Solubilities of $MoO_2X_2L_2$ (X = Cl, Br; L = OPPh₃, OPMePh₂) in Dichloromethane and H_2O_2 (30 % (By Weight)) + H_2O Solution

Shuang-Fei Cai, Li-Sheng Wang,* and Fu-Heng Hu

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Dioxomolybdenum(VI) complexes of the type MoO₂X₂L₂ (X, L = Cl, OPPh₃ (1); Br, OPPh₃ (2); Cl, OPMePh₂ (3); Br, OPMePh₂ (4)) were synthesized and characterized by the melting point, elemental analysis, infrared spectroscopy (IR), and nuclear magnetic resonance (¹H NMR and ³¹P NMR). Using a static analytical method, the solubilities of 1 to 4 were measured in dichloromethane in the temperature range from (283.16 to 310.41) K and in H₂O₂ (30 % (by weight)) + H₂O solution from (298.02 to 358.82) K, respectively. It was found that the solubilities of 1 to 4 in dichloromethane and H₂O₂ (30 % (by weight)) + H₂O solution decreased in the order 3 > 4 > 1 > 2. The solubility data were correlated with an empirical equation.

Introduction

Epoxidation of olefins is a very outstanding transformation in organic synthesis. The use of transition metal complexes as the epoxidation catalysts is of particular interest, since they dramatically enhance the reaction yield, selectivity, and rate of epoxidation.^{1–3} Dioxomolybdenum(VI) compounds containing phosphine oxides $MoO_2X_2L_2$ (X = Cl, Br; L = OPPh₃, OPMePh₂) (Figure 1) have been proven to be effective catalysts for the epoxidation of olefins using tertbutyl hydroperoxide (TBHP) or hydrogen peroxide as the source of oxygen.^{4–7}

To be an epoxidation catalyst, high purity is needed. According to the literature,⁵ MoO₂X₂L₂ (X = Cl, Br; L = OPPh₃, OPMePh₂) are prepared by the reaction of molybdic acid and the appropriate concentrated hydrohalic acid and phosphine oxide. The product is then recrystallized from dichloromethane. Knowledge of the solubilities of MoO₂X₂L₂ (X = Cl, Br; L = OPPh₃, OPMePh₂) in dichloromethane are important for their preparation and purification.

Furthermore, compared to TBHP, hydrogen peroxide is rather inexpensive, and it is a green oxidant⁸ for various organic compounds as H_2O is the only expected byproduct. Accordingly, the application of hydrogen peroxide is undoubtedly attractive. To accomplish epoxidation of olefins using dioxomolybdenum(VI) compounds as catalysts, reliable solubility data of dioxomolybdenum(VI) compounds in hydrogen peroxide are of primary importance.

In this study, dioxomolybdenum(VI) compounds $MoO_2X_2L_2$ (X = Cl, Br; L = OPPh₃, OPMePh₂) were synthesized and characterized. The solubilities of these dioxomolybdenum(VI) compounds in dichloromethane and H₂O₂ (30 % (by weight)) + H₂O solution were measured respectively. To the best of our knowledge, no such data have been reported in the literature.

Experimental Section

Materials. All the chemicals in the synthesis and measurement were analytical grade reagents. OPPh₃ and OPMePh₂ were purchased from Alfa Aesar and Aldrich, respectively. The other

* To whom correspondence should be addressed. Fax: +86-10-68911040. E-mail: lishengwang@btamail.net.cn.

Figure 1. The structure of $MoO_2X_2L_2$ (X = Cl, Br; L = OPPh₃, OPMePh₂).

chemicals were purchased from the Beijing Chemical Reagents Company. They were used without further purification.

Apparatus and Procedure. The melting points were measured by a SGW-X-4 micromelting point apparatus. The elemental analysis was performed on an Elementar Vario Micro Cube element analyzer. IR spectra (Fourier transform infrared (FT-IR)) were recorded on a VECTOR22 using KBr pellets. ¹H NMR spectra were recorded on a Varian Unity Inova-400 spectrometer. ³¹P NMR spectra were recorded on a JEOL JNM ECA-600 spectrometer operating at 242.95 MHz with CDCl₃ inside using the standard pulse sequence at room temperature.

A jacketed equilibrium cell was used for the solubility measurements with a working volume of 120 mL and a magnetic stirrer, as described by Wang et al.^{9,10} A circulating water bath was used with a thermostat (type 50 L, made by the Shanghai Laboratory Instrument Works Co., Ltd.), which is capable of maintaining the temperature within \pm 0.05 K. An analytic balance (type TG328B, Shanghai Balance Instrument Works Co.) with an uncertainty of \pm 0.1 mg was used during the mass measurements.

Synthesis of Dioxomolybdenum Complexes. $MoO_2X_2L_2$ (X, L = Cl, OPPh₃ (1); Br, OPPh₃ (2); Cl, OPMePh₂ (3); Br, OPMePh₂ (4)) were prepared according to the literature.⁵ Molybdic acid was dissolved in the appropriate concentrated hydrohalic acid, and a solution of the phosphine oxide dissolved in the minimum amount of ethanol was added. The mixture was stirred at room temperature (rt) for 30 min and the resulting precipitate was filtered, dried under vacuum at rt and washed with hexanes. The product was then recrystallized from dichloromethane. Yield: 61 % 1, 62 % 2, 66 % 3, and 65 % 4. mp: (261 to 263) °C for 1, (280 to 282) °C for 2, (181 to 182) °C

Table 1. Mole Fraction Solubilities (x) of Dioxomolybdenum(VI) Complexes in Dichloromethane and $H_2O_2~(30~\%~(By~Weight)) + H_2O~Solution$

	dichloromethane		H_2O_2 (30 % (by weight)) + H_2O solution	
complexes	<i>T</i> /K	x	T/K	x
1	283.16	0.00689	298.16	0.00007
	286.05	0.00754	303.05	0.00010
	289.23	0.00861	308.63	0.00015
	292.45	0.00999	313.45	0.00019
	295.51	0.01129	318.51	0.00026
	298.55	0.01246	323.55	0.00034
	301.71	0.01446	328.70	0.00043
	304.64	0.01548	333.64	0.00056
	307.42	0.01722	338.71	0.00070
	310.39	0.01967	343.56	0.00089
			348.79	0.00110
			353.93	0.00144
			358.82	0.00174
2	283.35	0.00624	298.25	0.00006
_	286.56	0.00713	303.32	0.00008
	289.43	0.00782	308.24	0.00010
	292.61	0.00885	313.49	0.00014
	295.48	0.00972	318 50	0.00017
	298.32	0.01105	323 37	0.00023
	301.30	0.01256	328.51	0.00029
	304.31	0.01230	333.63	0.00025
	307.47	0.01452	338 57	0.00030
	310.41	0.01782	3/3.80	0.00047
	510.41	0.01702	348.68	0.00037
			353 73	0.00074
			358.41	0.00091
3	283 21	0.00068	208 20	0.00103
5	286.05	0.00908	298.20	0.00014
	280.05	0.01155	208 52	0.00019
	209.17	0.01207	212.61	0.00028
	292.12	0.01524	218.27	0.00050
	293.33	0.01554	222.20	0.00050
	290.29	0.01/12	222.39	0.00000
	204.60	0.01095	326.30	0.00091
	207.46	0.02102	220 52	0.00110
	210.20	0.02362	242.70	0.00140
	510.28	0.02010	249.20	0.00191
			340.00	0.00244
			250 74	0.00551
4	202 17	0.00067	208.02	0.00412
4	205.17	0.00807	298.02	0.00012
	280.24	0.00928	303.19	0.00015
	289.30	0.01041	308.22	0.00022
	292.54	0.01257	313.30	0.00031
	295.49	0.01347	318.21	0.00042
	298.21	0.01543	323.27	0.00054
	301.16	0.01638	328.18	0.000/1
	304.38	0.01823	333.45	0.00096
	307.44	0.02051	338.46	0.00125
	310.38	0.02334	343.22	0.00163
			348.50	0.00204
			353.67	0.00268
			358.79	0.00330

for **3**, and (205 to 207) °C for **4**. Elemental analysis (%, calculated): C, 57.18 (57.24), H, 4.05 (4.00) for **1**; C, 51.32 (51.18), H, 3.61 (3.55) for **2**; C, 49.29 (49.45), H, 4.06 (4.12) for **3**; C, 42.98 (43.09), H, 3.47 (3.59) for **4**. IR 948 (s) cm⁻¹ and 905 (s) cm⁻¹ for **1**, 944 (s) cm⁻¹ and 900 (s) cm⁻¹ for **2**, 947 cm⁻¹ and 903 (s) cm⁻¹ for **3**, 941 (s) cm⁻¹ and 895 (s) cm⁻¹ for **4**. ¹H NMR (CDCl₃) ppm: $\delta = 7.26$ to 7.77 (m, 30 H, Ph) for **1**; $\delta = 7.27$ to 7.78 (m, 30 H, Ph) for **2**; $\delta = 2.21$ (δ , J = 14.1 Hz, 6 H, CH₃) and 7.26 to 7.78 (m, 20H, Ph) for **3**; $\delta = 2.27$ (δ , J = 14.1 Hz, 6 H, CH₃), 7.27 to 7.83 (m, 20H, Ph) for **4**; $\delta = 7.44$ to 7.69 for OPPh₃, $\delta = 2.02$ (δ , J = 14.1 Hz, $\delta = 41.8$ for **2**, $\delta = 44.7$ for **3**, $\delta = 45.5$ for **4**, $\delta = 29.8$ for OPPh₃, and $\delta = 30.6$ for the OPMePh₂ ligand.

Figure 2. Mole fraction solubilities of dioxomolybdenum(VI) complexes in dichloromethane: \blacksquare , **1**; \bullet , **2**; \blacktriangle , **3**; \blacktriangledown , **4**; –, solubility curve calculated from eq 3.

Figure 3. Mole fraction solubilities of dioxomolybdenum(VI) complexes in H₂O₂ (30 % (by weight)) + H₂O solution: \checkmark , 1; \bigcirc , 2; \blacktriangle , 3; \blacksquare , 4; -, solubility curve calculated from eq 3.

Table 2. Parameters of Equation 3 and Root-Mean-Square Deviations of the Measured Solubility Calculated from Equation 4 for Dichloromethane and H_2O_2 (30 % (by weight)) + H_2O Solution

			-	
solvent	complexes	Α	В	RSD
dichloromethane	1	6.8007	-3338.2	0.015
	2	6.8325	-3378.0	0.018
	3	6.2496	-3076.7	0.015
	4	6.5920	-3219.5	0.026
$H_2O_2\ (30\ \%\ (by\ weight))$ +	1	9.2746	-5596.8	0.024
H ₂ O solution				
	2	7.3211	-5076.7	0.026
	3	11.2344	-6002.1	0.027
	4	10.9623	-5975.0	0.021

Solubility Measurement. The solubilities were measured by a gravimetric method.^{9,10} For each measurement, an excess mass of dioxomolybdenum(VI) complexes was added to a known mass of dichloromethane and H_2O_2 (30 % (by weight)) + H_2O solution. Then the equilibrium cell was heated to a constant temperature with continuous stirring. After at least 2 h (the temperature of the water bath approached a constant value, then the actual value of temperature was recorded), the stirring was stopped and the solution was kept still until it was clear. A preheated on-off injector with a cotton filter withdrew 2 mL of the clear upper portion of the solution to another previously weighed measuring vial (m_0) . The vial was quickly and tightly closed and weighed (m_1) to determine the mass of the sample $(m_1 - m_0)$. Then the vial was uncovered with a piece of filter paper to prevent dust contamination. After the solvent in the vial had completely evaporated, the vial was dried and reweighed (m_2) to determine the mass of the constant residue solid $(m_2 - m_0)$. Thus, the solid concentration of the sample solution in mole fraction, *x*, could be determined from eq 1¹¹

$$x = \frac{(m_2 - m_0)/M_1}{(m_2 - m_0)/M_1 + (m_1 - m_2)/M_2}$$
(1)

Equation 1 is for pure solvent, where M_1 is the molar mass of dioxomolybdenum(VI) complex and M_2 is the molar mass of dichloromethane.

x =

$$\frac{(m_2 - m_0)/M_1}{(m_2 - m_0)/M_1 + (m_1 - m_2)w_2/M_2 + (m_1 - m_2)(1 - w_2)/M_3}$$
(2)

Equation 2 is for a mixed solvent, where M_1 , M_2 , and M_3 are the molar mass of the dioxomolybdenum(VI) complex, H_2O_2 and H_2O , respectively, and w_2 is the mass of fraction of H_2O_2 in the water.

Different dissolution times were tested to determine a suitable equilibrium time. It was found that 2 h was enough for dioxomolybdenum(VI) complexes in dichloromethane or H_2O_2 (30 % (by weight)) + H_2O solution to reach equilibrium. The estimated relative uncertainty of the solubility values based on error analysis and repeated observations was within 0.02.

Results and Discussion

The complexes **1** to **4** as catalysts were chosen for epoxidation of olefins because they are easy to prepare and unreactive with air or water. Furthermore, they provide a good basis for understanding how changes in the electronic and steric environment of the complexes resulting from altering the halides and phosphine oxide ligands, affect the catalytic activity.

The IR spectra of **1** to **4** show two strong bands at about (900 and 950) cm⁻¹, arising from symmetric and asymmetric MoO₂ stretching vibrations, respectively.¹²

¹H NMR spectra of the OPPh₃ and OPMePh₂ ligand displayed a multiplet in the range (7.4 to 7.7) ppm assigned to the hydrogen atoms of the phenyl rings and 2.02 ppm assigned to the methyl hydrogens of OPMePh₂. The ¹H NMR spectra of **1** to **4** were observed to shift upfield only slightly to (7.2 to 7.7) ppm. This increased shielding is probably due to the removal of the H-bonded interactions as the free ligand may also exist in solution as a dimer. In contrast, the resonance for the OPMePh₂ ligand in **3** and **4** shifted downfield only slightly to (2.21 and 2.27) ppm, respectively.

³¹P NMR spectroscopy is very useful in assessing the composition and purity of compounds bearing phosphorus atoms.¹³ The ³¹P NMR shift of uncoordinated phosphine oxide OPPh₃ and OPMePh₂ are (29.8 and 30.6) ppm, respectively. Because of coordination via the O atom (bonded to the P atom), **1** to **4** each reveals a single resonance ca. 10 ppm to high frequency of the corresponding uncoordinated phosphine oxide ligand. The MoO₂Cl₂L₂ species **1** and **3** shifts downfield to 40.5 ppm for L = OPPh₃ and 44.7 ppm for L = OPMePh₂, and the corresponding resonance for the bromo analogues **2** and **4** are observed at 41.8 ppm for L = OPPh₃ and 45.5 ppm for L = OPMePh₂, respectively. The single resonance suggests that the P atoms are magnetically equivalent in these compounds at least

in solution. Furthermore, the ³¹P NMR shift of the Mo-chloro complexes 1 and 3 are consistently at a higher frequency than the bromo analogues 2 and 4 by ca. 1 ppm. This very small difference indicates that the electronic environment at Mo(VI) is little influenced by X and L (or L-L), but is probably dominated by the Mo-dioxo unit as expected.

The mole fraction solubility data of dioxomolybdenum(VI) complexes, *x*, in dichloromethane and H₂O₂ (30 % (by weight)) + H₂O solution are summarized in Table 1 and plotted as ln *x* versus temperature in Figures 2 and 3. From these figures, it can be seen that a trend of increasing solubility with temperature is observed, and the solubilities of these dioxomolybdenum(VI) complexes decrease in the order 3 > 4 > 1 > 2, which is in accordance with the size of the molar mass of these complexes, indicating that dioxomolybdenum(VI) complexes containing a smaller ligand and volume of halogen atom give higher solubilities. The solubility of complex **3** in dichloromethane at 310.28 K is 19.9 (g/100 g of solvent). In a H₂O₂ (30 % (by weight)) + H₂O solution, the solubility of complex **3** at 358.74 K is 3.1 (g/100 g of solvent).

The solubilities were correlated as a function of temperature by

$$\ln x = A + B/(T/K) \tag{3}$$

Parameters A and B for each solvent are listed in Table 2. The relative standard deviations (RSD), defined by eq 4, are also presented in Table 2.

$$RSD = \left[\frac{1}{N}\sum_{1}^{n} \left(\frac{x_{i} - x_{i}^{\text{calcd}}}{x_{i}}\right)^{2}\right]^{1/2}$$
(4)

where calcd stands for the calculated values and N is the number of experimental points. The smoothed data calculated from eq 3 are compared with the data listed in Table 1, and the results are shown in Figures 2 and 3.

The results show that eq 3 can be used to correlate the solubility data. The relative standard deviations of measured solubilities from the smoothed data in dichloromethane are 0.015 for 1, 0.018 for 2, 0.015 for 3, and 0.026 for 4, and those in H_2O_2 (30 % (by weight)) + H_2O solution are 0.024 for 1, 0.026 for 2, 0.027 for 3, and 0.021 for 4.

The solubilities of these dioxomolybdenum(VI) complexes in H_2O_2 decrease in the order 3 > 4 > 1 > 2, which may result in the same order to their catalytic activity in olefin epoxidation with H_2O_2 as oxidant.

Literature Cited

- (1) Murphy, A.; Dubois, D.; Stack, T. D. P. Efficient epoxidation of electron-deficient olefins with a cationic manganese complex. *J. Am. Chem. Soc.* **2003**, *125*, 5250–5251.
- (2) Xi, Z.-W.; Ning, Z.; Sun, Y.; Li, K.-L. Reaction-controlled phasetransfer catalysis for propylene epoxidation to propylene oxide. *Science* 2001, 292, 1139–1141.
- (3) Mimoun, H.; Seree de Rpcj, I.; Sajus, L. Epoxidation des olefines par les complexes peroxydiques covalents du molybdene-VI. *Tetrahedron* 1970, 26, 37–50.
- (4) Jimtaisong, A.; Luck, R. L. Synthesis and catalytic epoxidation activity with TBHP and H₂O₂ of dioxo-, oxoperoxo-, and oxodiperoxo molybdenum(VI) and tungsten(VI) compounds containing monodentate or bidentate phosphine oxide ligands: Crystal structures of WCl₂(O)₂(OPMePh₂)₂, WCl₂(O)(O₂)(OPMePh₂)₂, MoCl₂(O)₂dppmO₂· C₄H₁₀O, WCl₂(O)₂dppmO₂, Mo(O)(O₂)₂dppmO₂, and W(O)(O₂)₂dppmO₂. *Inorg. Chem.* **2006**, *45*, 10391–10402.
- (5) Wang, G.; Chen, G.; Luck, R. L.; Wang, Z.; Mu, Z.; Evans, D. G.; Duan, X. New molybdenum(VI) catalysts for the epoxidation cyclohexene: Synthesis, reactivity and crystal structures. *Inorg. Chim. Acta* 2004, 357, 3223–3229.
- (6) Wang, G.; Feng, L.; Luck, R. L.; Evans, D. G.; Wang, Z.; Duan, X. Sol-gel synthesis, characterization and catalytic property of silicas

modified with oxomolybdenum complexes. J. Mol. Catal. A: Chem. 2005, 241, 8–14.

- (7) Fronczek, F. R.; Luck, R. L.; Wang, G. Packing and compositional disorder with MoO₂Cl₂(OPMePh₂), MoOCl₃(OPMePh₂)₂ and MoCl₄(OPMePh₂)₂ as assessed by single crystal X-ray diffraction. *Inorg. Chim. Acta* **2003**, *342*, 247–254.
- (8) Noyori, R.; Aoki, M.; Sato, K. Green oxidation with aqueous hydrogen peroxide. *Chem. Commun.* 2003, 16, 1977–1986.
- (9) Wang, Z.-W.; Sun, Q.-X.; Wu, J.-S.; Wang, L.-S. Solubilities of 2-carboxyethyl-phenylphosphinic acid and 4-carboxyphenylphenylphinic acid in water. J. Chem. Eng. Data 2003, 48, 1073–1075.
- (10) Wang, L.-S.; Liu, Y.; Wang, R. Solubilities of some phosphaspirocyclic compounds in selected solvents. J. Chem. Eng. Data 2006, 51, 1686– 1689.
- (11) Zhu, M. Solubility and density of disodium salt hemiheptahydrate of ceftriaxone in water + ethanol mixtures. J. Chem. Eng. Data 2001, 46, 175–176.
- (12) Kühn, F. E.; Herdtweck, E.; Haider, J. J.; Herrmann, W. A.; Gonçalves, I. S.; Lopes, A. D.; Romão, C. C. Bis-acetonitrile(dibromo)dioxomolybdenum(VI) and derivatives: Synthesis, reactivity, structures and catalytic applications. J. Organomet. Chem. 1999, 583, 3–10.
- (13) Garrou, P. E. R-ring contributions to 31P NMR parameters of transition metal -phosphorus chelate complexes. *Chem. Rev.* 1981, *81*, 229– 266.

Received for review December 22, 2008. Accepted April 16, 2009. JE800988W