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The estimation of the chemical potential is crucial in a variety of applications involving phase equilibrium.
The heart of such calculation lies in the evaluation of a free-energy difference usually in the form of a
partition function ratio. In this work, a general formulation is proposed for the calculation of the chemical
potential from molecular simulation based on an integrated form of the first-order free-energy perturbation
theory, which is able to overcome the main obstacle of the traditional first-order free-energy perturbation
theory. The formulation is based on a novel scheme, where the perturbation is performed in an integral over
a set of degrees of freedom. Beyond the general formalism, a specific example is presented leading to a
reinsertion scheme for the evaluation of the chemical potential. Calculations based on this scheme are in
excellent agreement with predictions from an accurate equation of state and equivalent to the test particle
insertion scheme (Widom insertion scheme) for the pure Lennard-Jones fluid at high densities from NVT
Monte Carlo simulations. The proposed method has a straightforward implementation and can be combined
with the traditional test particle insertion method (Widom, B. J. Chem. Phys. 1982, 86, 869.). Furthermore,
since test particle insertion estimates the excess chemical potential as a forward difference and the proposed
reinsertion scheme as a backward difference, their combination can be used as a consistency check to ensure
efficient sampling.

Introduction

The prediction of phase diagrams is one of the main objectives
for both chemical engineering and materials science modern
research. One of the greatest challenges in such predictions is
the evaluation of the chemical potential since it has to be
equalized between the different phases at the point of phase
equilibrium. Over the years, several methods have been
developed for the chemical potential calculation,1-16 based on:
(a) free-energy perturbation,3,4,7-9,17-21 (b) thermodynamic
integration,14,22 (c) population ratio measurements in ensembles
which populate both systems23 (usually enhanced via an
expanded ensemble24,25 or umbrella sampling26,27), or (d)
nonequilibrium fluctuation theorems of trajectory ensem-
bles.15,16,28-35 In all cases, the chemical potential is evaluated
as the partial difference of the free energy with respect to the
number of molecules. The first attempt proposed a long time
ago by B. Widom17 is, probably, still the first choice in
molecular simulation, provided that efficient sampling can be
achieved. For many years since the original work by B. Widom,
the scientific community considered the chemical potential
evaluation via a backward difference as impossible.12 Over the
last ten years, it has been demonstrated that methods based on
particle deletion are not only feasible but even more efficient
in the case of dense systems,3-8,13,18 where accessible volume
is very small and therefore molecule insertion becomes ex-
tremely difficult.

Traditionally, the chemical potential is evaluated based on
the logarithm of the ratio between two partition functions. In

the free-energy perturbation scheme, one of the two partition
functions, namely, the one which corresponds to the reference
system, is sampled according to the equilibrium distribution and
the other to the perturbed system. In Widom’s insertion
scheme,17 the reference system contains N molecules, whereas
the perturbed system applies to N + 1 molecules. In removal
schemes, reference and perturbed systems are interchanged,
leading to a reference system containing N molecules and a
perturbed system with N - 1 molecules. In reality, the “ghost”
insertions correspond to a transformation of an “ideal gas”
particle to a “real” one by turning on the intermolecular
interactions, whereas deletions describe the reverse transforma-
tion, due to the erasure of the intermolecular interaction. This
procedure conceals the thermodynamic reference state used to
calculate the total chemical potential from the excess chemical
potential measured through the free-energy perturbation schemes.
Although test particle insertion and deletion look similar, in fact
they are not. In the removal schemes, the partition function ratio
cannot be calculated directly via a traditional first-order free-
energy perturbation. In this work, we will prove that this is now
possible via an integrated form19 of the first-order perturbation
theory.

Historically, the first attempt to calculate the chemical
potential through a molecule’s removal was introduced by Shing
and Gubbins.12 However, their calculations concluded in
proposing an alternative route implying that chemical potential
estimation via particle deletion is not feasible.1,2 This conclusion
was based on the inefficient sampling of the highly positive
energies felt by the removed molecule.1,2 Whereas the inefficient
sampling was correctly attributed to the use of importance
sampling in the N-particle reference system, i.e., the reference
system is not sampling the highly positive energy configurations
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produced if the candidate removal particle comes close to any
other particle in the system, due to the excluded volume
interactions present in all particle systems, on the other hand,
such configurations contribute greatly to the chemical potential
since they are quite probable in the system of the N - 1 particles
with the additional “ideal” molecule, where the ideal particle
can come arbitrarily close to the rest. This series of correct
observations produced the somehow “misleading” conclusion2

that the chemical potential cannot be calculated via particle
deletion.

Later on, Parsonage5,6 attributes the “inability” to estimate
the chemical potential via particle deletion to the traditional use
of an additional hard core interaction within very short distances.
This numerical “trick” is often used to prevent numerical
overflows from the estimation of energies in trial moves, which
place two molecules very close to each other, well within the
steep repulsive excluded volume interaction region. Parsonage5,6

noticed that if one increases the range of the hard core interaction
in the region where some of the trial moves would have been
accepted otherwise, it is possible to retrieve an accurate value
of the chemical potential by adding the free-energy cost of
creating a cavity of the size of the additional hard core potential.
Indeed, when the hard core interaction used was not large
enough, then the addition of the hard sphere was not expected
to alter significantly the original system, provided that the
repulsive part of the potential does not become important.
Parsonage’s5,6 methodology, despite the necessity to slightly
alter the intermolecular potential of the system, was the first to
overcome the deficiencies related to the deletion methods. On
the other hand, although the calculations can be tuned to be
accurate enough, no clear physical justification for the alteration
of the intermolecular potential is given, other than to avoid
numerical overflow. Later on, Kofke and Cummings3,4 presented
a very thorough and extensive analysis of methods for the
evaluation of the chemical potential with molecular simulation
techniques based on the introduction of an intermediate stage.
In their thorough work,3,4 they proposed an insertion scheme
based on the introduction of an intermediate state testing both
stage insertion and deletion schemes. In their conclusions, they
recommend the use of the insertion techniques based on
simulation results in hard-sphere and Lennard-Jones systems.
In their work, the hard core potential does not alter the
intermolecular interaction, but special attention should be given
to the range of the hard core diameter use in the insertion and
deletion process as in the case of any free-energy perturbation
in liquid theory.36-40 The diameters used in the insertion
schemes have to be smaller than the minimum distance between
two molecules under the given conditions, whereas those in the
deletion scheme should be larger. Considering the above and
the ability of analytical evaluation for the accessible volume,
provided by the work of Dodd and Theodorou,41 a more efficient
deletion scheme can be implied.8

Finally, Boulougouris and co-workers8 independently pre-
sented a detailed formulation of the inverse Widom method,
namely, the “staged particle deletion method”, based on particle
deletion and leading to an accurate calculation of the chemical
potential providing also a theoretical basis for the deletion
schemes. The formulation is based on the idea that if one
removes a molecule from the N molecule reference system the
perturbed system is not “allowed” to relax. This is a direct
consequence of the use of a first-order free-energy perturbation
for the evaluation of the partition function ratio. Interestingly,
in the case of particle deletion, it creates a bias in the sampling
of the perturbed system. The perturbed system is not simply a

system of N - 1 molecules but rather a system of N - 1
molecules and a “hole” since the remaining N - 1 molecules
can never occupy the volume accessed by the Nth molecule,
unless the reference system would have been allowed to sample
an “impossible” condition, where at least two molecules would
have to overlap.8 So, if one removes a molecule in the way
described initially by Shing and Gubbins,12 he will always
sample configurations with a hole, leading to biased results.
Boulougouris and co-workers7,8,19 derived an expression for the
evaluation of the excess chemical potential based on statistical
mechanics first principles that allow the removal of this bias,
by explicitly accounting for the difference between a system
with N - 1 molecules and one hole and a system with N - 1
molecules, that is, the free energy of cavity formation measured
from the accessible volume for inserting a hard sphere into the
(N - 1) molecule system. It should be noted that beyond the
traditional approaches to unbias the sampling by either measur-
ing it or creating a mapping that overcomes it7,8,19 the bias for
the creation of a cavity can now be expressed as a perturbation
from the equilibrium distribution based on the recent develop-
ment of the Eigenvalue Representation of Observables and
Probabilities in a HIgh-dimensionaL Euclidean space42 (ERO-
PHILE). Under this description, a perturbation from equilibrium
can now be used to express a bias or the reweight of the
reference system distribution, in terms of both a displacement
in an ortho-normal space of transformed probabilities or
equivalently on an ortho-normal space of observables.42

In this work, the proposed methodology is based on a more
elaborate idea, that of evaluating the partition function ratio via
a comparison between an integral of configurations of the two
systems. In traditional first-order free-energy perturbation
schemes (based on either deletions or insertions), a molecule is
transformed from a “real” to an “ideal” molecule, or vice versa,
in a configuration base. However, there is a big difference
between adding and removing molecules since in the case of
removing molecules the removing particle bounded by the
presence of the N - 1 molecules is not allowed to access all
the positions in the simulation box. It is only allowed to access
a small part of that volume, namely, the accessible volume
schematically represented in Figure 1. To overcome this
difficulty, we follow a novel and more drastic approach where
comparison now takes place between the configuration points
integral, which the reference and perturbed systems can access,
if one integrates over the removed particle degrees of freedom.

As a test system, we choose the pure Lennard-Jones fluid,
where the new method results are compared to simulations using
the Widom insertion scheme and an accurate equation of state.43

The new methodology can be easily applied to both Monte
Carlo and molecular dynamics simulations.

Theory

Several years ago, Widom showed that the evaluation of the
chemical potential is possible via the comparison of the free
energy of a system of N molecules with the free energy of a
system of N + 1 molecules based on a first-order perturbation
with the former being the reference and the latter being the
perturbed system. Since then his method is very frequently used
in molecular simulation. In an “inverse Widom” scheme, the
roles of the reference and perturbed system would have to be
interchanged, leading to a reference system of N molecules and
to a perturbated system with N - 1 molecules. As discussed
above, a simple particle deletion scheme cannot be generated
by simply deleting a molecule.8 The additional restriction
originates from the nature of the first-order perturbation theory
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itself since the reference system upon perturbation should be
able to sample all parts of the configurational space for which
the final perturbed systems acquire a significant probability to
be observed. In the case of a deletion scheme, the perturbed
system has additional space inaccessible to the final reference
system, generated by the ability of the Nth removed molecule
to sample the complete volume of the system as an ideal
molecule. In this work, we propose a new scheme, which
overcomes those obstacles and provides a route for the calcula-
tion of the chemical potential through reinsertion of a real
molecule, and a more general scheme, where an additional
function can be used for scheme creation ranging from particle
deletion to reinsertion.

The mathematical formulation presented here is in the NVT
ensemble for a monoatomic molecular system. Whereas it is
trivial to extend it in other ensembles, the extension to
polyatomic molecules has to take into account the inter- and
intramolecular part of the interactions. This can be done
following the procedure proposed for the staged particle
deletion7 or the recent work on the direct particle deletion.13,44

The free energy of N molecules at temperature T and volume V
is given by eq 1

A(N,V,T) ) -1
�

ln(Z(N,V,T)) (1)

where Z(N,V,T) describes its partition function, whereas the
estimation of the chemical potential, based on backward
difference of the free energy, leads to

�µ ) �µig - ln(( 1
V) Z(N,V,T)

Z(N - 1,V,T)) (2)

where �µig is the ideal gas chemical potential at temperature T
and molecular density <N/V>.

In the first attempt by Shing and Gubbins,12 a first-order
perturbation was proposed by multiplying and dividing with the
potential energy change upon the deletion of the Nth molecule
in the footsteps of Widom’s insertion method. Its mathematical
interpretation could be expressed by setting the volume of the
system appearing in the denominator of eq 2 as

V ) ∫ d3rN ) ∫ e-�UN( rb1,..., rbN)

e-�UN( rb1,..., rbN)
d3rN (3)

where UN(rb1, ..., rbN) ≡ UN(rb1, ..., rbN) - UN-1(rb1, ..., rbN-1) stands
for the intermolecular energy felt by the Nth molecule due to
its interactions with the remaining N - 1 molecules of the
system. As was shown from the development8 of the “staged
particle deletion”, this kind of first-order perturbation fails
because several configurational portions of the Nth molecule
system lead to indeterminate terms. To resolve this problem,
the stage particle deletions scheme proposed the use of an
intermediate stage, where a hard sphere is replacing the removed
molecule. With the appropriate choice of the hard sphere
diameter, one can guarantee the absence of indeterminate terms
leading to the apparent “bad sampling”. On the other hand, in
the direct particle deletion approach,13,19 instead of using eq 3,
one has to multiply and divide by the accessible volume of the
hard molecule, replacing the Nth molecule, instead of using
simply the Boltzmann weight. In mathematical terms, this reads
as

1 ) ∫ ∏
i

N-1

H(ri,N)d3rN/ ∫ ∏
i

N-1

H(ri,N)d3rN (4)

where ∏i
N-1H(ri,N) is a product of Heaviside functions8 account-

ing for the distances between atomic centers of the hard
molecule and atomic centers in the N - 1 molecules. Each
Heaviside function switches from 0 to 1 as its argument distance
goes through d. ∫∏i

N-1H(ri,N)d3rN is then, by definition, the
accessible volume.8 In this work we will show that by changing
this step it is possible to construct a series of valid schemes for
the evaluation of the chemical potential, ranging from particle
deletion to particle reinsertion.

To derive the proposed reinsertion scheme, one has to perturb
the system over the partition integral of the real Nth molecule,
∫exp(-�U(N))d3rN, instead of the accessible volume. By mul-
tiplying and dividing by ∫exp(-�U(N))d3rN, we get

Z(N,V,T)
VZ(N - 1,V,T)

)

∫ e(-�UN(r1,...,rN))d3r1...d
3rN

∫ V exp(-�U(N)(r1, ..., rN-1))

∫ exp(-�U(N)(r1, ..., rN-1))d
3rN

e(-�UN-1(r1,...,rN-1))d3r1...d
3rN-1d

3rN

(5)

where we have applied the simple mathematical equality ∫dy
) ∫(∫f(x,y)dx/∫f(x,y)dx)dy ) ∫∫(f(x,y)/∫f(x,y)dx)dxdy instead of
the ∫∫dxdy ) ∫∫(f(x,y)/f(x,y))dxdy used in the classical first-
order free-energy perturbation theory, with y representing the
position vectors of the N - 1 molecules and x representing the
position vector of the Nth molecule.

Figure 1. Pockets of accessible volume, for hard sphere diameter d ) 0.9σ:
(a) in a representative configuration of a 250 molecule system and (b) in
the same system after the removal of one molecule, produced using MAPS50

3.1.
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By recognizing that V ) ∫d3rN, eq 5 results to eq 6

Z(N,V,T)
VZ(N - 1,V,T)

) 1

〈 ∫ d3rN

∫ exp(-�U(N))d3rN
〉

N,V,T

(6)

From eqs 2 and 6, it becomes evident that the excess chemical
potential can now be expressed via an ensemble average of
reinserted “ghost” molecules as

�µex ) + ln(〈 ∫ d3rN
ghost

∫ exp(-�U(N)ghost)d3rN
ghost〉

N,V,T
) (9)

whereas the direct particle deletion and the original Widom
schemes would calculate the excess chemical potential as
described in the following equations

�µex )

+ ln(〈 ∫ d3rN
ghost

∫ ∏
i

N-1

H(ri,N, d)d3rN
ghost

∏
i

N-1

H(ri,N, d)e�U(N)( rb1,..., rbN)〉
N,V,T

)
(10)

�µex ) -ln(〈 ∫ e-�U(N)ghost( rb1,..., rbN)d3rN
ghost

∫ d3rN
ghost 〉

N,V,T
) (11)

Note the difference between the e�U(N)(rb1,...,rbN) term in the nominator
of the particle deletion methods and the ∫e-�U(N)ghost(rb1,...,rbN)d3rN

terms in the Widom insertion and reinsertion scheme. In the
former, the position of the Nth molecule is that of the “real”
one, whereas in the insertions and reinsertions the position
corresponds to that of the ghost molecule. The analysis presented
above for the NVT ensemble can be easily applied to other
ensembles, such as the NPT, grand canonical, or the Gibbs
ensemble.45

Furthermore, the derivation can be generalized by the
introduction of an arbitrary function W(rb1, ..., rbN) in the following
form

�µex )

+ ln(〈 ∫ d3rN
ghost

∫W( rb1, ..., rbN)d3rN
ghost

W( rb1, ..., rbN)e�UN( rb1,..., rbN)〉
N,V,T

) (12)

Table 1 lists the weighting function W(rb1, ..., rbN), leading to the
different expressions for the evaluation of the excess chemical
potential.

Although there is relative freedom in the choice of the
weighting function, W(rb1, ..., rbN), and therefore a variety of
schemes can be derived, the weighting function W(rb1, ..., rbN)
has to obey a simple rule. There should be no point {rb1, ..., rbN}
in the configurational space for which W(rb1, ..., rbN) has a nonzero
value, whereas e+�U(N)(rb1,...,rbN)f ∞. The condition should hold of
the configurational space sampled according to the Boltzmann
weight of the reference system, whereas the Nth molecule is
the “real” molecule. In mathematical terms, the Kernel of
e-�U(N)(rb1,...,rbN) should be a subset of the Kernel of W(rb1, ..., rbN), at
least at the points of the configurational space for which the
equilibrium Boltzmann weights are nonzero. If the above
condition is not satisfied, as in the case of the first attempts to
evaluate the chemical potential via deletion, a bias will be
introduced. Similarly, if the choice of W(rb1, ..., rbN) does not
prevent the e+�U(N)(rb1,...,rbN) term of the real molecule appearing in
the nominator of eq 10 to take large values, significant sampling
problems will appear. In the direct particle deletion scheme,
this is satisfied through a proper choice of the hard core
diameter, which guarantees that the e+�U(N)(rb1,...,rbN) term will
become well bound, at last from the short-range excluded
volume highly repulsive contributions. In a more complex
potential, one may have to choose between more elaborate
functional forms which will allow for efficient sampling for both
contributions for the “real” and the “ghost” molecule. As one
should expect, there is “no free meal”. When the kernel of W(rb1,
..., rbN) is increased (i.e., the point of the configurational space
for which W(rb1, ..., rbN) is zero), to reduce the sampling
requirements posed by the W(rb1, ..., rbN)e�U(N)(rb1,...,rbN) of the
real molecule, the term of the ghost particle
∫W(rb1, ..., rbN) d3rN

ghost/∫d3rN
ghostbecomes harder to evaluate since it

will become more rare to get a nonzero value. The optimal
weighting function should balance those errors, and in general it
may depend on the way the terms are actually evaluated. For
example, in the stage and direct particle deletions, the ghost particle
contribution is highly facilitated by the analytical calculation of
the accessible volume provided by the work of Dodd and
Theodorou.46 Another promising direction will be an analytical
function, for which the proposed condition holds, and at the same
time the ghost particle integral may be calculated analytically.

Table 1. Different Expressions for the Evaluation of the Excess Chemical Potential Based on Different Choice of the Weighting Function W(rb1,
..., rbN)

W( rb1, ..., rbN)

�µex ) + ln(〈 ∫ d3rN
ghostW( rb1, ..., rbN)e�U(N)( rb1,..., rbN)

∫W( rb1, ..., rbN)d3rN
ghost 〉

N,V,T
) general method

W( rb1, ..., rbN) ≡ ∏
i

N-1

H(ri,N, d)

�µex ) + ln(〈V ∏
i

N-1

H(ri,N, d)e�U(N)( rb1,..., rbN)

∫ ∏
i

N-1

H(ri,N, d)d3rN
ghost 〉

N,V,T

) direct particle deletion

W( rb1, ..., rbN) ≡ e-�U(N)( rb1,..., rbN)

�µex ) + ln(〈 ∫ d3rN
ghost

∫ exp(-�U(N)ghost)d3rN
ghost〉

N,V,T
) reinsertion
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It has to be pointed out that the condition described above is
intimately related to the restrictions of the traditional first-order
perturbation, as is described by Bennett20 and analyzed above.
Note that the above condition holds even beyond the first-order
perturbation, where the mapping may be brilliantly designed to
allow the “relaxation” of the environment around the perturba-
tion, as is the case of the “minmap” method of Theodorou.10

However, there is a significant difference; in the traditional
perturbation procedure the restriction is imposed by the nature
of the mapping, whereas in our case the restriction has been
moved to the choice of the weighting function used to calibrate
each of the mapped points.

In a similar fashion, one can derive a generalized expression
for the staged particle deletion

�µex ) + ln(〈W( rb1, ..., rbN)e�U(N)( rb1,..., rbN)〉) -
ln〈W( rb1, ..., rbN)〉 (13)

One can even try to minimize the variance of the calculation
based on the work of Bennett20 by an appropriate choice of the
weighting function W(rb1, ..., rbN), but this goes beyond the scope
of this work.

Results and Discussion

A particular application of a generalized scheme proposed
for the calculation of the excess chemical potential leading to
the reinsertions of ghost molecules was tested for systems of
spheres interacting through a Lennard-Jones (L-J) potential.
Monte Carlo simulations were performed in the NVT ensemble
at high density conditions. Provided that sufficient insertions
have been allowed, the original Widom and the proposed
reinsertion method produce identical results.

A system of 250 molecules in a cubic box with periodic image
boundary conditions is chosen for numerical conformation.
Monte Carlo simulations with an equilibration period of 0.5
million steps, followed by an average of 5.5 million steps, were
used to provide the ensemble of configurations according to
the NVT statistical ensemble. In this work, the Metropolis
acceptance criteria47 were used, whereas, in general, the
efficiency of the proposed scheme can be extended by either
introducing a bias26 that incorporates the W(rb1, ..., rbN) term in
the sampling or by taking into account states, which under
standard Metropolis acceptance would have been rejected.48 The
latter is possible via Integration over a Markovian web method,48

which enables statistical enrichment beyond the importance
sampling by incorporation to the ensemble average trial and
rejected Monte Carlo moves without introducing a bias.48,49 Both
approaches can potentially increase the overall efficiency since
the evaluation of the chemical potential is related to the
evaluation of an ensemble average for a quantity with important
contributions to the “outskirts” of the important sampling
distribution provided by Metropolis sampling.

Results are reported in dimensionless L-J units (σ for length,
σ-3 for density, ε for energy and chemical potential). The
simulation results for the chemical potential (µex) of the pure
Lennard-Jones fluid are compared to predictions from a very
accurate43 equation of state (EoS). The Monte Carlo simulations
have been performed in the NVT statistical ensemble, whereas
the excess chemical potential µex has been evaluated from
simulation using the Widom insertion and the proposed reinser-
tion scheme developed in this work. When a sufficient number
of insertions are used, simulation results are in very good
agreement with each other, within the statistical uncertainty of
the calculations, and with EoS predictions. In Figure 2, the

running average of the excess chemical potential is presented
for the Widom insertion and the reinsertion methods, exhibiting
practical equivalence between the two methods at the specific
conditions of molar density F ) 0.723 and temperature T ) 1
in reduced units. Note that all comparisons between the
reinsertion and the Widom insertion method have been done
on the basis of equal CPU consumption by keeping the number
of total insertions constant. Special attention has been given to
the distribution of the reinsertion trials. Usually, when a
computationally demanding property is requested, in molecular
simulation it is computationally more efficient to perform the
evaluation procedure of the ensample average not in every step,
but with a fixed period which guarantees decorrelation. The
choice of an efficient balancing between computational cost and
sampling efficiency is done, most of the times, in an empirical
way. In the case of the reinsertion method, one should be more
careful. Unlike Widom’s method, where a single ensemble
average is evaluated at the end of the simulation over all trial
ghost insertions, in the reinsertion scheme an ensemble of
average is estimated. Each average is taken over trial reinsertions
of a given configuration. As a consequence, there should be a
sufficient number of ghost insertions for each configuration.
Note, that if one uses inefficient sampling, i.e., a small number
of insertions, the two methods will deviate from the correct value
and from each other, which can be used as a test in the sampling
efficiency. From Figure 3 it becomes evident that under the
given conditions a reduction in the number of (re)insertions per
configuration of the reference system is stronger for the
reinsertion method. In Figure 3, the open symbols report the
evaluations done every 1000 Monte Carlo (MC) steps, whereas
closed symbols represent the evaluation every 500 MC steps.
In the case where the evaluation has been done every 500 MC
steps and 10 000 trial insertions have been used, the reinsertion
method seems to fail, whereas with exactly the same compu-
tational cost, if the calculation is performed every 1000 MC
steps with 20 000 insertions, the reinsertion method produces
correct results. Nevertheless, comparison between insertion and
reinsertion, which is now trivial, can be used to secure that an
appropriate sampling has been performed, especially now, where
the number of necessary ghost insertions is very sensitive to
the system and to the conditions under investigation.

In opposition to the case of the staged (SPD)7,8 and direct
particle deletion (DPD),13,18 in the reinsertion method, as in the
original Widom insertion method, there is no hard core diameter.
On the other hand, in the generalized19 version proposed by eq
12, the use of a hard core might be an efficient way of satisfying

Figure 2. Running average of the excess chemical potential evaluated based
on the Widom insertions (long dashed line), the reinsertion methods (solid
line), and the equation of state proposed by Johnson and co-workers43 (short
dusted line), showing the equivalence between the two methods at the
specific conditions of F ) 0.723 and T ) 1 (in reduced units).
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the validity of the perturbation scheme, as described above. In
that case, as in the case of the DPD and SPD schemes, is quite
important to chose an appropriate hard core diameter, not only
to satisfy consistency of the calculation but also to optimize in
terms of the statistical error and the computational cost. As it
has been shown7,8,13,19 in the cases of the SPD and the DPD,
the hard core diameter should not be smaller than the minimum
distance between two particles interacting with the full potential.
Note that the use of an effective hard core diameter is by no
means strange to the perturbation theory of fluids. Moreover,
as it has been demonstrated by the pioneered work37,38 of Sir
John S. Rowlinson, the effective hard sphere diameter, used to
map the soft repulsive part of the intermolecular interaction onto
an effective hard sphere system in the perturbation theory of
simple fluids, is a function of the temperature and the actual
form of the soft repulsive intermolecular potential, and it plays
a critical roll in the theory of simple fluids.39 Therefore, the
optimal use of the hard core diameter used in SPD and DPD is
expected to be also a function of the simulation conditions and
of the actual functional form of the repulsive part of the
interatomic interactions in general, since although the two
diameters are not identical they bear a close resemblance to
each other.

It goes without saying that the LJ system under study does
not represent a great challenge with current computational
facilities. Nevertheless, since it is a well-examined system,
where the Widom insertion is capable of evaluating with
sufficient accuracy the chemical potential, it provides an
excellent ground for the demonstration of the validity of the
method(s)/theory proposed in the current work. In general, the
proposed reinsertion scheme is expected to work well under
conditions where the original Widom insertion scheme is
applicable, offering a very simple validation scheme since a
discrepancy between the two methods is a strong indicator of
inefficient sampling. On the other hand, in the study of more
complex systems, like polyatomic solutes or molecules with
strong electrostatic interactions where the application of the
original Widom insertion method becomes inefficient, the use
of the generalized scheme is expected to be of great use upon
the appropriate choice for the weighting function W(rb1, ..., rbN).
This has been demonstrated by the use of the direct particle
deletion scheme (one of many possible implementations of the

generalized scheme) recently in the prediction of the CO2

solubility in atactic polystyrene,13 benzene in polyethylene,44

and in the original work on aqueous solutions.18

Conclusions

The generalization of the deletion methods for the calculation
of the chemical potential in the course of a molecular simulation
has been proposed, along with a specific application leading to
a reinsertion scheme. The new approach is based on a novel
method13,19 of free-energy perturbation, where we are able to
compare systems sampling different parts of phase space,
“lifting” one of the stronger restrictions of first-order perturbation
theory. In the proposed reinsertion scheme, a molecule is
removed and reinserted randomly, performing a perturbation
over the “partition integral” of the Nth molecule degrees of
freedom. The computed values for the excess chemical potential,
µex, from the reinsertion schemes are in good agreement with
values obtained using the Widom insertion scheme and an
accurate equation scheme.43
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