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Excess molar enthalpies for the binary and ternary mixtures of cyclohexane, tetrahydropyran, and 1,4-
dioxane have been measured using a Calvet microcalorimeter at 308.15 K and atmospheric pressure. The
experimental binary results are correlated using the Redlich-Kister equation. The excess molar enthalpies
for the ternary system are correlated using the Cibulka equation. The capability of the artificial neural network
algorithm to model these data is finally studied.

Introduction

Excess thermodynamic properties of liquid mixtures are of
great interest to the convenient design of industrial processes
and also to provide useful information on molecular interactions
required for optimizing thermodynamic model development.1

Compared to large numbers of data reported in the literature
for binary systems, the experimental data for ternary mixtures
remain quite scarce. Consequently, we are focusing our current
effort on ternary systems. In this article, we report the excess
molar enthalpies for the binary and ternary mixtures of cyclo-
hexane, tetrahydropyran, and 1,4-dioxane at 308.15 K and
atmospheric pressure. To our knowledge, there was no previous
literature information related to the excess molar enthalpy on
this ternary system. All reported experimental data have been
measured using a Calvet microcalorimeter.1 The Redlich-Kister
equation2 is used to correlate the experimental binary data. The
ternary experimental data are correlated using the Cibulka
equation.3 The capability of the artificial neural network (ANN)
algorithm as an alternative method to model these (binary and
ternary) data is finally investigated.

Experimental Section

Materials. Purities and suppliers of materials are provided
in Table 1.

Experimental Apparatus and Procedure. The experimental
enthalpy data were measured at atmospheric pressure by means
of a flow calorimeter [Calvet microcalorimeter, type C80 with
reversal mixing vessel (made of stainless steel, vessel volume
) 12.5 cm3), Setaram, Lyon, France].1 The temperature was
maintained constant at (308.15 ( 0.02) K. Check measurements
on (cyclohexane + benzene) were in good agreement with the
data reported by Marsh,4 within 3 % over the entire range of
concentrations. The estimated uncertainties, σ, in mole fractions,

xi, and excess molar enthalpies, hE, are σ(xi) ) 0.001 and σ(hE)
) 5 J ·mol-1, respectively.

To measure experimental molar enthalpy of mixing, hm,φ
E ,

1,4-dioxane was added to the binary mixtures composed of
cyclohexane and tetrahydropyran, and the calorimetric mea-
surements were then performed. Using the measured calo-
rimetric values for hm,φ

E and for binary systems, the ternary
excess molar enthalpy, hm,123

E , can be estimated using the
following equation1

where x3 represents the mole fraction of 1,4-dioxane in the
ternary mixture and hm,12

E is the excess molar enthalpy of the
binary mixture of cyclohexane + tetrahydropyran at constant
ratio of mole fractions of cyclohexane and tetrahydropyran
in their binary mixtures.1

Results and Discussion

The experimental excess molar enthalpies for the binary and
ternary mixtures of cyclohexane, tetrahydropyran, and 1,4-
dioxane are reported in Tables 2 and 3, respectively. As can be
observed, the excess molar enthalpies for the binary and ternary
systems are positive over the whole range of concentrations.
Table 3 also reports experimental molar enthalpy of mixing,
hm,φ

E , for the pseudobinary mixtures of the above-mentioned
systems.

Correlation of Data. The experimental binary data were
correlated using the Redlich-Kister equation2
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Table 1. Purities and Suppliers of Materials

chemical CAS number supplier purity (GC)

cyclohexane 110-82-7 Merck > 0.99
tetrahydropyran 142-68-7 Fluka > 0.99
1,4-dioxane 123-91-1 Fluka > 0.99

hm,123
E ) hm,Φ

E + (1 - x3)hm,12
E (1)

hm,12
E /J · mol-1 ) x(1 - x) ∑

i)0

n

Ai(2x - 1)i (2)
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The coefficients Ai were obtained by an unweighted least-squares
regression method. Table 4 presents the Aicoefficients obtained
from eq 2 for three binary systems. In the above equation, n
represents number of parameters and x stands for the first
component in thebinarymixture.Theresultsof theRedlich-Kister
equation2 are reported in Table 2.

Several correlations for ternary excess molar enthalpies are
available in the literature. In the present work, the experimental
ternary data were correlated using the Cibulka equation3

The term hm,bin
E is known as the binary contribution to the excess

molar enthalpies, which is given by3

where hm,ij
E is the excess enthalpy calculated from the correlated

data of the i-j pair (eq 2) using the ternary mole fractions xi

and xj. This simplest method assumes that there are no ternary
effects; i.e., the ternary excess enthalpy is just a sum of the
binary heats of mixing.

The parameters Bi of eq 3 determined by the unweighted least-
squares regression method are listed in Table 5. The results of
the Cibulka equation3 are reported in Table 6.

Artificial Neural Network Algorithm. Artificial neural net-
work algorithms are known to be effective to model complex
systems. These models have large numbers of computational
units connected in a massively parallel structure and do not
require an explicit formulation of the mathematical or physical
relationships of the handled problem.5 The ANNs are first
subjected to a set of training data consisting of input data
together with corresponding outputs. After a sufficient number
of training iterations, the neural network learns the patterns in
the data fed to it and creates an internal model, which it uses to
make predictions for new inputs.5

Feed-forward neural networks are the most frequently used
and are designed with one input layer, one output layer, and

Table 2. Experimental and Calculated/Predicted Excess Molar
Enthalpies, hE/J ·mol-1, for the Binary Mixtures at 308.15 K and
Atmospheric Pressure (All the Experimental Data for ANN Were
Used for Validation)a,b,c

x/mole
fraction

exptl
hE/J ·mol-1

calcd hE/J ·mol-1

using
Redlich-Kister

equation2

AD % using
Redlich-Kister

equation2

predicted
hE/J ·mol-1

using ANN

AD %
using
ANN

x cyclohexane + (1 - x) 1,4-dioxane
0.101 570 568 0.4 568 0.4
0.204 1050 1052 0.2 1078 2.7
0.288 1333 1335 0.2 1299 2.6
0.408 1565 1561 0.3 1432 8.5
0.506 1620 1620 0.0 1459 9.9
0.606 1574 1579 0.3 1433 9.0
0.705 1435 1432 0.2 1323 7.8
0.803 1150 1149 0.1 1035 10.0
0.900 695 696 0.1 505 27.3

x cyclohexane + (1 - x) tetrahydropyran
0.101 157 156 0.6 169 7.6
0.200 294 295 0.3 294 0.0
0.300 412 411 0.2 406 1.5
0.400 490 490 0.0 479 2.2
0.499 526 528 0.4 509 3.2
0.606 519 517 0.4 479 7.7
0.699 461 462 0.2 405 12.1
0.800 355 354 0.3 285 19.7
0.900 198 199 0.5 150 24.2

x tetrahydropyran + (1 - x) 1,4-dioxane
0.104 149 150 0.7 160 7.4
0.201 249 249 0.0 264 6.0
0.299 315 315 0.0 325 3.2
0.398 352 352 0.0 348 1.1
0.497 361 362 0.3 342 5.3
0.612 342 342 0.0 306 10.5
0.716 296 295 0.3 252 14.9
0.800 235 235 0.0 198 15.7
0.900 135 135 0.0 125 7.4

a AD ) |(experimental value - predicted value)/experimental value|.
AAD ) (1/M)∑i)1

M |(experimental value - predicted value)/experimental
value|, where M represents the number of experimental data. b Using the
ANN algorithm, the ADD for the cyclohexane + 1,4-dioxane mixture,
8.7; ADD for the cyclohexane + tetrahydropyran mixture, 8.7; ADD for
the tetrahydropyran + 1,4-dioxane mixture, 7.9. None of these data were
used for developing the ANN. The number of adjustable parameters in
the ANN equals 13. c Using the Redlich-Kister equation,2 the ADD for
the cyclohexane + 1,4-dioxane mixture, 0.2; ADD for the cyclohexane
+ tetrahydropyran mixture, 0.3; ADD for the tetrahydropyran +
1,4-dioxane mixture, 0.1. All these data were used for developing the
Redlich-Kister equation.2 The number of adjustable parameters in the
Redlich-Kister equation2 equals 18.

hm,123
E /J · mol-1 ) hm,bin

E /J · mol-1 +
x1x2(1 - x1 - x2)(B0 + B1x1 + B2x2) (3)

hm,bin
E ) hm,12

E + hm,13
E + hm,23

E (4)

Table 3. Measured Molar Enthalpies of Mixing, hm,O
E/J ·mol-1, and

Excess Molar Enthalpies, hm,123
E /J ·mol-1, for the Ternary Mixture of

Cyclohexane (1) + Tetrahydropyran (2) + 1,4-Dioxane (3) at 308.15
K and Atmospheric Pressure

hm,φ
E hm,123

E

x1 x2 x3 J ·mol-1 J ·mol-1

0.183 0.728 0.089 178 448
0.167 0.664 0.169 315 561
0.140 0.559 0.300 440 647
0.120 0.479 0.401 506 683
0.100 0.398 0.502 519 666
0.068 0.271 0.661 486 586
0.060 0.240 0.700 455 544
0.040 0.160 0.799 350 409
0.020 0.081 0.898 191 221
0.449 0.449 0.102 315 789
0.400 0.400 0.200 535 957
0.350 0.350 0.300 684 1054
0.300 0.300 0.399 791 1108
0.250 0.250 0.500 842 1106
0.201 0.201 0.599 818 1030
0.150 0.150 0.700 708 866
0.100 0.100 0.801 558 663
0.050 0.050 0.900 312 365
0.719 0.180 0.101 497 815
0.638 0.160 0.202 817 1100
0.560 0.141 0.299 1025 1273
0.480 0.121 0.399 1187 1400
0.398 0.100 0.503 1265 1441
0.319 0.080 0.600 1220 1361
0.240 0.060 0.700 1095 1201
0.155 0.039 0.807 805 873
0.080 0.020 0.900 477 512

Table 4. Values of Coefficients of Ai in Equation 2 for the Binary
Mixtures of Cyclohexane (1), Tetrahydropyran (2), and 1,4-Dioxane (3)

coefficient 1, 2 1, 3 2, 3

A0 2112.207 6477.221 1447.017
A1 303.5701 300.2792 -67.3926
A2 -230.4609 1437.965 171.029
A3 0 958.2926 0
A4 0 -1002.569 0

Table 5. Values of Coefficients of Bi in Equation 3 for the Ternary
Mixture of Cyclohexane (1) + Tetrahydropyran (2) + 1,4-Dioxane (3)

coefficient value

B0 -375.737343
B1 -3027.01222
B2 887.929538
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hidden layers.5 The number of neurons in the input and output
layers equals the number of inputs and outputs, respectively.5

The accuracy of model representation depends on the architec-
ture and parameters of the neural network.5

To develop the ANN, the data sets are generally subdivided
into three groups corresponding to the following three steps:
training, testing, and validation.5 After partitioning the data sets,
the training set is used to adjust the parameters. All synaptic
weights and biases are first initialized randomly. The network
is then trained. Its synaptic weights are adjusted by optimization
algorithm, until it correctly emulates the input/output mapping,
by minimizing the average root-mean-square error.5 The testing
set is used during the adjustment of the network’s synaptic
weights to evaluate the algorithm’s performance on the data
not used for adjustment and stop the adjusting if the error on
the testing set increases. Finally, the validation set measures
the generalization ability of the model after the fitting process.5

Table 7 reports the summary of the feed-forward ANN used
in this work along with number of neurons, hidden layers,
parameters, data, and type of activation function. Tables 2 and
6 compare the measured and calculated/predicted values of

excess molar enthalpies for the mixture of cyclohexane, tet-
rahydropyran, and 1,4-dioxane. It should be mentioned that to
develop this algorithm the ternary data reported in Table 3 were
used for training (and testing). The binary data reported in Table
2 were then used for validation. Considering the ANN developed
in this work requires 13 adjustable parameters while the number
of these parameters in the Cibulka equation3 equals 18, the ANN
can be regarded as a useful tool for modeling these systems
with encouraging results (for the ternary mixture, the ADD value
obtained using the Cibulka equation3 is equal to 1.4, while this
value using the ANN is 2.9). As mentioned earlier, the binary
data were used for validation of the ANN. In other words, no
experimental data reported in Table 2 were used to adjust
parameters of ANN, while these data were used to adjust
parameters of the Redlich-Kister equation.2 Again, the ANN
provides encouraging results for the binary systems considering
the ANN requires 13 adjustable parameters while the number
of these parameters in the Redlich-Kister equation2 equals 15.
In the absence of binary data, experimental data on ternary
systems can be used to develop an ANN, while both binary
and ternary data are required for the Cibulka equation.3 This
can be regarded as one of the advantages of ANN over the
Cibulka equation.3 Of course, by using binary data for adjusting
parameters of the ANN, in addition to ternary data, more
accurate ANN results for binary systems can be expected. We
are fully aware that the ANN procedure was applied to a low
number of data, and this procedure would largely gain in
accuracy by developing a slightly broader database constituted
of well-distributed data. This is a remark to take into account
for further works.

Conclusions

We reported experimental excess molar enthalpy data for the
binary and ternary mixtures of cyclohexane, tetrahydropyran,

Table 6. Comparison between Measured and Calculated Values of Excess Molar Enthalpies, hm,123
E /J ·mol-1, for the Ternary Mixture of

Cyclohexane (1) + Tetrahydropyran (2) + 1,4-Dioxane (3) at 308.15 K and Atmospheric Pressure (All the Experimental Data Were Used for
Training and Testing Steps in ANN)a,b

measured hm,123
E calcd hm,123

E AD % using calcd hm,123
E AD % using

x1 x2 J ·mol-1 J ·mol-1 using Cibulka equation3 Cibulka equation3 J ·mol-1 using ANN ANN

0.1826 0.728 448 449 0.2 416 7.1
0.1666 0.6643 561 551 1.8 511 8.9
0.1403 0.5594 647 660 2.0 620 4.2
0.1201 0.4789 683 695 1.8 659 3.5
0.0998 0.3978 666 690 3.6 658 1.2
0.0679 0.271 586 593 1.2 574 2.0
0.0601 0.2397 544 552 1.5 537 1.3
0.0402 0.1604 409 415 1.5 406 0.7
0.449 0.4493 790 774 2.0 786 0.5
0.3998 0.4 958 942 1.7 977 2.0
0.35 0.3502 1054 1051 0.3 1082 2.7
0.3002 0.3004 1109 1103 0.5 1120 1.0
0.2499 0.2501 1107 1097 0.9 1101 0.5
0.2005 0.2007 1030 1026 0.4 1026 0.4
0.1499 0.15 867 880 1.5 881 1.6
0.0997 0.0998 664 653 1.7 650 2.1
0.0502 0.0503 365 356 2.5 335 8.2
0.7186 0.1804 816 811 0.6 754 7.6
0.6382 0.1602 1100 1119 1.7 1109 0.8
0.5602 0.1407 1274 1306 2.5 1281 0.5
0.4804 0.1206 1400 1407 0.5 1349 3.6
0.3977 0.0998 1442 1423 1.3 1352 6.2
0.3194 0.0802 1362 1352 0.7 1298 4.7
0.24 0.0603 1202 1179 1.9 1165 3.1
0.1546 0.0388 874 863 1.3 875 0.1

a ADD using Cibulka equation:3 1.4. All these data were used for developing the Cibulka equation.3 The number of adjustable parameters in the
Cibulka equation3 equals 21. b ADD using ANN: 2.9. All these data were used for developing the ANN. The number of adjustable parameters in the
ANN equals 13.

Table 7. Number of Neurons, Hidden Layers, Parameters, Data,
and Type of Activation Function Used in This Algorithma

layer number of neurons

1 2
2 3
3 1

a Number of hidden layers ) 1. Number of parameters ) 13. Number
of data used for training (and testing) ) 28. Number of data used for
validation ) 29. Type of activation function: Exponential sigmoid. Input
neurons: mole fractions of cyclohexane (1) and tetrahydropyran (2).
Output neuron: hm,123

E /(RT). In developing the ANN, three data
corresponding to hm,123

E ) 0 for pure compounds were also considered.
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and 1,4-dioxane at 308.15 K and atmospheric pressure, which
weremeasuredusingaCalvetmicrocalorimeter.1TheRedlich-Kister
equation2 was used to correlate the binary data, while the
Cibulka equation3 was employed to correlate the ternary data.
A feed-forward artificial neural network algorithm5 was then
used to model satisfactorily the above-mentioned experimental
data.
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