K}
x_1	g·cm ⁻³	$g \cdot cm^{-3}$	$g \cdot cm^{-3}$	$cm^3 \cdot mol^{-1}$	$cm^3 \cdot mol^{-1}$	$cm^3 \cdot mol^{-1}$
1.00	1.941	1.910	1.879	21.274	21.621	21.980
0.80	2.307	2.273	2.239	40.688	41.291	41.913
0.50	2.406	2.367	2.327	71.771	72.969	74.207
0.25	2.450	2.407	2.364	97.305	99.038	100.834
0.00	2.460	2.405	2.350	123.640	126.449	129.389

0.75, temperature of primary crystallization slowly increases and reaches an almost constant value. It indicates the presence of an immiscibility gap that is analogous to the phase diagram of the LiF + K₂NbF₇ system published by Kartsev,⁷ or there can be a crystallization area of one of the basic components or a crystallization area of a compound that can be formed in the system because the studied system is a cross-cut of the quaternary system. From $x_1 = 0.75$ to 1.00, the temperatures of primary crystallization descend with increasing content of (FLiNaK)_{eut} (1). The average temperature of the second thermal effect observed in the concentration range $x_1 = 0.70$ to 0.975 is $T_2 = 722$ K.

Three different temperatures (1023 K, 1073 K, and 1123 K) were selected for calculation of the isothermal density and molar volume. Calculated values based on experimental data are summarized in Table 5. The graphical representation of concentration dependences of the density and molar volume of the (FLiNaK)_{eut} (1) + K₂NbF₇ (2) system at three chosen temperatures are shown in Figures 2 and 3, respectively. In both cases, densities and molar volumes increase with increasing content of K₂NbF₇ (2) for all three selected temperatures. The concentration dependence of the molar volume of the investigated system for the temperature T = 1073 K can be described by the following equation

$$V^{1073}$$
/cm³·mol⁻¹ = (5.3 x_2^2 + 100.0 x_2 + 21.5)
sd/cm³·mol⁻¹ = 0.4 (4)

By differentiating eq 4 according to x_2 and introducing the results into the equation

$$\bar{V}_2 = V + x_1 \left(\frac{\partial V}{\partial x_2}\right) \tag{5}$$

the concentration dependence of the partial molar volume of K_2NbF_7 can be extracted in the form

$$\bar{V}_2^{1073}$$
/cm³·mol⁻¹ = (126.427 - 5.285 x_1^2) (6)

For $x_1 \rightarrow 1$, the partial molar volume of K_2NbF_7 (2) in an infinitely diluted solution adopts the value $\bar{V}_2/\text{cm}^3 \cdot \text{mol}^{-1} = (121.1 \pm 0.4)$ at 1073 K. This value is slightly lower than the molar volume of pure K_2NbF_7 (2), $V_2 = 126.4 \text{ cm}^3 \cdot \text{mol}^{-1}$, at 1073 K. It indicates volume contraction when K_2NbF_7 (2) is immersed in the (FLiNaK)_{eut} (1). The explanation of this observation was presented by Mlynáriková.²⁹

The concentration dependences of the surface tension of the molten $(FLiNaK)_{eut}$ (1) + K₂NbF₇ (2) system at the temperatures 1023 K, 1073 K, and 1123 K are shown in Figure 4. The

Figure 2. Density, ρ , of the FLINAK_{eut} (1) + K₂NbF₇ (2) system: O, 1023 K; ×, 1073 K; \Box , - 1123 K.

Figure 3. Molar volume, *V*, of the FLINAK_{eut} (1) + K₂NbF₇ (2) system: \Box , 1023 K; ×, 1073 K; \bigcirc , 1123 K.

Figure 4. Surface tension in the FLINAK_{eut} (1) + K₂NbF₇ (2) system: \Box , 1023 K; ×, 1073 K; •, 1123 K.

Figure 5. Viscosity $\ln{\{\eta\}}$ of the FLINAK_{eut} (1) + K₂NbF₇ (2) system: \Box , 1023 K; ×, 1073 K; •, 1123 K.

addition of K_2NbF_7 (2) to the (FLiNaK)_{eut} (1) caused a decrease in the surface tension of (FLiNaK)_{eut} (1). It means that K_2NbF_7 (2) is a surface active component in (FLiNaK)_{eut} (1).

The concentration dependences of the viscosity for the $(FLiNaK)_{eut}$ (1) + K_2NbF_7 (2) system at the temperatures 1023 K, 1073 K, and 1123 K are shown in Figure 5. The viscosity in the $(FLiNaK)_{eut}$ (1) + K_2NbF_7 (2) system increases continually from $(FLiNaK)_{eut}$ (1) to K_2NbF_7 (2).

Literature Cited

- Kamenskaja, L. A.; Konstantinov, V. I. Ternary System KCl-KF-K₂NbF₇. Zh. Neorg. Khim. 1971, 16, 2003–2005.
- (2) Chrenková, M.; Danielik, V.; Kubíková, B.; Daněk, V. Phase Diagram of the System LiF–NaF–K₂NbF₇. *Calphad* **2003**, *27*, 19–26.
- (3) Chrenková, M.; Cibulková, J.; Šimko, F.; Daněk, V. Density of the System LiF-NaF-K₂NbF₇. Z. Phys. Chem. 2005, 219, 247–255.
- (4) Kubíková, B.; Vasiliev, R.; Šimko, F.; Daněk, V. Surface Tension of the System LiF–NaF–K₂NbF₇. Z. Phys. Chem. 2003, 217, 751–759.

- (5) Cibulková, J.; Vasiljev, V.; Daněk, V.; Šimko, F. Viscosity of the system LiF–NaF–K₂NbF₇. J. Chem. Eng. Data 2003, 48, 938–941.
- (6) Boča, M.; Cibulková, J.; Kubíková, B.; Chrenková, M.; Daněk, V. Physicochemical Analysis and Structure of Melts of the System LiF– NaF–K₂NbF₇. J. Mol. Liq. 2005, 116, 29–36.
- (7) Kartsev, V. E.; Kovalev, F. V.; Korshunov, B. G. Melting in the System K₂Nb(Ta)F₇-LiF-NaF. *Izv. Vyssh. Uchebdn. Zaved.* **1975**, *3*, 150– 152.
- (8) Chrenková, M.; Daněk, V.; Silný, A. Density of the System LiF-KF-K₂NbF₇. *Chem. Pap.* **2000**, *54*, 272–276.
- (9) Nguyen, D. K.; Daněk, V. Surface Tension of the System LiF-KF-K₂NbF₇. Chem. Pap. 2000, 54, 197-202.
- (10) Nguyen, D. K.; Daněk, V. Viscosity of the System LiF-KF-K₂NbF₇. *Chem. Pap.* **2000**, *54*, 277–281.
- (11) Daněk, V.; Chrenková, M.; Nguyen, D. K.; Viet, V.; Silný, A.; Polyakov, E.; Kremenetsky, V. Structural and Thermodynamic Aspects of Niobium Deposition in the System LiF-KF-K₂NbF₇. J. Mol. Liq. 2000, 88, 277–298.
- (12) Kamenskaja, L. A.; Konstantinov, V. L.; Matveev, A. M. Ternary System of KF-NaF-K₂NbF₇. *Zh. Neorg. Khim.* **1972**, *17*, 2567– 2568.
- (13) Chrenková, M.; Danielik, V.; Kubíková, B.; Daněk, V. Phase Diagram of the System LiF–NaF–K₂NbF₇. *Calphad* **2003**, 27, 19–26.
- (14) Mlynáriková, J.; Boča, M.; Kipsová, L. The Role of the Alkaline Cations in the Density and Volume Properties of the Melts MF– K₂NbF₇ (MF = LiF–NaF, LiF–KF and NaF–KF). *J. Mol. Liq.* **2008**, *140*, 101–107.
- (15) Kubíková, B.; Mlynáriková, J.; Boča, M. Intermolecular Forces in NaF + KF + K₂NbF₇ System: Investigation of Surface Tension and Viscosity. J. Chem. Eng. Data 2008, 53, 812–815.
- (16) Konstantinov, V. I. *Electrochemical Obtaining of Tantalum, Niobium, and Their Alloys*; Metallugriya: Moscow, 1977.
- (17) Kubíková, B.; Mlynariková, J.; Daněk, V.; Gaune-Escard, M. Physicochemical Properties of Molten KF-K₂NbF₇-Nb₂O₅ System. *ECS Trans.* 2007, *3*, 169–178.
- (18) Kubíková, B.; Daněk, V.; Gaune-Escard, M. Physicochemical Properties of Melts used for Electrodeposition of Niobium. Z. Naturforsch. 2007, 62a, 540–544.

- (19) Kubíková, B.; Daněk, V.; Gaune-Escard, M. Phase Equilibria in the Molten System KF-K₂NbF₇-Nb₂O₅. Z. Phys. Chem. **2006**, 220, 765– 773.
- (20) Cibulková, J.; Chrenková, M.; Boča, M. Density of the System KF + K₂NbF₇ + Nb₂O₅. J. Chem. Eng. Data 2005, 50, 477–480.
- (21) Kubíková, B.; Daněk, V. Surface Tension of Melts of The System $KF + K_2NbF_7 + Nb_2O_5$. J. Chem. Eng. Data **2005**, 50, 1434–1437.
- (22) Cibulková, J.; Chrenková, M. Viscosity of the KF-K₂NbF₇-Nb₂O₅. Z. Phys. Chem. **2005**, 219, 481–488.
- (23) Chrenková, M.; Vasiljev, R.; Silný, A.; Daněk, V.; Kremenetsky, V.; Polyakov, E. Density and Viscosity of the (LiF–NaF–KF)_{eut}–KBF₄– B₂O₃. J. Mol. Liq. 2003, 102, 213–226.
- (24) Cibulková, J.; Chrenková, M.; Vasiljev, R.; Kremenetsky, V.; Boča, M. The Density and the Viscosity of the (LiF + NaF + KF)_{eut} (1) + K₂TaF₇ (2) + Ta₂O₅ (3) Melts. J. Chem. Eng. Data **2006**, 51, 984– 987.
- (25) Boča, M.; Ivanová, Z.; Kucharík, M.; Cibulková, J.; Vasiljev, R.; Chrenková, M. Density and Surface Tension of the System KF– K₂TaF₇–Ta₂O₅. Z. Phys. Chem. **2006**, 220, 1159–1180.
- (26) Janz, G. J.; Tomkins, R. P. T. *Physical Properties Data Compilations Relevant to Energy Storage*; U.S. Department of Commerce, National Bureau of Standards: Washington, D.C., 1981; Vol. 4.
- (27) Kucharík, M.; Vasiljev, R. Surface Tension of the System NaF–AlF₃– Al₂O₃ and Surface Adsorption of Al₂O₃. Z. Naturforsch. 2006, 61a, 389–398.
- (28) Silný, A.; Daněk, V. Computerised System of Viscosity Investigation. Automatizace 1993, 36, 289–293.
- (29) Mlynáriková, J.; Boča, M.; Kipsová, L. The Role of the Alkaline Cations in the Density and Volume Properties of the Melts MF– K₂NbF₇ (MF = LiF–NaF, LiF–KF and NaF–KF). *J. Mol. Liq.* **2008**, *140*, 101–107.

Received for review December 19, 2008. Accepted April 10, 2009. The present work was financially supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences under no. 2/6179/26 and 2/0058/09.

JE800979Q