Position Group Contribution Method for the Prediction of the Critical Compressibility Factor of Organic Compounds

Qiang Wang, ${ }^{*, \dagger, \dagger}$ Qingzhu Jia, ${ }^{\dagger,{ }^{\dagger}}$ and Peisheng Ma ${ }^{\ddagger}$
School of Material Science and Chemical Engineering, Tianjin University of Science and Technology, 13 Street TEDA, Tianjin 300457, and School of Chemical Engineering and Technology, Tianjin Universty, Tianjin 300072, People's Republic of China

Abstract

On the basis of the group contribution and position distribution function, a simple and accurate model to predict the critical compressibility factor, Z_{c}, of organic compounds is presented in this study. The proposed model is developed to estimate Z_{c} of a variety of pure organic compounds involving a carbon chain from C_{2} to C_{18}. Comparison results between experimental and calculated data indicate that our model provides very satisfactory results. The overall average absolute errors for Z_{c} predictions of 167 organic compounds is 0.007 with 2.45% mean absolute relative derivation, which is compared to 0.018 and 6.90% with the method of Joback and Reid, 0.016 and 5.94% with the method of Constantinou and Gani, 0.012 and 4.73 $\%$ with the method of Wang et al., and 0.010 and 3.83% with the method of Lee-Kesler. Also good prediction of the proposed method shown in our previous works and this work suggests that it is possible to use a similar framework to predict the critical properties, not only $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c}, but also Z_{c}, of organic compounds containing various functional groups, which further demonstrates the universality of our proposed method.

Introduction

Critical properties are especially essential parameters in many calculations involving phase equilibria and thermal properties, among which the critical compressibility factor, Z_{c}, of organic compounds is important, in particular, to reservoir and production engineers. Also Z_{c} is a critical parameter in some equations of state (EOS), such as the ER (Esmaeilzadeh-Roshanfekr) equation of state and the mER equation of state with special attention to application for reservoir fluids, and where the parameter Z_{c} is treated as an empirical parameter and has been correlated with the acentric factor. ${ }^{1,2}$ Peng-Robinson ${ }^{3}$ proposed an equation of state, usually used to predict the phase behavior of petroleum fluids, that assumes a value of the critical compressibility factor for all substances, and as a result, the predicted values for saturated liquid density differ considerably from their experimental values. Consequently, exact, credible, and accordant Z_{c} data are greatly necessary for production engineers or for some calculations. Unfortunately, the world literature data are very limited because experiments for obtaining these data are relatively time-consuming and expensive, if possible. It is therefore vital that prediction methods be developed to obtain Z_{c} data which are capable of reasonably accurate predictions.

Generally, being a parameter of each compound, Z_{c} can be estimated from an EOS, such as the two-parameter EOS (van der Waals or Peng-Robinson EOS) and the three-parameter EOS. Also some researchers correlated Z_{c} to the acentric factor, and an example of such correlations, shown as eq 1, is given by Lee-Kesler. ${ }^{4}$ Owing to the good estimation performance, the group contribution methods are widely recommended and used for the prediction of critical properties. ${ }^{5}$ Moreover, many

[^0]researchers have tried to improve group contribution methods. Constantinou and Gani ${ }^{6}$ and Olsen and Nielsen ${ }^{7}$ developed new methods which perform estimations at different levels to distinguish among structural isomers. Recently, Wang et al. ${ }^{8-10}$ proposed a position group contribution method for the prediction of critical parameters ($T_{\mathrm{c}}, P_{\mathrm{c}}, V_{\mathrm{c}}$) of organic compounds with a similar framework, and the proposed method performed well in both accuracy and generality.
\[

$$
\begin{equation*}
Z_{\mathrm{c}}=0.2905-0.085 \omega \tag{1}
\end{equation*}
$$

\]

Therefore, the purpose of this study was to determine whether our proposed position group contribution method could be used directly for Z_{c} estimation. For this purpose, 167 organic compounds from the literature were selected, and the accuracy of our method is compared to the experimental data.

Method Proposed in This Work

Experimental Data. The sources of experimental data were from a series of critical compilation reviews by the critical properties group of IUPAC I. 2 on thermodynamics; the works were published in J. Chem. Eng. Data by Ambrose et al., ${ }^{11}$ Tsonopoulos et al., ${ }^{12,15,17}$ Gude et al., ${ }^{13}$ Daubert et al., ${ }^{14}$ Kudchadker et al., ${ }^{16}$ and Marsh et al. ${ }^{18,19}$ When all the groups' contribution values were determined, the recommended 167 experimental data from the literature were used to validate and evaluate the performance of our new method. The acentric factor data were from the DIPPR Database.

Position Group Contributions for the Critical Compressibility Factor. The critical compressibility factor function is constructed by all groups' contributions as well as the position distribution factor. The position distribution factors were used to take into account longer distance interactions. The molecule structures were described according to the IUPAC nominating method, and thus, only P_{k} values could be obtained for the

Table 1. Position Group Contributions for the Prediction of $Z_{c}{ }^{a}$

group	A	group	A
$\mathrm{C}-\left(\mathrm{CH}_{3}\right)(\mathrm{H})_{3}$	-0.02363	$\mathrm{O}-(\mathrm{CO})(\mathrm{H})$	-0.06317
$\mathrm{C}-\left(\mathrm{CH}_{2}\right)(\mathrm{H})_{3}$	-0.02037	$\mathrm{C}-(\mathrm{C})(\mathrm{Br})(\mathrm{H})_{2}$	0.02461
$\mathrm{C}-(\mathrm{CH})(\mathrm{H})_{3}$	-0.01785	$\mathrm{C}-(\mathrm{C})_{2}(\mathrm{Br})(\mathrm{H})$	0.10130
$\mathrm{C}-(\mathrm{C})(\mathrm{H})_{3}$	-0.02473	$\mathrm{C}-(\mathrm{C})_{3}(\mathrm{Br})$	-0.06414
$\mathrm{C}-(\mathrm{C})_{2}(\mathrm{H})_{2}$	-0.00120	$\mathrm{C}-(\mathrm{C})(\mathrm{Cl})(\mathrm{H})_{2}$	0.00100
$\mathrm{C}-(\mathrm{C})_{3}(\mathrm{H})$	0.01970	$\mathrm{C}-(\mathrm{C})_{2}(\mathrm{Cl})(\mathrm{H})$	-0.00173
$\mathrm{C}-(\mathrm{C})_{4}$	0.05211	$\mathrm{C}-(\mathrm{C})(\mathrm{Cl})_{2}(\mathrm{H})$	0.03053
$\mathrm{Cd}-(\mathrm{H})(\mathrm{O})$	-0.13091	$\mathrm{C}-(\mathrm{S})(\mathrm{H})_{3}$	-0.03976
$\mathrm{Cd}-(\mathrm{H})_{2}$	-0.19957	$\mathrm{C}-(\mathrm{C})(\mathrm{S})(\mathrm{H})_{2}$	-0.06699
$\mathrm{Cd}-(\mathrm{C})(\mathrm{H})$	0.12097	$\mathrm{C}-(\mathrm{C})_{2}(\mathrm{~S})(\mathrm{H})$	-0.04417
$\mathrm{C}-(\mathrm{Cd})(\mathrm{C})(\mathrm{H})_{2}$	0.00232	$\mathrm{C}-(\mathrm{C})_{3}(\mathrm{~S})$	0.00295
$\mathrm{C}-(\mathrm{Cd})(\mathrm{H})_{3}$	-0.03405	$\mathrm{Cb}-(\mathrm{N})$	-0.07184
$\mathrm{Cd}-(\mathrm{C})_{2}$	0.36332	$\mathrm{C}-(\mathrm{N})(\mathrm{H})_{3}$	-0.03310
$\mathrm{C}-(\mathrm{Cd})(\mathrm{C})_{2}(\mathrm{H})$	0.03424	$\mathrm{C}-(\mathrm{C})(\mathrm{N})(\mathrm{H})_{2}$	-0.00204
$\mathrm{Cd}-(\mathrm{Cd})(\mathrm{H})$	0.21533	$\mathrm{C}-(\mathrm{C})_{2}(\mathrm{~N})(\mathrm{H})$	0.02432
$\mathrm{C}-(\mathrm{O})(\mathrm{H})_{3}$	-0.00305	$\mathrm{C}-(\mathrm{C})_{3}(\mathrm{~N})$	0.05985
$\mathrm{C}-(\mathrm{CO})(\mathrm{H})_{3}$	-0.03180	$\mathrm{C}-(\mathrm{C})(\mathrm{CN})(\mathrm{H})_{2}$	-0.02048
$\mathrm{C}-(\mathrm{C})(\mathrm{CO})(\mathrm{H})_{2}$	-0.00729	$\mathrm{N}-(\mathrm{C})(\mathrm{H})_{2}$	-0.07915
$\mathrm{C}-(\mathrm{C})_{2}(\mathrm{CO})(\mathrm{H})$	0.03574	$\mathrm{N}-(\mathrm{C})_{2}(\mathrm{H})$	0.08253
$\mathrm{C}-(\mathrm{C})_{3}(\mathrm{CO})$	0.06894	$\mathrm{N}-(\mathrm{C})_{3}$	0.27790
$\mathrm{C}-(\mathrm{C})(\mathrm{O})(\mathrm{H})_{2}$	0.01642	$\mathrm{N}-(\mathrm{Cb})(\mathrm{H})_{2}$	0.53868
$\mathrm{C}-(\mathrm{C})_{2}(\mathrm{O})(\mathrm{H})$	0.03125	$\mathrm{N}_{\mathrm{I}}-(\mathrm{Cb})_{2}$	-0.04813
$\mathrm{C}-(\mathrm{C})_{3}(\mathrm{O})$	0.06357	$\mathrm{S}-(\mathrm{C})(\mathrm{H})$	0.26238
$\mathrm{CO}-\left(\mathrm{CH}_{3}\right)(\mathrm{O})$	-0.14836	$\mathrm{S}-(\mathrm{C})_{2}$	-0.04443
$\mathrm{CO}-\left(\mathrm{CH}_{2}\right)(\mathrm{O})$	-0.14048	ortho correction ${ }^{\text {b }}$	0.00787
$\mathrm{CO}-(\mathrm{CH})(\mathrm{O})$	-0.27747	meta correction ${ }^{\text {b }}$	0.00403
$\mathrm{CO}-(\mathrm{O})(\mathrm{H})$	-0.20381	cyclopentane correction	-0.02793
$\mathrm{CO}-(\mathrm{C})(\mathrm{H})$	-0.08425	cyclohexane correction	-0.03029
$\mathrm{CO}-(\mathrm{C})_{2}$	0.06974	$C_{\text {ob }}{ }^{\text {c }}$	0.00405
$\mathrm{CO}-(\mathrm{Cd})(\mathrm{O})$	-0.05522	$C_{\text {mb }}{ }^{\text {c }}$	0.00188
$\mathrm{Cb}-(\mathrm{H})$	-0.05490	$C_{\mathrm{pb}}{ }^{\text {c }}$	0.00066
$\mathrm{Cb}-(\mathrm{C})$	0.17379	cyclopropane correction	-0.04710
$\mathrm{C}-(\mathrm{Cb})(\mathrm{H})_{3}$	-0.03351	cyclobutane correction	-0.03773
$\mathrm{C}-(\mathrm{Cb})(\mathrm{C})(\mathrm{H})_{2}$	-0.02157	$-(\mathrm{CH})<$ position correction	-0.00160
$\mathrm{C}-(\mathrm{Cb})(\mathrm{C})_{2}(\mathrm{H})$	0.01136	$>(\mathrm{C})<$ position correction	-0.00030
$\mathrm{C}-(\mathrm{Cb})(\mathrm{C})_{3}$	0.04363	double bond position correction	-0.01390
$\mathrm{Cb}-(\mathrm{O})$	0.12007	$\mathrm{O}-(\mathrm{C})(\mathrm{H})$	0.00357
$\mathrm{O}-(\mathrm{Cb})(\mathrm{H})$	-0.36829	trans or cis structure correction	-0.00070
$\mathrm{O}-(\mathrm{C})(\mathrm{H})$	-0.26308	hydroxyl position correction	-0.00106
$\mathrm{O}-(\mathrm{C})_{2}$	-0.21812	phenol position correction	0.00203
$\mathrm{O}-(\mathrm{CO})\left(\mathrm{CH}_{3}\right)$	0.08178	$\exp (1 / N)$	-0.08700
$\mathrm{O}-(\mathrm{CO})\left(\mathrm{CH}_{2}\right)$	0.06678	$\exp (1 / M)$	2.61829
$\mathrm{O}-(\mathrm{CO})(\mathrm{CH})$	0.06391	$Z_{\text {o }}$	-2.23712

[^1]relevant positional factor, which could distinguish all isomers including cis and trans or Z and E structures of organic compounds for their thermodynamics properties.

Here, the position distribution function for Z_{c} estimation is expressed as eqs 2 and 3, and these expressions are similar in framework to our previous methods used for the prediction of the critical properties $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c} of organic compounds containing various functionalities. The parameter A_{i} or A_{j} is the i or j group contribution, N_{i} is the number of each group in which a carbon element forms the center of the group in the molecular formula, N_{j} is the number of each group in which a non-carbon element forms the center, N is the total number of groups, P_{k} is the position factor, and a_{1} and a_{2} are parameters of the model. The set of contributions that allowed minimization of the residual estimation difference was then computed by regression. Z_{0} is -2.23712 , and M is the molecular weight. Table 1 reports the values computed for the group contributions A_{i}, and our method developed is applicable only to comparatively low molar mass compounds involving a carbon chain from C_{2} to C_{18}.

$$
\begin{gather*}
Z_{\mathrm{c}}=Z_{\mathrm{o}}+\sum_{i} A_{i} N_{i}+\sum_{j} A_{j} \tanh \left(N_{j} / N\right)+\sum_{k} A_{k} N_{k}+ \\
\quad a_{1} \exp (1 / M)+a_{2} \exp (1 / N) \tag{2}\\
N=\sum_{i} N_{i}+\sum_{j} N_{j} \tag{3}
\end{gather*}
$$

Comparison of Z_{c} Predicted with Different Methods. According to the definition of the compressibility factor, the critical compressibility factor Z_{c} is defined from $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c} as shown in eq 4. Generally, the method to estimate Z_{c} is first to estimate $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c} through methods and then to calculate Z_{c} through its definition. Essentially this is an indirect prediction method.

$$
\begin{equation*}
Z_{\mathrm{c}}=\frac{P_{\mathrm{c}} V_{\mathrm{c}}}{R T_{\mathrm{c}}} \tag{4}
\end{equation*}
$$

In this work, to evaluate the performance of our new method, we confirm the difference not only between our new direct Z_{c} prediction and experimental Z_{c}, but also between our new direct Z_{c} prediction and the Z_{c} calculation using the indirect prediction methods of Joback and Reid, Constantinou and Gani, and Wang et al. Moreover, the performance of our new model has been compared with that of the other direct prediction method of Lee-Kesler.

Results and Discussion

Prediction of the Critical Compressibility Factor. The results of the reference compounds obtained using the new position group contribution method are presented in Table 3. To illustrate

Table 2. Comparison of Z_{c} Predicted with Different Methods for Various Classes of Organic Compounds ${ }^{a}$

chemical family	no. of samples	Joback		Constantinou		Lee-Kesler		Wang		this work	
		AAD	$100 \bar{\delta}$								
alkanes and cycloalkanes	54	0.012	4.60	0.015	5.71	0.005	2.00	0.010	3.85	0.004	1.45
alkenes	10	0.010	3.71	0.008	2.96	0.006	2.02	0.004	1.55	0.006	2.26
aromatics	8	0.002	0.58	0.003	1.12	0.004	1.34	0.008	2.96	0.005	1.84
ketones and aldehydes	18	0.011	4.19	0.010	3.85	0.012	4.57	0.009	3.37	0.008	3.15
alcohols	19	0.011	4.43	0.011	4.09	0.021	8.16	0.008	3.18	0.005	2.02
acids	9	0.013	5.45	0.013	5.51	0.024	10.22	0.013	5.61	0.011	4.39
esters and ether oxides	23	0.029	10.84	0.026	9.92	0.010	3.42	0.015	5.72	0.007	2.72
amines and pyridines	18	0.037	13.57	0.026	9.54	0.007	2.58	0.026	9.65	0.006	2.08
nitriles and alkanethiols	8	0.056	19.91	0.019	7.01	0.017	6.23	0.026	9.50	0.021	7.57
overall	167	0.018	6.90	0.016	5.94	0.010	3.83	0.012	4.73	0.007	2.45

${ }^{a} \mathrm{AAD}$ is the overall average absolute difference, and $\bar{\delta}$ is the average mean difference.

Table 3. Fully Predictive Estimations of the Critical Compressibility Factor $\boldsymbol{Z}_{\mathrm{c}}{ }^{a}$

compd	$Z_{\text {c,exptl }}$	ref	this work			compd	$Z_{\text {c,exptl }}$	ref	this work		
			prediction	D	100δ				prediction	D	100δ
ethane	0.279	11	0.279	0.000	0.00	3-methyloctane			0.255		
propane	0.277	11	0.278	0.001	0.32	4-methyloctane			0.253		
butane	0.274	11	0.272	0.002	0.84	2-ethylheptane			0.256		
2-methylpropane	0.278	14	0.278	0.000	0.07	3-ethylheptane			0.252		
pentane	0.268	11	0.267	0.001	0.34	4-ethylheptane			0.251		
2-methylbutane	0.27	14	0.271	0.001	0.26	2,2-dimethylheptane			0.257		
2,2-dimethylpropane	0.272	14	0.264	0.008	2.94	2,3-dimethylheptane			0.258		
hexane	0.264	11	0.263	0.001	0.23	2,4-dimethylheptane			0.257		
2-methylpentane	0.27	14	0.267	0.003	1.11	2,5-dimethylheptane			0.255		
3-methylpentane	0.274	14	0.263	0.011	4.09	2,6-dimethylheptane			0.256		
2,2-dimethybutane	0.279	14	0.265	0.014	5.13	3,3-dimethylheptane			0.261		
2,3-dimethylbutane	0.279	14	0.269	0.010	3.62	3,4-dimethylheptane			0.253		
heptane	0.261	11	0.260	0.001	0.27	3,5-dimethylheptane			0.251		
2-methylhexane	0.262	14	0.264	0.002	0.73	4,4-dimethylheptane			0.260		
3-methylhexane	0.256	14	0.260	0.004	1.48	3-ethyl-2-metylhexane			0.256		
3-ethylpentane	0.267	14	0.257	0.010	3.67	3-ethyl-3-metylhexane			0.265		
2,2-dimethylpentane	0.266	14	0.262	0.004	1.65	3-ethyl-4-metylhexane			0.250		
2,3-dimethylpentane	0.256	14	0.263	0.007	2.85	4-ethyl-2-metylhexane			0.254		
2,4-dimethylpentane	0.265	14	0.264	0.001	0.30	2,2,3-trimethylhexane			0.256		
3,3-dimethylpentane	0.274	14	0.266	0.008	3.03	2,2,4-trimethylhexane			0.254		
2,2,3-trimethylbutane	0.265	14	0.264	0.001	0.53	2,2,5-trimethylhexane			0.255		
octane	0.259	11	0.258	0.001	0.54	2,3,3-trimethylhexane			0.264		
2-methylheptane	0.262	14	0.261	0.001	0.31	2,3,5-trimethylhexane			0.257		
3-methylheptane	0.253	14	0.257	0.004	1.62	2,4,4-trimethylhexane			0.264		
4-methylheptane	0.259	14	0.256	0.004	1.35	3,3,4-trimethylhexane			0.259		
3-ethylhexane	0.252	14	0.255	0.003	1.03	3,3-diethylpentane			0.279		
2,2-dimethylhexane	0.265	14	0.259	0.006	2.30	3-ethyl-2,2-dimethylpentane			0.254		
2,3-dimethylhexane	0.263	14	0.261	0.002	0.87	3-ethyl-2,3-dimethylpentane			0.269		
2,4-dimethylhexane	0.263	14	0.259	0.004	1.48	3-ethyl-2,4-dimethylpentane			0.256		
2,5-dimethylhexane	0.262	14	0.260	0.002	0.76	2,2,3,3-tetramethylpentane			0.262		
3,3-dimethylhexane	0.251	14	0.263	0.012	4.78	2,2,3,4-tetramethylpentane			0.256		
3,4-dimethylhexane	0.265	14	0.255	0.010	3.81	2,2,4,4-tetramethylpentane			0.257		
2-methyl-3-ethylpentane	0.253	14	0.258	0.005	2.02	2,3,3,4-tetramethylpentane			0.265		
3-methyl-3-ethylpentane	0.266	14	0.267	0.001	0.53	decane	0.256	11	0.253	0.003	1.13
2,2,3-trimethylpentane	0.254	14	0.258	0.004	1.73	2-methylnonane			0.257		
2,2,4-trimethylpentane	0.267	14	0.259	0.008	2.88	3-methylnonane			0.253		
2,3,3-trimethylpentane	0.269	14	0.267	0.002	0.89	4-methylnonane			0.251		
2,3,4-trimethylpentane	0.267	14	0.261	0.006	2.25	5-methylnonane			0.249		
nonane	0.257	11	0.255	0.002	0.66	3-ethyloctane			0.250		
2-methyloctane			0.259			4-ethyloctane			0.248		
2,2-dimethyloctane			0.257			3-ethyl-2,3-dimethylhexane			0.264		
2,3-dimethyloctane			0.256			3-ethyl-2,4-dimethylhexane			0.252		
2,4-dimethyloctane			0.255			3-ethyl-2,5-dimethylhexane			0.252		
2,5-dimethyloctane			0.253			3-ethyl-3,4-dimethylhexane			0.261		
2,6-dimethyloctane			0.251			4-ethyl-2,2-dimethylhexane			0.250		
2,7-dimethyloctane			0.252			4-ethyl-2,4-dimethylhexane			0.266		
3,3-dimethyloctane			0.259			4-ethyl-3,3-dimethylhexane			0.254		
3,4-dimethyloctane			0.250			2,2,3,3-tetramethylhexane			0.260		
3,5-dimethyloctane			0.249			2,2,3,4-tetramethylhexane			0.252		
3,6-dimethyloctane			0.247			2,2,3,5-tetramethylhexane			0.253		
4,4-dimethyloctane			0.258			2,2,4,4-tetramethylhexane			0.260		
4,5-dimethyloctane			0.247			2,2,5,5-tetramethylhexane			0.255		
4-propylheptane			0.248			2,2,4,5-tetramethylhexane			0.251		
3-ethyl-2-methylheptane			0.254			2,3,3,4-tetramethylhexane			0.260		
3-ethyl-3-methylheptane			0.263			2,3,3,5-tetramethylhexane			0.261		
3-ethyl-4-methylheptane			0.248			2,3,4,4-tetramethylhexane			0.261		
3-ethyl-5-methylheptane			0.246			2,3,4,5-tetramethylhexane			0.253		
4-ethyl-2-methylheptane			0.252			3,3,4,4-tetramethylhexane			0.264		
4-ethyl-3-methylheptane			0.248			3,3-diethyl-2-methylpentane			0.267		
4-ethyl-4-methylheptane			0.269			3-ethyl-2,2,3-trimethylpentane			0.271		
5-ethyl-2-methylheptane			0.250			3-ethyl-2,2,4-trimethylpentane			0.252		
2,2,3-trimethylheptane			0.254			3-ethyl-2,3,4-trimethylpentane			0.267		
2,2,4-trimethylheptane			0.252			2,2,3,3,4-pentamethylpentane			0.258		
2,2,5-trimethylheptane			0.251			2,2,3,4,4-pentamethylpentane			0.255		
2,2,6-trimethylheptane			0.252			undecane	0.257	11	0.251	0.006	2.30
2,3,3-trimethylheptane			0.262			dodecane	0.251	11	0.249	0.002	0.72
2,3,4-trimethylheptane			0.254			tridecane	0.246	11	0.248	0.002	0.61
2,3,5-trimethylheptane			0.252			tetradecane	0.244	11	0.246	0.002	0.74
2,3,6-trimethylheptane			0.253			pentadecane	0.243	11	0.244	0.001	0.45
2,4,4-trimethylheptane			0.262			hexadecane	0.241	11	0.243	0.002	0.62
2,4,5-trimethylheptane			0.251			heptadecane	0.242	11	0.241	0.001	0.41
2,4,6-trimethylheptane			0.252			octadecane	0.247	11	0.240	0.007	2.83
2,5,5-trimethylheptane			0.261			cyclopropane	0.272	14	0.272	0.000	0.00
3,3,4-trimethylheptane			0.256			cyclobutane			0.274		

Table 3. Continued

compd	$Z_{\text {c,exptl }}$	ref	this work			compd	$Z_{\text {c,exptl }}$	ref	this work		
			prediction	D	100δ				prediction	D	100δ
3,3,5-trimethylheptane			0.255			cyclopentane	0.275	14	0.279	0.004	1.31
3,4,4-trimethylheptane			0.258			cyclohexane	0.273	14	0.272	0.001	0.29
3,4,5-trimethylheptane			0.252			methylcyclopentane	0.272	14	0.277	0.005	1.91
3,4-diethylhexane			0.245			methylcyclohexane	0.27	14	0.272	0.002	0.56
3,3-diethylhexane			0.267			ethylcyclopentane	0.269	14	0.271	0.002	0.89
3-ethyl-2,2-dimethylhexane			0.272			cis-1,2-dimethylcyclopentane			0.274		
trans-1,2-dimethylcyclopentane			0.276			trans-3-heptene			0.263		
cis-1,3-dimethylcyclopentane			0.273			1-octene	0.266	15	0.260	0.007	2.44
trans-1,3-dimethylcyclopentane			0.274			cis-2-octene			0.251		
1,1-dimethylcyclopentane			0.277			trans-2-octene			0.253		
1,1-dimethylcyclohexane			0.272			cis-3-octene			0.255		
cis-1,2-dimethylcyclohexane			0.269			trans-3-octene			0.256		
trans-1,2-dimethylcyclohexane			0.271			cis-4-octene			0.241		
cis-1,3-dimethylcyclohexane			0.268			trans-4-octene			0.242		
trans-1,3-dimethylcyclohexane			0.269			1-nonene			0.258		
cis-1,4-dimethylcyclohexane			0.266			1-decene	0.253	15	0.257	0.004	1.50
trans-1,4-dimethylcyclohexane			0.267			1-undecene			0.255		
ethylcyclohexane			0.266			1-dodecene			0.254		
propylcyclopentane			0.266			1,3-butadiene	0.27	15	0.270	0.000	0.00
propylcyclohexane			0.264			benzene	0.268	12	0.270	0.002	0.86
butylcyclopentane			0.266			methylbenzene	0.264	12	0.267	0.003	1.10
butylcyclohexane			0.262			1,4-dimethylbenzene	0.259	12	0.258	0.002	0.58
pentylcyclopentane			0.264			1,2-dimethylbenzene	0.263	12	0.265	0.002	0.91
pentylcyclohexane			0.260			1,3-dimethylbenzene	0.259	12	0.262	0.003	1.00
hexylcyclopentane			0.262			ethylbenzene	0.263	12	0.257	0.006	2.43
heptylcyclohexane			0.260			1,2,3-trimethylbenzene			0.263		
1-butene	0.278	15	0.265	0.012	4.40	1,2,4-trimethylbenzene			0.255		
cis-2-butene	0.272	15	0.276	0.004	1.40	1,3,5-trimethylbenzene			0.256		
trans-2-butene	0.274	15	0.277	0.004	1.35	1,2,3,4-tetramethylbenzene			0.257		
1-pentene	0.275	15	0.264	0.011	4.07	1,2,3,5-tetramethylbenzene			0.254		
trans-2-pentene			0.279			1,2,4,5-tetramethylbenzene			0.250		
2-methyl-1-butene			0.279			1-methyl-2-ethylbenzene			0.253		
2-methyl-2-butene			0.278			1-methyl-3-ethylbenzene			0.250		
3-methyl-1-butene	0.286	15	0.282	0.004	1.54	1-methyl-4-ethylbenzene			0.246		
1-hexene	0.272	15	0.262	0.010	3.57	propylbenzene	0.265	12	0.254	0.011	4.08
cis-2-hexene			0.267			isopropylbenzene			0.273		
trans-2-hexene			0.268			1-methyl-2-isopropylbenzene			0.268		
cis-3-hexene			0.270			1-methyl-3-isopropylbenzene			0.264		
trans-3-hexene			0.272			1-methyl-4-isopropylbenzene			0.260		
2-methyl-1-hexene			0.259			butylbenzene	0.262	12	0.252	0.010	3.74
3-methyl-1-hexene			0.271			sec-butylbenzene			0.269		
4-methyl-1-hexene			0.259			tert-butylbenzene			0.266		
1-heptene	0.267	15	0.261	0.006	2.28	pentylbenzene			0.251		
cis-2-heptene			0.258			hexylbenzene			0.249		
trans-2-heptene			0.260			heptylbenzene			0.247		
cis-3-heptene			0.262			butanone	0.252	16	0.262	0.010	3.81
2-pentanone	0.253	16	0.257	0.004	1.38	5-tridecanone			0.236		
3-pentanone	0.264	16	0.261	0.003	1.21	6-tridecanone			0.235		
3-methyl-2-butanone	0.255	16	0.281	0.026	10.04	7-tridecanone			0.234		
2-hexanone	0.255	16	0.252	0.003	1.14	2-tetradecanone			0.231		
3-hexanone	0.259	16	0.256	0.003	1.00	3-tetradecanone			0.236		
3,3-dimethyl-2-butanone	0.276	16	0.276	0.000	0.00	4-tetradecanone			0.235		
4-methyl-2-pentanone			0.249			7-tetradecanone			0.232		
2-heptanone	0.256	16	0.249	0.008	2.93	1-propanal	0.256	16	0.249	0.007	2.58
3-heptanone			0.253			1-butanal	0.25	16	0.256	0.006	2.20
4-heptanone			0.252			1-pentanal	0.264	16	0.258	0.006	2.39
2-octanone			0.245			1-hexanal	0.266	16	0.258	0.008	2.86
3-octanone			0.250			1-heptanal	0.267	16	0.258	0.009	3.22
4-octanone			0.249			1-octanal	0.272	16	0.258	0.014	5.18
2-methyl-3-hexanone			0.279			1-nonanal	0.266	16	0.257	0.009	3.31
5-methyl-2-hexanone			0.247			1-decanal	0.278	16	0.256	0.022	7.81
2,4-dimethyl-3-pentanone			0.301			2-methylpropanal			0.281		
2-methyl-3-heptanone			0.309			2-methylhexanal			0.262		
5-methyl-3-heptanone			0.245			3-methylhexanal			0.258		
2,5-dimethyl-3-hexanone			0.274			ethanol	0.241	13	0.232	0.009	3.65
5-nonanone	0.244	16	0.245	0.001	0.29	1-propanol	0.252	13	0.247	0.005	1.83
4-nonanone			0.246			2-propanol	0.25	13	0.252	0.002	0.64
3-nonanone			0.247			1-butanol	0.258	13	0.256	0.002	0.89
2-nonanone	0.256	16	0.243	0.014	5.27	2-butanol	0.253	13	0.258	0.005	1.78
2-decanone			0.240			2-methyl-1-propanol	0.258	13	0.259	0.001	0.50
3-decanone			0.244			2-methyl-2-propanol	0.259	13	0.273	0.014	5.21
4-decanone			0.243			1-pentanol	0.26	13	0.261	0.001	0.31
5-decanone			0.242			2-pentanol	0.259	13	0.263	0.004	1.39
2-undecanone			0.238			3-pentanol			0.264		

Table 3. Continued

compd	$Z_{\text {c,exptl }}$	ref	this work			compd	$Z_{\text {c,exptl }}$	ref	this work		
			prediction	D	100δ				prediction	D	100δ
3-undecanone			0.242			2-methyl-1-butanol			0.262		
4-undecanone			0.241			3-methyl-1-butanol			0.263		
5-undecanone			0.240			2-methyl-2-butanol			0.275		
6-undecanone			0.239			3-methyl-2-butanol			0.265		
2-dodecanone			0.235			1,2-butanediol			0.260		
3-dodecanone			0.240			1,3-butanediol			0.266		
4-dodecanone			0.239			1-hexanol	0.261	13	0.264	0.003	1.15
5-dodecanone			0.238			2-hexanol	0.261	13	0.266	0.005	1.84
6-dodecanone			0.237			3-hexanol	0.266	13	0.267	0.001	0.30
2-tridecanone			0.233			2-methyl-1-pentanol			0.265		
3-tridecanone			0.238			4-methyl-1-pentanol			0.264		
4-tridecanone			0.237			2-methyl-2-pentanol			0.278		
2-methyl-3-pentanol			0.250			butyl ethyl ether			0.265		
4-methyl-2-pentanol			0.266			dipropyl ether			0.265		
3 methyl 3 pentanol			0.308			diisopropyl ether	0.263	16	0.267	0.004	1.41
1-heptanol	0.253	13	0.266	0.013	5.18	methyl formiate	0.255	16	0.260	0.005	2.12
2-heptanol	0.264	13	0.268	0.004	1.44	methyl acetate	0.257	16	0.252	0.005	2.02
3-heptanol			0.269			ethyl formiate	0.257	16	0.267	0.010	3.70
4-heptanol			0.273			propyl formiate	0.259	16	0.272	0.013	4.83
1-octanol	0.254	13	0.267	0.013	5.28	pentyl formiate	0.298	16	0.275	0.023	7.58
2-octanol	0.273	13	0.269	0.004	1.39	ethyl acetate	0.255	16	0.251	0.004	1.65
3-octanol			0.270			methyl propionate	0.256	16	0.259	0.003	1.29
4-octanol			0.274			propyl acetate	0.254	16	0.252	0.002	0.94
2-ethyl-1-hexanol			0.266			isopropyl acetate	0.258	16	0.252	0.006	2.40
1-nonanol	0.26	13	0.268	0.008	3.15	methyl butanoate	0.256	16	0.258	0.002	0.90
2-nonanol	0.269	13	0.270	0.001	0.37	methyl isobutanoate	0.259	16	0.266	0.007	2.55
3-nonanol			0.271			2-propenyl acetate			0.203		
4-nonanol			0.277			2-ethenyl acetate			0.149		
1-decanol	0.263	13	0.269	0.006	2.13	ethyl propionate	0.26	16	0.257	0.003	1.08
2-decanol			0.270			butyl acetate			0.252		
3-decanol			0.271			pentyl ethanoate	0.258	16	0.251	0.007	2.67
4-decanol			0.275			propyl propionate			0.257		
5-decanol			0.279			ethyl butanoate	0.263	16	0.256	0.007	2.70
1-undecanol			0.269			propyl pentanoate			0.255		
1-dodecanol			0.269			ethyl isobutanoate	0.279	16	0.286	0.007	2.47
phenol			0.240			methyl pentanoate	0.275	16	0.257	0.018	6.65
o-cresol			0.243			ethyl pentanoate			0.254		
m-cresol			0.245			propyl pentanoate			0.254		
p-cresol			0.247			isobutyl acetate	0.257	16	0.258	0.001	0.54
2,3-xylenol			0.249			methylpropyl ethanoate			0.249		
2,4-xylenol			0.248			isobutyl acrylate			0.262		
2,5-xylenol			0.246			isobutyl butyrate			0.261		
2,6-xylenol			0.252			isobutyl formate	0.301	16	0.281	0.020	6.68
3,4-xylenol			0.253			diphenyl ether			0.256		
3,5-xylenol			0.252			methylamine			0.254		
3-ethylphenol			0.239			dimethylamine			0.279		
2-ethylphenol			0.236			ethylamine	0.266	18	0.271	0.005	1.73
4-ethylphenol			0.241			propylamine			0.271		
diethyl ether	0.264	16	0.260	0.005	1.70	isopropylamine	0.254	18	0.283	0.029	11.57
ethyl n-propyl ether	0.275	16	0.263	0.012	4.33	trimethylamine	0.291	18	0.283	0.008	2.78
butyl methyl ether	0.26	16	0.263	0.003	1.08	butylamine			0.271		
methyl pentyl ether	0.262	16	0.265	0.003	1.15	isobutylamine			0.273		
sec-butylamine			0.280			chloroethane			0.259		
tert-butylamine	0.281	18	0.281	0.000	0.00	1-chloropropane	0.289	19	0.273	0.016	5.64
diethylamine	0.275	18	0.282	0.007	2.69	2-chloropropane	0.257	19	0.256	0.001	0.43
pentylamine			0.270			1-chlorobutane			0.276		
cyclopentylamine			0.288			2-chlorobutane			0.257		
hexylamine			0.268			2-chloro-2-methylpropane			0.224		
1-octanamine	0.252	18	0.266	0.014	5.52	1-chloropentane			0.277		
triethylamine	0.265	18	0.279	0.014	5.28	2-chloropentane			0.257		
dipropylamine			0.271			1-chlorohexane			0.276		
diisopropylamine			0.268			1-chloroheptane			0.275		
cyclohexylamine			0.284			1-chloro-3-methylbutane			0.279		
dibutylamine			0.264			1,1-dichloroethane			0.277		
1,2-ethanediamine			0.273			bromoethane	0.296	19	0.266	0.030	10.10
1,3-propanediamine			0.275			1-bromopropane			0.284		
1,4-butanediamine			0.276			2-bromopropane			0.339		
1,6-hexanediamine			0.277			1-bromobutane			0.291		
1,8-octanediamine			0.276			1-bromo-2-methylpropane			0.294		
1,9-nonanediamine			0.276			2-bromo-2-methylpropane			0.150		
1,10-decanediamine			0.275			1-bromopentane			0.293		
1,12-dodecanediamine			0.274			(methylthio)ethane			0.166		
benzenamine	0.28	18	0.280	0.000	0.00	1-(methylthio)propane			0.167		
2-methylbenzenamine	0.273	18	0.269	0.004	1.43	2-(methylthio)propane			0.176		

Table 3. Continued

compd	$Z_{\text {c,exptl }}$	ref	this work			compd	$Z_{\text {c,exptl }}$	ref	this work		
			prediction	D	100δ				prediction	D	100δ
3-methylbenzenamine			0.271			1-(methylthio)butane			0.167		
pyridine	0.271	18	0.266	0.005	1.73	2-methyl-2-(methylthio)propane			0.185		
2-methylpyridine	0.269	18	0.269	0.000	0.04	1-(ethylthio)propane			0.120		
3-methylpyridine	0.262	18	0.267	0.005	1.87	2-(ethylthio)propane			0.129		
4-methylpyridine	0.261	18	0.266	0.005	1.80	1-(ethylthio)butane			0.125		
2,3-dimethylpyridine	0.269	18	0.263	0.006	2.23	2-(ethylthio)butane			0.124		
2,4-dimethylpyridine	0.262	18	0.262	0.000	0.11	2-(ethylthio)-2-methyl propane			0.138		
2,5-dimethylpyridine	0.257	18	0.263	0.006	2.33	(methylthio)cyclopentane			0.181		
2,6-dimethylpyridine	0.265	18	0.265	0.000	0.04	(methylthio)methane	0.272	17	0.221	0.051	18.79
3,4-dimethylpyridine	0.264	18	0.260	0.004	1.67	ethanethiol	0.274	17	0.299	0.025	9.20
3,5-dimethylpyridine	0.261	18	0.261	0.000	0.08	1-propanethiol	0.295	17	0.280	0.015	5.15
propanenitrile	0.225	18	0.245	0.020	8.80	2-propanethiol			0.288		
butanenitrile			0.256			1-butanethiol	0.273	17	0.266	0.007	2.53
pentanenitrile			0.258			2-butanethiol			0.272		
3-methylbutanenitrile			0.257			2-methyl-1-propanethiol			0.270		
hexanenitrile			0.258			2-methyl-2-propanethiol			0.285		
octanenitrile			0.255			1-pentanethiol			0.256		
decanenitrile			0.252			2-methyl-1-butanethiol			0.257		
3-methyl-1-butanethiol			0.244			acetic acid	0.201	16	0.204	0.003	1.44
2-methyl-2-butanethiol			0.279			propanoic acid	0.219	16	0.228	0.009	3.88
3-methyl-2-butanethiol			0.264			acrylic acid			0.230		
2,2-dimethyl-1-propanethiol			0.257			butyric acid	0.232	16	0.236	0.004	1.59
cyclopentanethiol			0.271			pentanoic acid	0.237	16	0.241	0.004	1.48
1-hexanethiol			0.248			2-ethyl butyric acid			0.245		
2-methyl-2-pentanethiol			0.271			2-ethyl hexanoic acid	0.262	16	0.251	0.011	4.05
2,3-dimethyl-2-butanethiol			0.273			hexanoic acid	0.256	16	0.243	0.013	4.96
cyclohexanethiol			0.260			heptanoic acid	0.262	16	0.245	0.017	6.49
1-heptanethiol			0.242			octanoic acid	0.259	16	0.246	0.013	5.06
1-octanethiol			0.236			decanoic acid	0.223	16	0.247	0.024	10.58

the application of the proposed method, a detailed procedure for the estimation of critical properties is given in the Appendix for $Z_{\text {c }}$. Table 2 compares Z_{c} predictions obtained using our method and previous methods to experimental data. Also, the overall average absolute difference (AAD) between experimental and predicted values for each group of molecules, as well as the overall mean differences δ and the average mean differences $\bar{\delta}$ are summarized in Table 2.

$$
\begin{gather*}
\mathrm{AAD}=\frac{\sum\left|Z_{\mathrm{c}, \text { exptl }}-Z_{\mathrm{c}, \text { pred }}\right|}{n} \tag{5}\\
\delta=\left|\frac{Z_{\mathrm{c}, \text { exptl }}-Z_{\mathrm{c}, \text { pred }}}{Z_{\mathrm{c}, \text { exptl }}}\right| \tag{6}\\
\bar{\delta}=\frac{1}{N} \sum_{n}\left|\frac{Z_{\mathrm{c}, \text { exptl }}-Z_{\mathrm{c}, \text { pred }}}{Z_{\mathrm{c}, \text { exptl }}}\right| \tag{7}
\end{gather*}
$$

The performance of the new model has been compared with that of other estimation methods from the literature, and the results indicate that the new model is significantly more reliable. The results presented in Table 2 show that the proposed method is more accurate than other methods for Z_{c} prediction. AAD for Z_{c} prediction of 167 organic compounds is 0.007 and $\bar{\delta}$ is 2.45%, which are compared to 0.018 and 6.90% with the method of Joback and Reid, 0.016 and 5.94% with the method of Constantinou and Gani, 0.012 and 4.73% with the method of Wang et al., and 0.010 and 3.83% with the method of Lee-Kesler.

According to Wang et al.'s previous work, ${ }^{8-10} \bar{\delta}$ for $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c} was $1.1 \%, 2.4 \%$, and 2.1%, respectively, and if the Z_{c} calculation was obtained through the prediction results of T_{c}, P_{c}, and $V_{\mathrm{c}}, \bar{\delta}$ would be 4.73%. This is because both $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c} prediction and Z_{c} prediction could contribute to the overall errors. Consequencely, even though $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c} prediction
methods are much more precise than other methods, they are likely to increase Z_{c} prediction errors on the basis of the prediction results of $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c}. Similarly, the accumulative total error might be even greater for Joback and Reid's method and Constantinou and Gani's method. Therfore, from this work, it can be demonstrated that the indirect method for Z_{c} prediction, based on the prediction results of $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c}, should not be recommended because of the accumulative total errors, and our direct Z_{c} prediction method is more precise than Lee-Kesler's method.

The results presented in Table 3 prove that the predicted Z_{c} values agree well with the experimental results, which indicates that our new position group contribution method for predicting Z_{c} has good overall accuracy. Also, the results presented in Table 3 show that our new simple model gives low deviations and can be used with confidence in thermodynamic and engineering calculations.

Conclusion

The objective of this work was to develop and evaluate our new position group contribution method for predicting the critical compressibility factor, Z_{c}. For this purpose, 167 organic compounds from the literature were selected. In this paper, contributions for compounds containing carbon, hydrogen, oxygen, nitrogen, chlorine, and sulfur are reported, and a position distribution function is developed which could distinguish between the thermodynamic properties of all isomers of organic compounds including cis and trans or Z and E structures. The accuracy of our method is compared to the experimental data, and the results indicate that our model provides very satisfactory results. The overall average absolute difference and the relative derivation for Z_{c} predictions of 167 organic compounds are found to be 0.007 and 2.45%, respectively. Also, it is proven that our model performs significantly better than
those proposed by Joback and Reid, Constantinou and Gani, Wang et al., and Lee-Kesler. Moreover, from this work, it can be demonstrated that the indirect method for Z_{c} prediction, based on the prediction results of $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c}, should not be recommended because of the accumulative total errors. More importantly, the higher prediction accuracy of the proposed method shown in our previous works and this work suggests that it is possible to use a similar framework to predict the critical properties, not only $T_{\mathrm{c}}, P_{\mathrm{c}}$, and V_{c}, but also Z_{c}, of organic compounds containing various functionalities.

Appendix

Example 1. Estimation of Z_{c} of 2-Ethylhexanoic Acid.

This compound is decomposed in position groups as follows: two $\mathrm{C}-\left(\mathrm{CH}_{2}\right)(\mathrm{H})_{3}$ groups, four $\mathrm{C}-(\mathrm{C})_{2}(\mathrm{H})_{2}$ groups, one $\mathrm{C}-(\mathrm{C})_{2}(\mathrm{CO})(\mathrm{H})$ group, one $\mathrm{CO}-(\mathrm{CH})(\mathrm{O})$ group, one $\mathrm{O}-(\mathrm{CO})(\mathrm{H})$ group. The total number of groups $N=9$. The position factor for the position of (CH) group 2 is $P=2$. The molecular weight $M=144.214$. From the contributions in Table $1, Z_{\mathrm{c}}$ is estimated by eq 1 :

$$
\begin{gathered}
Z_{\mathrm{c}}=-2.23712-0.02037 \cdot 2-0.00120 \cdot 4+0.03574- \\
0.27747 \tanh (1 / 9)-0.06317 \tanh (1 / 9)-0.00160 \cdot 2- \\
0.087 \exp (1 / 9)+2.61929 \exp (1 / 144.214)=0.252
\end{gathered}
$$

The calculated result is 0.252 while the experimental Z_{c} is 0.262 .

Example 2. Estimation of Z_{c} of Ethyl Isobutanoate.

This compound is decomposed in position groups as follows: one $\mathrm{C}-\left(\mathrm{CH}_{2}\right)(\mathrm{H})_{3}$ group, two $\mathrm{C}-(\mathrm{CH})(\mathrm{H})_{3}$ groups, one $\mathrm{C}-(\mathrm{C})_{2}(\mathrm{CO})(\mathrm{H})$ group, one $\mathrm{C}-(\mathrm{C})(\mathrm{O})(\mathrm{H})_{2}$ group, one $\mathrm{CO}-(\mathrm{CH})(\mathrm{O})$ group, and $\mathrm{O}-(\mathrm{CO})\left(\mathrm{CH}_{2}\right)$ group. The total number of groups $N=7$. The position factor for the position of the (CO) group is $P=3$. The molecular weight $M=$ 116.16. From the contributions in Table $1, Z_{c}$ is estimated by eq 1 :

$$
\begin{gathered}
Z_{\mathrm{c}}=-2.23712-0.02037-0.01785 \cdot 2+0.03574+ \\
0.01642-0.14048 \tanh (1 / 7)+0.06678 \tanh (1 / 7)- \\
0.00106 \cdot 3-0.087 \exp (1 / 7)+2.61929 \exp (1 / 116.16)= \\
0.286
\end{gathered}
$$

Therefore, the calculated result is 0.286 , while the experimental Z_{c} is 0.279 .

Literature Cited

(1) Bonyadi, M.; Esmaeilzadeh, F. Prediction of gas condensate properties by Esmaeilzadeh-Roshanfekr equation of state. Fluid Phase Equilib. 2007, 260, 326-334.
(2) Bonyadi, M.; Esmaeilzadeh, F. A modification of the alpha function (α), and the critical compressibility factor $\left(\zeta_{\mathrm{c}}\right)$ in ER (EsmaeilzadehRoshanfekr) equation of state. Fluid Phase Equilib. 2008, 273, 3137.
(3) Peng, D. Y.; Robinson, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59-64.
(4) Lee, B. I.; Kesler, M. G. A generalized thermodynamic correlation based on three-parameter corrseponding states. AIChE J. 1975, 21, 510-527.
(5) Joback, K. G.; Reid, R. C. Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 1987, 57, 233-243.
(6) Constantinou, L.; Gani, R. New group contribution method for estimating properties of pure compounds. AIChE J. 1994, 40, 16971710.
(7) Olsen, E.; Nielsen, F. Predicting vapour pressures of organic compounds from their chemical structure for classification according to the VOC-directive and risk assessment in general. Molecules 2001, 6, 370-389.
(8) Wang, Q.; Ma, P. Sh.; Jia, Q. Zh.; Xia, Sh. Q. Position group contribution method for the prediction of critical temperatures of organic compounds. J. Chem. Eng. Data 2008, 53, 1103-1109.
(9) Wang, Q.; Jia, Q. Zh.; Ma, P. Sh. Position group contribution method for the prediction of critical pressure of organic compounds. J. Chem. Eng. Data 2008, 53, 1877-1885.
(10) Jia, Q. Zh.; Wang, Q.; Ma, P. Sh. Position group contribution method for the prediction of critical volume of organic compounds. J. Chem. Eng. Data 2008, 53, 2606-2612.
(11) Ambrose, D.; Tsonopoulos, C. Vapor-liquid critical properties of elements and compounds. 2. Normal alkanes. J. Chem. Eng. Data 1995, 40, 531-546.
(12) Tsonopoulos, C.; Ambrose, D. Vapor-liquid critical properties of elements and compounds. 3. Aromatic hydrocarbons. J. Chem. Eng. Data 1995, 40, 547-558.
(13) Gude, M.; Teja, A. S. Vapor-liquid critical properties of elements and compounds. 4. Aliphatic alkanols. J. Chem. Eng. Data 1995, 40, 1025-1036.
(14) Daubert, T. Vapor-liquid critical properties of elements and compounds. 5. Branched alkanes and cycloalkanes. J. Chem. Eng. Data 1996, 41, 365-372.
(15) Tsonopoulos, C.; Ambrose, D. Vapor-liquid critical properties of elements and compounds. 6. Unsaturated aliphatic hydrocarbons. J. Chem. Eng. Data 1996, 41, 645-656.
(16) Kudchadker, A. P.; Ambrose, D.; Tsonopoulos, C. Vapor-liquid critical properties of elements and compounds. 7.Oxygen compounds other than alkanols and cycloalkanols. J. Chem. Eng. Data 2001, 46, 457-479.
(17) Tsonopoulos, C.; Ambrose, D. Vapor-liquid critical properties of elements and compounds. 8. Organic sulfur, silicon, and tin compounds ($\mathrm{C}+\mathrm{H}+\mathrm{S}$, Si, and Sn). J. Chem. Eng. Data 2001, 46, 480-485.
(18) Marsh, K. N.; Young, C. L.; Morton, D. W.; Ambrose, D.; Tsonopoulos, C. Vapor-liquid critical properties of elements and compounds. 9. Organic compounds containing nitrogen. J. Chem. Eng. Data 2006, 51, 305-314.
(19) Marsh, K. N.; Abramson, A.; Ambrose, D.; Nikitin, E.; Tsonopoulos, C.; Young, C. L. Vapor-liquid critical properties of elements and compounds. 10. Organic compounds containing halogens. J. Chem. Eng. Data 2007, 52, 1509-1538.

Received for review January 29, 2009. Accepted March 26, 2009.

JE9001152

[^0]: * To whom correspondence should be addressed. E-mail: wang_q@tust.edu.cn.
 ${ }^{\dagger}$ Tianjin University of Science and Technology.
 * Tianjin Universty.

[^1]: ${ }^{a}$ The first symbol represents the element that forms the center of the group. The symbols between parentheses represent the elements to which it is linked. The usual symbols are used to represent the elements in their normal valence state. Elements in other valence states are distinguished by using additional characters, and furthermore, different symbols represent multiply bonded carbons, depending on the element at the other end of the multiple bond: Cd, carbon forming a double bond with another carbon; Cb , carbon involved in a benzene or a pyridine ring; $\mathrm{CO}, \mathrm{C}=\mathrm{O}$ group; CN , $\mathrm{C} \equiv \mathrm{N}$ group; N_{I}, nitrogen of the imide $(\mathrm{C}=\mathrm{N}-)$ function, also used for the nitrogen of pyridine derivatives. The pyridine ring is considered as formed by five Cb atoms and one N_{I} atom. trans or cis correction: cis structure correction is 1 , and trans structure correction is $-1 .{ }^{b}$ Ortho and meta corrections consider interactions between alkyl chains through a benzene ring. ${ }^{c}$ Corrections for pyridines: $C_{\mathrm{ob}}, C_{\mathrm{mb}}$, and C_{pb} pyridine corrections take into account alkyl ligands in positions ortho, meta, and para with respect to the N element, respectively.

