PVTx Measurements of Water–*n*-Pentane Mixtures in Critical and Supercritical Regions

Suleiman M. Rasulov[†] and Ilmutdin M. Abdulagatov^{*,‡}

Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences, 367005 Makhachkala, M. Yaragskogo Str. 94, Dagestan, Russia, and Geothermal Research Institute of the Dagestan Scientific Center of the Russian Academy of Sciences, Makhachkala, 367030 Makhachkala, Shamilya Str. 39, Dagestan, Russia

The *PVTx* properties of $H_2O + n-C_5H_{12}$ mixtures have been measured in the near- and supercritical regions. Measurements were made along 66 liquid and vapor isochores in the density range from (63 to 713) kg·m⁻³, at temperatures from (303 to 684) K, and at pressures up to 63 MPa. Measurements were made for eight concentrations between 0.0270 and 0.8898 mole fractions of $n-C_5H_{12}$. The temperatures and pressures at the three-phase (liquid–liquid–gas) and two-phase (liquid–gas) boundary curves for the $H_2O + n-C_5H_{12}$ mixtures were obtained using the isochoric (*P*–*T*) break point technique. The expanded uncertainty of the density, pressure, and temperature measurements at the 95 % confidence level with a coverage factor of *k* = 2 is estimated to be 0.12 % (at high densities) to 0.15 % (at low densities), (0.0005 to 0.03) MPa, and 15 mK, respectively. The critical property (P_C,T_C) data of the upper and lower branches of the critical curves were extracted from the derived phase-boundary data. The measured three-phase data were used to estimate the value of the upper critical end point. The value of the Krichevskii parameter was calculated from the direct measured *PVTx* and the derived critical property data.

Introduction

Water + hydrocarbon mixtures are very important in many scientific and technological aspects. Of practical relevance is the use of water flooding in enhanced crude oil recovery,¹ a procedure which is designed to maintain the reservoir pressure while oil is extracted through the oil well. Other applications for water + n-alkane mixtures are the hydrous pyrolysis of kerogen from shale oil, the hydrolysis of plastics, synthetic fibers, and polycarbonates for recycling,² the destruction of hazardous wastes, such as polychlorinated biphenyls,3,4 and environmentally benign catalysis.⁵ Binary aqueous *n*-alkane mixtures are an interesting case of mixing a strongly polar and a nonpolar component. For example, aqueous hydrocarbon mixtures show unusual critical line shapes. The critical curve of $H_2O + n - C_5H_{12}$ is interrupted (no continuing critical curve between the pure components' critical points) and split into two branches, upper and lower. Water + n-alkane mixtures exhibit complex phase behavior, especially near the critical point of one of the components. Relatively few experimental critical locus data have been reported (see below) for aqueous $n-C_5H_{12}$ solutions due to the high-pressure (over 22 MPa) apparatus needed. The difficulties in measuring the critical properties of aqueous solutions arise from several sources: (1) there are great differences between the critical properties of pure water and the pure n-C₅H₁₂ (about 177 K and 19 MPa); (2) the apparatus has to be designed to tolerate high temperatures and high pressures in addition to the corrosion resistance of the vessel; and (3) the reliability of the calculated values is fair.

Review of Available Experimental Data

Critical Properties of Binary Aqueous n-C₅H₁₂ Solution. Aqueous solutions of less volatile, more strongly interacting molecules, such as n-alkanes, have critical curves that pass through a substantial temperature minimum before turning to high temperatures and pressures. The mutual solubility of hydrocarbons and water is very low, and the three-phase equilibrium line occurs at significantly higher pressures than the vapor-pressure curve of the pure alkanes. The liquid-gas critical curve that connects the critical end point of the threephase line and the critical point of pure *n*-alkane is rather short, although for higher *n*-alkanes this critical line is very long. There is no continuous critical curve between the pure water and the pure hydrocarbon critical points (see Figure 1). One of the critical curves (lower critical curve) goes from the point $T_{\rm C}$ of the less volatile component (n-pentane) and terminates at the upper critical point liquid-liquid-gas (LLG) equilibrium end points (upper critical end point; UCEP, see Figure 2). The other critical curve (upper critical curve), originating from the pure water critical point $T_{\rm C}({\rm H}_2{\rm O}) = 647.1$ K extends toward very high pressures and has a minimum with respect to temperature at the point ($T_{\rm Cmin} = 624.5 \pm 0.5$ K and $P_{\rm Cmin} = 34.2 \pm 0.5$ MPa), where the two-phase region separates into two parts (see also Figure 3). The shape of the critical curves for water +*n*-alkanes changes systematically from system to system.^{6,7} It shifts to lower pressures with the *n*-alkane carbon number. The temperature at the critical locus minimum does not differ very much. The temperature at the critical end point is noticeably less than pure alkane's critical temperatures for the mixtures with butane and heavier alkanes. The critical curves of H_2O + *n*-alkane mixtures show typical gas-gas equilibria of the second

^{*} To whom correspondence should be addressed. Present address: Thermophysical Properties Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305. E-mail: ilmutdin@ boulder.nist.gov.

[†] Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences.

[‡] Geothermal Research Institute of the Dagestan Scientific Center of the Russian Academy of Sciences.

Figure 1. P-T phase diagram and upper and lower critical lines of the $H_2O + n-C_5H_{12}$ mixture. 1, the vapor-pressure curve of pure water (IAPWS²⁶); 2, the vapor-pressure curve of pure $n-C_5H_{12}$ (Span and Wagner⁴⁸); CP1, critical point of pure water; CP2, critical point of pure $n-C_5H_{12}$; \blacklozenge , Brunner;⁷ \bigtriangleup , de Loos et al.;⁶ ×, Brunner;⁷ \square , Jou and Mather;¹⁷ \blacktriangledown , Gillespie and Wilson;¹⁸ \bigcirc , Connolly;⁸ ..., three-phase (LLG) curve; UCEP, upper critical end point (this work).

Figure 2. Measured three-phase (LLG) and lower critical curves for the $H_2O + n-C_5H_{12}$ mixture together with vapor-pressure curves for pure components. •, this work; •, Brunner;⁷ ×, Brunner;⁷ \Box , Jou and Mather;¹⁷•, Gillespie and Wilson;¹⁸ O, this work; 1, the vapor-pressure curve of pure water (IAPWS²⁶); 2, the vapor-pressure curve of pure $n-C_5H_{12}$ (Span and Wagner⁴⁸); dashed line is calculated from the correlation.¹⁷

type.^{6,7} The critical parameters for the water + *n*-pentane mixture has been also measured by Connolly⁸ and Roof.⁹ The critical point is defined by Connolly⁸ as the minimum temperature for the mixing of two components in all proportions as a liquid or as the maximum temperature of a binary system for two liquid phases in equilibrium. The uncertainty in the critical measurement is 2 K and in the critical pressure is 1.01 MPa. Roof⁹ reported the pressure and temperature of the three-phase critical point for 16 binary water + hydrocarbon mixtures. Measurements were made using the 15 in. Vycor glass capillary. The capillary was sealed off at the top and connected at the bottom to a mercury pump and a pressure gauge. The steel ball was moved slowly up and down in the capillary to achieve equilibrium compositions. The disappearance of the interface into an opalescent hazy zone was chosen as the critical state. Measured values of the three-phase critical point for H₂O + *n*-C₅H₁₂ mixture are 463.71 K and 4.537 MPa. The critical parameters of the $H_2O + n-C_5H_{12}$ mixture were determined by

Figure 3. $P_C - T_C$ projection of the upper critical curve of the H₂O + n-C₅H₁₂ mixtures reported by various authors together with the present data. \bullet , de Loos et al.;⁶ \triangle , Connolly;⁸ ×, Brunner;⁷ \Box , this work; solid line is the vapor pressure of pure water IAPWS;²⁶ ---, smoothed experimental curve.

Figure 4. $T_C - x$ and $P_C - x$ projections of the upper critical curves of the H₂O + n-C₅H₁₂ mixture reported by de Loos et al.⁶ together with the present data. \bullet , de Loos et al.;⁶ O, this work; -, smoothed experimental curve.

observing the behavior of the meniscus by de Loos et al.⁶ As one can see from Figure 4 (right) in the $T_{\rm C}-x$ projection, the upper critical curve of the $H_2O + n-C_5H_{12}$ mixture observed a minimum at a concentration around 0.075 mole fraction of *n*-pentane, where $(dT_C/dx) = 0$. The $P_C - x$ projection (Figure 4, left) of the critical curve shows no minimum (monotonically increasing with concentration). At low concentrations (up to 0.075 mole fractions) $P_{\rm C}$ weekly changes with x, while at concentrations above 0.075 the $P_{\rm C}-x$ curve is very steep. It is very important, because according to the isomorphism principle,^{10,11} the near-critical behavior of binary fluids (C_V and other thermodynamic properties) is controlled by two characteristic parameters, K_1 and K_2 ,¹⁰ that are determined by the slopes of the critical curves (T_C -x and P_C -x). The parameter K_1 controls strongly divergent properties such as the isothermal compressibility K_T and the isobaric heat capacity C_P . The parameter K_2 is responsible for the deformation of the weak divergence of C_V and defines the range of Fisher renormalization¹¹ of the critical exponent α . The isochoric heat capacity behavior of a binary mixture will exhibit the same behavior as those of the pure components in the range of temperature $\tau \gg \tau_2$,¹⁰ where

$$\tau_{2} = \left[A_{0}^{+} \frac{K_{2}^{2}}{x(1-x)} \right]^{1/\alpha} \qquad \Delta \rho_{2} = B_{0} \tau_{2}^{\beta}$$

$$K_{2} = \frac{x(1-x)}{T_{C}(x)} \frac{dT_{C}}{dx} \qquad \tau = \frac{T-T_{C}}{T} \qquad \Delta \rho = \frac{\rho - \rho_{C}}{\rho_{C}}$$
(1)

Therefore, at concentrations of 0.075 mole fraction of *n*-pentane, where $(dT_C/dx) = 0$, the value of $K_2 = 0$, and the characteristic reduced temperature τ_2 is zero. Thus, the condition $\tau \gg \tau_2$ is valid at any temperatures along the critical isochore for the composition x = 0.075 mole fraction of *n*-pentane. This is means that the binary mixture H₂O + *n*-C₅H₁₂ with concentrations of x = 0.075 mole fraction of *n*-pentane behave near the critical point as pure fluid ($C_V \propto \tau^{-\alpha}$). At any other concentrations where the condition $\tau < \tau_2$ is valid, those properties that diverge weakly in single-component fluids will be saturated, and all critical exponents will be renormalized by a factor $1/(1 - \alpha)(C_{VX} \propto \tau^{\alpha/(1-\alpha)})$.

The $P_{\rm C}-T_{\rm C}$ projections of the critical curves for 23 binary mixtures of water + n-alkanes with n-alkane carbon numbers i= 1 to 12 and *i* = 14, 16, 18, 20, 24, 25, 26, 28, 30, 32, and 36 were measured by Brunner.⁷ He showed that all of the critical curves are interrupted and its shape changes systematically with *i*. Measurements were performed in a 30 cm³ cylindrical highpressure optical cell. The operating pressure of the cell is 200 MPa at 750 K. The uncertainties of pressure and temperature measurements at phase-boundary appearance or disappearance are 0.1 % and 0.2 K, respectively. The total uncertainty of the position of the critical pressure measurements is estimated to be 0.4 %. The LLG curves for these mixtures are at higher pressures than the vapor pressures of the pure components (see Figures 1 and 2) and end in an liquid-gas (LG) UCEP. The UCEP for the $H_2O + n - C_5H_{12}$ mixture found by Brunner⁷ is 463.8 K and 4.577 MPa. Our results (see below) for the UCEP are x = 0.791 mole fraction of *n*-pentane, $T_{\text{UCEP}} = 463.85$ K, and $P_{\text{UCEP}} = 4.575$ MPa. The temperature minimum of the critical curve for $H_2O + n$ -pentane reported by de Loos et al.¹² is $T_{\text{Cmin}} = 624$ K and $P_{\text{Cmin}} = 34.4$ MPa. Our results (see below) are $T_{\text{Cmin}} = 625$ K and $P_{\text{Cmin}} = 34.0$ MPa.

Neichel and Franck¹³ calculated the critical curves for water + *n*-alkane (C₁ to C₆ and C₁₂) mixtures at temperatures up to 670 K and at pressures up to 200 MPa using the perturbation-type equation of state with a repulsion and an attraction term with square-well potential for intermolecular interaction. The three adjustable parameters of the model (k_{σ} , k_{ε} , w_{ij}) have been calculated using the critical lines data ($P_{\rm C}$, $T_{\rm C}$, $x_{\rm C}$).

PVTx Measurements. The largest gap in the database is found to be the thermodynamic properties measurements in the nearand supercritical regions for the $H_2O + n-C_5H_{12}$ mixture. Most of the reported *PVTx* data cover the temperature and pressure ranges below the critical point. Almost all previous reported data are PTx (VLE data), not PVTx. They are not provided with density measurements. Here we will briefly review only work with *PVTx* and phase-boundary properties data at high temperatures and high pressures. *PVTx* properties of the $H_2O + n-C_5H_{12}$ mixture in the supercritical region have been reported by Abdulagatov et al.^{14,15} They used a constant-volume piezometer technique to measure PVTx relations at a fixed temperature of 647.05 K (close to the critical temperature of pure water) in the pressure range from (4 to 41) MPa and at concentrations from (0.028 to 0.694) mole fraction of n-pentane. The uncertainty of the density measurements was 0.5 % and pressure 2 kPa. de Loos et al.⁶ reported phase-boundary curves (PTx)between the two- and one-phase regions for 12 compositions in the temperature range from (600 to 675) K and at pressures from (15 to 170) MPa. The uncertainty in the temperature, pressure, and concentration measurements was 0.1 K, 0.02 MPa, and 0.002 mole fraction, respectively. They found a second type of gas + gas equilibrium shape of the (P-T) isopleths. Brunner⁷ measured the P-T projection of the critical curves and LLG three-phase curve data for 23 binary mixtures of water + *n*-alkane. Connolly⁸ measured the solubility (PTx) of *n*-pentane in near-critical water as a function of pressure at several constant temperatures from (573 to 625) K. The uncertainties in temperature and pressure measurements were within 0.02 K and 0.202 MPa, respectively. Scheffer¹⁶ reported three-phase (LLG) curve data for the $H_2O + n-C_5H_{12}$ mixture in the temperature range from (423 to 466) K. These data together with other published three-phase results are presented in Figure 2. Jou and Mather¹⁷ measured three-phase equilibria in the $H_2O + n - C_5H_{12}$ mixture over the range of temperature from (273 to 453) K using a visual cell. The uncertainty in temperature and pressure measurements was 0.1 K and 0.1 %, respectively. The results were fitted to Clausius-Clapeyron type equation. Three-phase equilibrium data for the $H_2O + n - C_5H_{12}$ mixture were reported also by Gillespie and Wilson¹⁸ in the temperature range from (311.5 to 423.3) K. Other properties such as excess enthalpy at high temperatures, from (363 to 698) K, were reported by Wormald et al.¹⁹ Measurements were made using two flow calorimeters of different design for low and high pressures. In our previous publication²⁰ we reported preliminary PVTx data for this mixture for only one (0.075 mole fraction of *n*-pentane) composition at the temperature range from (303 to 684) K and at pressures up to 60 MPa. In this work we slightly modified the construction of the piezometer to improve the accuracy of the pressure measurements and temperature control. In particular, we replaced the diaphragm-type null indicator to a more sensitive one and used additional heating elements to improve the temperature control to accurately maintain the homogeneity of the temperature distribution along the length of piezometric tube. Therefore, the present data for the pressures systematically differ from the previous²⁰ measurements by (15 to 20) %. Thus, the primary objective of this work was to expand the existing *PVTx* database for the $H_2O + n-C_5H_{12}$ mixture to higher temperatures (near- and above the critical temperature, up to 684 K) and pressures from (0.035 to 63.0) MPa.

Experimental Apparatus and Procedure

The high-temperature and high-pressure apparatus used for *PVTx* measurements of $H_2O + n-C_5H_{12}$ is similar to that used in previous publications²⁰⁻²⁵ to measure *PVTx* properties of pure 1-butanol, $\hat{H}_2O + n-C_5H_{12}$, and $H_2O + n-C_6\hat{H}_{14}$ in the critical and supercritical regions. Detailed descriptions of the apparatus, the experimental procedure, and an uncertainty assessment have been described in our previous publications.²⁰⁻²⁵ The measurements were made using the constant-volume method. The apparatus used for the present (P,V,T,x) measurements is schematically shown in Figure 5. The main part of the apparatus consisted of a piezometer (1), the system for the temperature control (7), the system for the filling piezometer with the sample, and the system for the pressure measurements. The most essential part of the apparatus is piezometrical tube. The cylindrical tube piezometer was made from stainless steel (12 × 18H10T, 12 chrome-18 nickel-10 titanium) with inner diameters of 8.721 ± 0.003 mm and outer diameters of 14.121 \pm 0.003 mm. A diaphragm-type null indicator (2) (see Figure 5) was mounted on one of the ends of the piezometer, and a stop valve was mounted on the other end of the piezometer.

Figure 5. Schematic representation of the high-pressure and high-temperature apparatus for *PVTx* measurements: 1, body of the piezometer tube; 2, body of the diaphragm-type null indicator; 3, stop valve; 4, solid copper block; 5, three-sectioned heater; 6, stirrer (cylindrical form with conic end); 7, inductance coil to hold the stirrer; 8, coil for fixing the falling time of falling-body; 9, compensation heater.

The stop valve was used also to fill the piezometer with the fluid sample. The sample is intensely mixed using a stirrer (6) (cylindrical form with conic end) made from stainless steel. Stirring of the mixture was accomplished with the aid of a stirrer (6) that was moved by the turning the piezometer by an angle of 180° around the vertical axis. The thermostat was a massive, solid copper block (4) which was mounted on the piezometric tube to maintain the homogeneity of the temperature distribution along the length of piezometric tube. A three-section heating element was mounted on the surface of a solid cooper block to control the temperature in the thermostat. Cylindrical wells were used for a thermocouples and resistance thermometer (PRT) on the ends and on the middle of solid cooper block. The temperature difference between various sections of the cooper block was within 0.02 K.

Pressure was measured with a diaphragm-type null indicator (2). The diaphragm (40 mm in diameter and 0.05 mm thick) was made from 321 stainless steel. The membrane was compressed (squeezed) between the piezometer body and the null-indicator body with bolts (8) (see Figure 5). At the neutral point (position) the membrane touched the surface of the cylinder (4), and the distance between the membrane and the electrical contact (5) is about (0.2 to 0.3) mm. A basic part of the diaphragm-type null indicator (2) is membrane which was made of stainless steel (0.08 mm thick and 32 mm in diameter). The membrane is separated by the sample under study, and the pressure transmitted the liquid (castor oil) of the manometer.

System of Temperature Measurement and the Temperature Control. The main heater created the desired temperature using the high-precision temperature regulator (HPTR-3). The temperature homogeneity along the piezometer was controlled with two HPTR-3, differential thermocouples, and heaters. The temperature of the piezometer was measured with a platinum resistance thermometer (PRT-10) which was calibrated against a standard thermometer of the VNIIFTRI (Moscow). All temperatures were recorded on ITS-90. The uncertainty in temperature control and temperature measurements is within 20 mK and 15 mK, respectively.

The pressure of the sample (mixture) was measured with a dead-weight pressure gauge MP-600. The absolute sample pressure was calculated as

$$P = P_{\rm m} + P_{\rm b} + P_{\rm h} \tag{2}$$

where $P_{\rm m}$ is the pressure reading by the dead-weight pressure gauge (MP-600), $P_{\rm b}$ is the barometric pressure, and $P_{\rm h}$ is the pressure created due to the difference in oil levels in the manometer and null indicator. At low pressures (up to 1 MPa) the pressure in the piezometer was measured with a null indicator and standard manometer. At high pressures the pressure measurements were performed with the dead-weight pressure gauge MP-600. The values of $P_{\rm h}$ were calculated as $P_{\rm h} = \rho_{\rm oilg}\Delta h_{\rm m}$ ($\Delta h_{\rm m} = 0.45$ m), and the values of $\rho_{\rm oil}$ in the experimental conditions change from (760 to 1000) kg·m⁻³. Therefore, the values of the $P_{\rm h}$ were changed within (0.0042 to 0.0044) MPa. The maximum uncertainty in the pressure measurements are within 0.0005 MPa at low pressures (below 1 MPa) and 0.03 MPa at high pressures. The sensitivity of the null indicator is within 0.005 MPa.

Since the inner volume $V_{\rm TP}$ of the piezometer is subjected to the effects of both temperature T and pressure P, it is essential to make appropriate corrections for these influences. The inner volume of the piezometer was calculated by taking into consideration corrections of the elastic pressure deformation and thermal expansion. The internal volume of the piezometer was previously calibrated by filling it with pure water. The volume of the piezometer $V_{T_0P_0} = m(H_2O)/\rho(H_2O)$ at room temperature $T_0 = 293.15$ K and at atmospheric pressure $P_0 = 0.1$ MPa was calculated from the well-established (IAPWS formulation, Wagner and Pruss²⁶) density $\rho(H_2O)$ and mass of the water $m(H_2O)$. The uncertainty in the density of pure water at this condition is less than $\delta \rho < 0.001$ %. The derived value of volume at these conditions was $V_{T_0P_0} = (22.035 \pm 0.025) \text{ cm}^3$. It is necessary to know the volume of the piezometer, $V_{\rm PT}$, at a given temperature T and pressure P, for the purpose of calculating densities $\rho(T,P) = m/V_{PT}$. Variations of the piezometer volume $V_{\rm PT}$ with temperature T and pressure P were calculated using the thermal expansion coefficient of the piezometer material, $\alpha = (16 \cdot 10^{-6} \text{ to } 17.5 \cdot 10^{-6}) \text{ K}^{-1}$ in the temperature range from (273 to 673) K, and the pressure expansion coefficient of the piezometer, $\beta = 4 \cdot 10^{-5} \text{ MPa}^{-1}$.

$$V_{pT} = V_{p_0 T_0} [1 + 3\alpha (T - T_0) + \beta (P - P_0)]$$
(3)

The uncertainty in α and β is negligibly small (about 5 %) and did not affect to the density determination. For example, even a 20 % uncertainty in α and β causes less than 0.15 % uncertainty in the piezometer volume.

All masses were determined with an uncertainty of $5 \cdot 10^{-4}$ g. The volume of the piezometer at a given temperature *T* and pressure *P* was measured with an uncertainty of 0.011 %. The present experimental apparatus had negligible noxious volumes. To avoid the additional uncertainty in the density measurements which were introduced by the noxious volume, a diaphragm-type null indicator was mounted on one of the ends of the piezometer (see Figure 5). Taking into account the uncertainties of measurements of temperature and pressure, the combined expanded (k = 2) uncertainty of measuring the density was estimated to be 0.15 % at low densities and 0.12 % at high

Table 1. Comparisons between the Test Measurements and the Calculated Values of the Pressure of Pure Water along the Isochore of 351.1 kg \cdot m⁻³

$T_{\rm s}/{ m K}$	P_{exp} /MPa (this work)	$P_{\rm cal}/{\rm MPa}~({\rm IAPWS}^{26})$	deviation/%
345.21	0.034	0.034	0.3
424.56	0.493	0.494	0.2
460.99	1.200	1.197	-0.2
500.19	2.646	2.649	0.1
538.06	5.081	5.078	-0.1
554.69	6.572	6.567	-0.1
599.35	12.252	12.241	-0.1
617.35	15.401	15.387	-0.1
625.16	16.953	16.941	-0.1
661.30	26.300	26.259	-0.2
677.22	31.034	31.110	0.2

densities. To check the reproducibility of the experimental density values, some of the measurements at selected temperatures and pressures were repeated at a few (5 to 6) times. The reproducibility of the data corresponding to repeated (P,T) is better than \pm 0.1 %. To test the apparatus and procedures of the measurements and confirm the accuracy of the measurements, before engaging in measurements on the $H_2O + n-C_5H_{12}$ mixture, the density of triple-distilled water was measured and compared with values calculated from IAPWS formulation.²⁶ Table 1 provides the present experimental PVT data for pure water at a selected constant density of 351.1 kg·m⁻³ measured using the same experimental apparatus. As one can see from Table 1 (see also Figure 6), the agreement between test measurements for pure water and IAPWS²⁶ formulations is good, and the absolute average deviation is AAD = 0.16 % (deviation statistics are: AAD = 0.16 %; bias = -0.02 %; standard deviation = 0.19 %; standard error = 0.06 %; maximum deviation = 0.3 %). This acceptable agreement between the present data and the IAPWS²⁶ calculations for pure water in the critical and supercritical conditions confirms the reliability and high accuracy of the measurements for the $H_2O + n-C_5H_{12}$ mixture and gives us an assurance that our instrument is functioning correctly. The $H_2O + n-C_5H_{12}$ mixture was prepared by weighing. Distilled water was used, and this was mixed with analytical reagent grade $n-C_5H_{12}$ with a mole fraction purity of 0.998. The uncertainty in concentration was 0.001 mole fraction.

Results and Discussion

Measurements of the PVTx relation of the $H_2O + n-C_5H_{12}$ mixtures were performed along 66 liquid and vapor isochores

Figure 6. Comparison of the present measured values of pressure as a function of temperature along the selected isochore of $351.1 \text{ kg} \cdot \text{m}^{-3}$ for pure water with the values calculated from IAPWS²⁶ formulation.

from (63 to 713) kg·m⁻³ as a function of temperature in the range from (303 to 684) K at pressures up to 63 MPa. These regions include upper and lower branches of the critical lines, the LLG three-phase line, and liquid-gas, liquid-liquid, and gas-gas phase equilibrium curves. Most measurements were made in a range of temperature and pressure in the immediate vicinity of the phase transition and the critical points to precisely determine the phase boundary properties (T_S, P_S) and the critical parameters $(T_{\rm C}, P_{\rm C})$. Detailed measurements of the phase transition boundary were allowed to precisely determine (see below) the shape of the LLG and LG phase boundary curves near the critical points and accurately determine the critical parameters $(T_{\rm C}, P_{\rm C})$ and therefore construction of the complete PVTx phase diagram of the binary $H_2O + n-C_5H_{12}$ mixture. The critical and phase transition points are the key parameter in the construction of the phase diagrams. The measured values of temperature, density, and pressure for the $H_2O + n-C_5H_{12}$ mixtures are presented in Table 2. Some selected experimental results are shown in Figures 7 and 8 in the P-T and $P-\rho$ projections for the fixed composition of 0.0967 mole fraction of *n*-pentane. Figures 7 shows the P-T dependence along various selected liquid and vapor isochores. As one can see from Figure 7, each measured liquid and vapor P-T isochore far from the critical region clearly exhibits the break points which are indicate the phase transition (LLG \rightarrow LG \rightarrow L or G) occurring in the system heated in a closed volume. In Figure 9 (left) the present data are depicted along the selected near-critical isotherm-isochore (almost critical isotherm-isochore of pure water, 647.05 K and 326.13 kg·m⁻³) and at the selected isotherm (right) and concentration (647.05 K and 0.0967 mole fraction of *n*-pentane) together with the data reported by Abdulatagov et al.^{14,15} The initial slope, $(\partial P/\partial x)^{\infty}_{T_{c}V_{c}}$, of the critical P-x isotherm–isochore (Figure 9, left) is defined as the value [(139.03 \pm 3) MPa] of the Krichevskii parameter (direct measurement of the Krichevskii parameter). This value is very close to the value of the Krichevskii parameter calculated from the critical properties data $[(144.11 \pm 5) \text{ MPa}]$; see below. As one can see from Figure 9, the agreement is good enough (within 0.2 % to 0.5 %). The detailed view of the various parts (ranges) of the measured liquid and vapor P-T isochors showed that each isochore contains a few break points which correspond to various types of phase transition points. In this work the measured PVTx data were used to accurately determine the location of the phase boundary (LG and LLG) curves using the "break points" technique. The break P-T curves are often found in the system water + *n*-alkanes.^{27,28}

Phase Boundary Parameter Determination. P-T relations were measured for different fillings (liquid and vapor) of the piezometer. Breaks in the P-T curves for mixtures of fixed overall concentration and density indicated the transition from a two- to a one-phase or from a three- to a two-phase region. This method was originally proposed by Lentz.²⁹ This technique was also successfully used to accurate determine the phase transition points for pure (Levelt Sengers and Hastings³⁰ and Bazaev et al.³¹) fluids and aqueous binary mixtures (Mather et al.,²⁷ Shmonov et al.,²⁸ Bach and Friedrichs,³² Bazaev et al.,³³ and Polikhronidi et al.³⁴). Each run for the PVTx measurements was normally started in the three-phase region and completed in the one-phase (liquid or vapor depending on filling factor) region. The present experimental PVTx data for the water-*n*pentane mixture were used to extract the phase-boundary parameters $(T_{\rm S}, P_{\rm S})$ using a graphical-analytical technique for each measured isochore. The LLG and LG phase boundary data extracted from isochoric P-T break points are presented in

Table 2	Experimental	(PoTr) Values	of the	H ₂ O	$+ n \cdot C \cdot H_{12}$	Mixtures
I abit 2.	Елрегинсица	(I PIA	<i>i</i> values	or the	1120	<i>n</i> -C51112	TALLET CO

Table 2.	Experimental	(<i>I pI</i> x) van	les of the m	$20 + n \cdot c_{511}$	2 IVITATULES						
T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa
				x =	0.8898 mole	fraction of n-C	5H12				
$\rho/kg \cdot r$	$m^{-3} = 63.30$	$\rho/\text{kg}\cdot\text{m}^{-}$	$^{3} = 94.96$	$\rho/\text{kg}\cdot\text{m}^{-3}$	$^{3} = 126.60$	$\rho/\text{kg}\cdot\text{m}^-$	$^{3} = 63.30$	$\rho/\text{kg}\cdot\text{m}^{-}$	$^{3} = 94.96$	$\rho/\text{kg}\cdot\text{m}^{-2}$	3 = 126.60
309.89	0.047	310.80 337.49	0.049	310.51 338 33	0.0485	413.10 419.06	1.252	418.83 424 29	1.488 1.657	445.11 450.77	2.393
349.49	0.315	349.36	0.312	362.72	0.481	424.65	1.433	426.79	1.727	457.35	2.834
353.42	0.355	354.92	0.367	366.65	0.529	432.09	1.549	430.77	1.830	463.34	3.032
358.80	0.428	358.58	0.417	371.36	0.541	436.52	1.628	437.25	2.020	468.55 475.84	3.206 3.462
366.34	0.473	367.39	0.496	380.01	0.670	455.15	1.844	472.20	2.834	479.81	3.598
369.71	0.518	371.15	0.548	395.79	0.930	467.50	2.014	496.22	3.318	491.72	3.972
377.17	0.622	374.69	0.600	401.55	1.039	490.41 525.93	2.256	529.49	3.913 4 393	514.45 535.48	4.500
386.91	0.782	386.49	0.791	414.21	1.364	560.56	2.771	595.60	4.765	570.01	5.657
392.59	0.885	393.45	0.922	420.15	1.531	590.41	2.972	629.90	5.206	605.80	6.393
401 94	0.997	400.41	1.039	420.44	1.730	645.56	3.200	679 56	5.697	676 99	6.992 7 724
407.15	1.138	412.35	1.315	438.36	2.157						
ρ/kg•n	$n^{-3} = 158.30$	$ ho/kg \cdot m^{-3}$	= 189.90	$\rho/\text{kg}\cdot\text{m}^{-2}$	$^{3} = 253.20$	$ ho/kg \cdot m^{-3}$	= 158.30	$\rho/\text{kg}\cdot\text{m}^{-2}$	s = 189.90	$\rho/\text{kg}\cdot\text{m}^{-2}$	$^{3} = 253.20$
317.26	0.0605	310.18	0.060	307.45	0.040	415.62	1.559	467.51	3.681	468.13	4.039
340.65	0.236	337.32	0.201	337.25	0.230	420.15	1.708	468.56	3.765	473.05	4.334
355.48	0.280	362.53	0.337	375.93	0.320	445.11	2.131	484.27	4.598	506.82	6.579
360.77	0.429	376.25	0.671	380.82	0.857	457.35	3.033	507.44	5.726	540.65	8.834
364.29	0.463	388.95	0.878	389.70	1.016	463.34	3.248	544.15	7.000	574.15	10.893
371.71	0.554	401.85	1.147	391.87	1.103	475.84	3.740	607.79	9.492	645.60	14.913
376.03	0.613	407.31	1.328	394.90	1.177	486.49	4.129	644.95	10.874	678.67	16.047
379.38	0.660	412.27	1.445	400.65	1.315	492.51	4.336	674.78	12.052		
387.50	0.736	413.71	1.485	407.39	1.933	516.97	5.138				
390.59	0.905	420.55	1.795	432.74	2.403	539.61	5.815				
394.20	0.991	431.62	2.295	444.09	2.834	570.01	6.641				
395.58	1.018	444.00 455.96	2.854	449.92	3.083	605.80 640.44	7.660				
407.20	1.322	462.29	3.500	460.46	3.538	677.19	9.651				
410.90	1.429	466.19	3.633	461.65	3.614						
ρ/kg•n	$n^{-3} = 316.50$	$ ho/kg \cdot m^{-3}$	= 379.80	$ ho/kg \cdot m^{-3}$	$^{3} = 443.00$	$ ho/kg \cdot m^{-3}$	= 316.50	$ ho/kg \cdot m^{-3}$	3 = 379.80	$\rho/\text{kg}\cdot\text{m}^{-2}$	$^{3} = 443.00$
309.26	0.048	305.85	0.0393	310.10	0.0485	437.75	2.608	426.35	2.216	440.16	3.393
363.25	0.500	335.78	0.0432	349.69	0.234	447.83	3.087	432.60	2.472	476.27	10.000
366.90	0.552	349.29	0.358	356.16	0.439	449.97	3.226	444.01	3.059	499.36	14.736
370.38	0.610	358.39	0.466	360.35	0.510	455.96	3.559	455.55	3.775	522.99	20.205
375.61	0.739	367.76	0.615	367.75	0.562	473.02	4.697	407.44	8.295	576.59	31.618
382.14	0.855	371.49	0.688	372.31	0.707	486.01	5.677	525.06	12.913	604.86	40.508
388.25	1.000	375.56	0.757	378.30	0.825	505.65	7.590	525.40	13.079	637.57	49.164
394.52 400 37	1.068	382.35	0.902	390.40	1.095	528.39	9.834	558.84 593 55	22,500	677.68	60.000
408.27	1.516	407.91	1.539	399.82	1.340	596.42	15.933	625.40	26.559		
414.16	1.716	415.18	1.802	403.92	1.492	629.73	18.893	645.84	29.393		
420.40	1.893	416.49	1.851	414.64	1.893	664.86 678.17	21.978	6/3.86	33.089		
431.05	2.325	419.96	2.039	427.82	2.492	0/0.17	20.107				
				x =	0.8570 mole	fraction of n-C	5H12				
ø/kg•ı	$m^{-3} = 63.55$					ø/kg∙m [−]	$^{3} = 63.55$				
310.96	0.058					425.77	1.638				
336.16	0.204					431.64	1.736				
349.89	0.335					438.03	1.933				
363.15	0.511					455.40	2.088				
370.26	0.598					479.90	2.413				
3/5.82	0.645					512.90 548.15	2.913				
388.58	0.883					581.46	3.745				
400.50	1.098					602.89	3.952				
414.81	1.393					646.54 678.27	4.256				
417.51	1.472			× -	-0.130 moles	fraction of $n C$	ч.++2 Ц				
/1 .		/1	- 117.20	A	= 1.0000		3 - 70.04	a=	- 117.26	a	= 160.06
ρ/kg•1 31/ 12	$m^{-3} = 78.24$	$\rho/\text{kg}\cdot\text{m}^{-3}$	r = 117.36	$\rho/\text{kg}\cdot\text{m}^{-1}$	$^{\circ} = 162.06$	ρ/kg•m 464.97	3 = 78.24	$\rho/\text{kg}\cdot\text{m}$	r = 117.36	$\rho/\text{kg}\cdot\text{m}$	r = 162.06
345.41	0.279	336.71	0.205	337.67	0.215	476.63	2.972	547.97	8.492	470.35	3.834
363.50	0.525	362.29	0.508	362.65	0.520	488.36	3.472	558.00	9.638	473.95	5.078
376.86	0.758	391.71	1.052	390.75	1.008	500.31	4.059	562.59	10.059	517.92	6.601
386 55	0.835	402.90	1.285	397.82 402.96	1.157	511.15 523.15	4.097	568.44	10.554	540.59 565.53	8.300 11.216
390.66	1.020	409.86	1.413	405.82	1.354	534.12	6.197	572.26	11.236	577.43	12.393
397.06	1.138	410.71	1.433	410.52	1.511	544.57	7.000	576.56	11.539	580.79	12.834
401.26	1.236	415.71	1.588	413.43	1.588	568.75 573 36	8.374	579.51	11.775	587.70	13.893
406.87	1.328	420.35	1.720	448.35	1.803	576.75	9.000	610.10	14,579	592.30	14.187
416.93	1.442	430.10	2.039	423.60	2.010	591.21	9.657	634.97	16.236	598.16	15.275
427.59	1.598	436.57	2.236	424.84	2.108	613.84	10.500	659.16	17.834	624.77	18.315
427.86 441.47	1.038	455.54 483.89	2.195 3.756	430.06 433.54	2.515	030.01 675.82	11.393	0/1.93	19.078	0/4.15	24.059
451.00	2.177	500.95	4.795	441.96	2.641	575.62	12.700				

T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa
p/kg·m ⁻² 310.65 337.90 363.49 392.61 418.69 421.82 424.86 426.22 432.55 438.35 438.35 451.17 475.62 499.27 520.57 544.52 558.42	3 = 202.57 0.043 0.240 0.537 1.059 1.815 1.946 2.071 2.138 2.393 2.695 3.315 4.472 5.893 7.598 9.697 11.098	$\rho/\text{kg}\cdot\text{m}^{-3}$ 310.49 340.69 366.44 392.30 418.12 424.29 430.15 433.19 437.32 441.00 444.50 451.05 453.74 456.49 462.45 486.90	$= 243.09 \\ 0.043 \\ 0.240 \\ 0.571 \\ 1.059 \\ 1.775 \\ 2.059 \\ 2.334 \\ 2.472 \\ 2.697 \\ 2.854 \\ 3.078 \\ 3.452 \\ 3.581 \\ 3.715 \\ 4.118 \\ 5.472$	<i>p</i> /kg⋅m ⁻² 310.63 340.36 366.62 393.79 410.15 416.52 423.20 433.94 440.66 446.99 450.84 455.40 455.40 458.55 462.29 467.76 480.50	= 324.12 0.043 0.238 0.571 1.078 1.500 1.716 1.972 2.500 2.854 3.256 3.433 3.736 4.039 4.315 4.775 5.578	ρ/kg·m ⁻³ 563.99 570.65 576.77 587.38 593.16 595.82 598.57 611.26 624.71 650.49 674.72	= 202.57 11.795 12.657 13.452 14.874 15.672 16.068 16.457 18.079 19.795 22.928 26.031	$\rho/\text{kg}\cdot\text{m}^{-3}$ 510.21 536.41 547.98 554.72 559.66 562.95 566.52 568.05 576.74 589.38 604.31 607.37 617.62 640.15 677.40	$= 243.09 \\7.236 \\9.492 \\10.677 \\11.500 \\12.078 \\12.598 \\13.118 \\13.236 \\14.559 \\16.492 \\19.031 \\19.453 \\20.893 \\24.157 \\29.426$	$\rho/\text{kg} \cdot \text{m}^{-3}$ 505.64 529.99 540.89 553.17 558.72 564.65 568.52 574.75 587.29 609.25 615.03 618.16 628.44 647.65 673.87	= 324.12 7.638 10.059 11.295 13.000 13.697 14.559 15.078 16.078 16.078 17.893 22.334 23.802 24.394 26.367 30.236 35.653
p/kg·m ⁻² 308.74 340.49 364.26 392.01 423.05 435.36 448.07 455.43 460.42 464.50 467.37 469.62 477.36 488.65 513.49	3 = 405.15 0.038 0.241 0.538 1.045 2.000 2.539 3.236 3.697 4.098 4.539 4.756 4.952 5.472 6.578 9.354 3.67720	ρ/kg·m ⁻³ 309.86 338.80 362.11 392.51 427.30 440.29 444.55 451.29 458.50 464.65 470.40 475.92 482.53 493.41 519.50	= 486.17 0.039 0.221 0.509 1.053 2.197 2.893 3.138 3.559 3.933 4.433 4.952 5.756 6.393 7.933 11.472 7.933 11.472	\rho/kg·m ⁻³ 308.27 339.74 362.50 400.89 431.84 444.36 448.62 452.31 454.50 457.07 457.37 460.17 467.57 478.90 503.07	3 = 567.20 0.0375 0.239 0.513 1.240 2.354 3.138 3.395 3.531 3.664 4.078 4.131 4.677 5.697 7.795 13.059	ρ/kg·m ⁻³ 538.02 549.70 553.99 556.45 560.13 567.45 577.36 602.00 613.16 626.16 629.49 640.41 647.66 675.19	= 405.15 12.393 14.177 14.992 15.559 16.098 17.393 19.539 25.039 28.039 31.933 32.933 36.452 38.834 47.618	$\rho/\text{kg}\cdot\text{m}^{-3}$ 543.71 547.34 549.65 554.79 560.05 571.84 583.51 595.35 606.85 630.24 632.36 636.39 647.49 669.39	= 486.17 15.893 17.177 17.472 18.697 20.078 23.098 26.500 30.079 34.500 43.775 45.608 47.147 51.577 60.518 (40.22)	$\rho/\text{kg} \cdot \text{m}^{-3}$ 515.15 526.94 533.04 536.57 540.11 544.40 547.70 555.34 557.40 561.82 566.07 579.76 591.17 614.06 634.88	= 567.20 16.039 19.197 20.933 22.374 23.393 24.657 25.657 28.393 29.677 30.786 33.157 38.874 43.598 51.674 60.478
ρ/kg·m · 308.48 338.39 363.37 392.14 423.19 435.95 442.67 446.12 450.49 453.92 460.56 461.32	$\begin{array}{c} 0.0377\\ 0.0377\\ 0.217\\ 0.525\\ 1.049\\ 2.017\\ 2.618\\ 2.972\\ 3.236\\ 3.795\\ 4.539\\ 5.992\\ 8.697 \end{array}$	<i>p</i> /kg·m 309.49 338.00 362.92 382.60 407.25 419.14 423.49 427.82 429.15 430.17 432.01 438.91	$= 648.25 \\ 0.038 \\ 0.215 \\ 0.518 \\ 1.078 \\ 1.374 \\ 1.834 \\ 2.018 \\ 2.256 \\ 2.477 \\ 2.834 \\ 4.500 \\ \end{bmatrix}$			6, kg ·m 2 483.11 508.37 533.79 538.31 541.84 546.15 549.52 553.16 556.67 562.98 574.77 582.79	$= \begin{array}{c} 607.70\\ 11.736\\ 19.736\\ 28.638\\ 30.492\\ 32.000\\ 33.697\\ 35.098\\ 36.559\\ 38.197\\ 41.039\\ 47.413\\ 51.972\end{array}$	p/kg·m 2 451.50 463.67 477.10 489.25 501.46 513.04 524.55 536.35 548.59 544.71 553.41 556.90	= 648.23 7.972 12.452 17.393 22.000 26.677 39.177 38.834 44.697 50.000 48.177 52.393 54.598		
				x =	0.1185 mole f	raction of <i>n</i> -C	5H ₁₂				
$\rho/\text{kg}\cdot\text{m}^-$ 312.41 338.51 366.41 379.43 383.55 385.29 386.34 387.82 390.35 392.13 396.46 401.86 401.86 401.86 401.86 401.86 401.80 538.44 561.17	$3^{3} = 82.60$ 0.045 0.218 0.505 0.765 0.900 0.967 1.020 1.044 1.078 1.118 1.206 1.295 1.500 1.952 2.539 3.452 4.657 6.256 8.354	$\rho/\text{kg}\cdot\text{m}^{-3}$ 311.95 339.16 350.61 367.62 378.16 383.55 387.59 391.32 396.59 403.10 416.62 428.73 438.22 463.71 486.48 511.48 534.47 558.55 560.65	$= 123.94 \\ 0.044 \\ 0.225 \\ 0.343 \\ 0.520 \\ 0.743 \\ 0.842 \\ 1.177 \\ 1.275 \\ 1.374 \\ 1.539 \\ 1.893 \\ 2.256 \\ 2.520 \\ 3.157 \\ 4.098 \\ 5.334 \\ 7.078 \\ 9.177 \\ 9.492 \\ \end{bmatrix}$	ρ/kg·m ⁻³ 310.66 339.13 363.95 365.66 368.79 377.59 383.05 383.76 387.86 387.86 388.93 394.85 395.09 396.47 399.51 401.52 404.19 405.68 408.99 409.58	$\mathbf{r} = 165.20$ 0.042 0.242 0.500 0.510 0.608 0.745 0.852 0.864 0.965 0.981 1.157 1.197 1.216 1.256 1.285 1.354 1.384 1.492 1.520	$\rho/\text{kg} \cdot \text{m}^{-3}$ 564.49 565.17 572.98 578.49 591.74 612.86 637.86 658.21 675.15	8 = 82.60 8.791 8.875 9.374 9.736 10.618 11.638 12.638 13.502 14.223	ρ/kg·m ⁻³ 564.52 567.95 572.73 576.23 580.36 585.65 596.70 619.90 643.97 662.00 677.73	= 123.94 9.756 10.177 10.697 10.933 11.334 12.059 13.354 15.472 17.236 18.502 19.617	$\rho/\text{kg} \cdot \text{m}^{-3}$ 412.46 414.77 424.36 451.85 476.61 500.90 522.75 546.96 570.59 576.43 580.21 584.55 587.75 591.61 597.21 607.37 618.96 647.83 674.79	= 165.20 1.618 1.736 2.059 3.000 3.952 5.138 6.697 8.815 11.315 12.000 12.393 12.893 13.295 13.795 14.539 15.874 17.177 19.834 21.935
p/kg·m ⁻² 310.56 339.8 369.45 379.41 386.87 393.39 393.89 404.6 407.16 412.2 415.9 420.09 423.66 430.15 441.71 444.86 450.17 466.42 490.35	3 = 206.60 0.042 0.255 0.539 0.772 0.919 1.078 1.236 1.344 1.452 1.618 1.736 1.874 2.098 2.354 2.874 3.033 3.235 3.834 4.992	$\rho/\text{kg}\cdot\text{m}^{-3}$ 310.59 339.22 364.51 381.29 393.19 406.91 411.86 414.90 418.75 422.81 426.71 430.70 434.72 738.52 442.29 445.99 445.99 445.335 457.00	$= 247.90 \\ 0.042 \\ 0.238 \\ 0.547 \\ 0.798 \\ 1.059 \\ 1.482 \\ 1.657 \\ 1.805 \\ 1.923 \\ 2.078 \\ 2.216 \\ 2.393 \\ 2.578 \\ 2.775 \\ 2.933 \\ 3.138 \\ 3.374 \\ 3.618 \\ 3.854 \\ \end{bmatrix}$	<pre>p/kg·m⁻³ 310.13 340.22 367.81 393.63 420.41 433.65 446.02 453.15 458.17 461.40 465.33 468.95 475.69 485.98 510.14 535.50 558.40 583.50 606.34</pre>	3 = 330.50 0.041 0.251 0.569 1.059 1.933 2.492 3.098 3.539 3.933 4.138 4.413 4.697 5.098 5.775 7.736 10.098 13.078 16.638 20.834	$\rho/\text{kg} \cdot \text{m}^{-3}$ 514.05 537.91 562.26 572.43 579.45 583.12 587.18 590.85 594.77 598.32 605.13 607.28 611.42 617.31 620.15 640.07 655.25 675.72	= 206.60 6.559 8.472 10.736 11.972 13.02 13.677 14.098 14.697 15.197 15.893 17.098 17.551 18.222 19.197 19.561 22.011 23.993 25.588	$\rho/\text{kg} \cdot \text{m}^{-3}$ 460.67 463.67 469.72 483.19 507.30 530.26 566.71 578.86 584.21 589.82 595.73 601.61 607.59 613.45 619.21 625.12 631.04 642.05 675.00	= 247.90 4.000 4.039 4.354 5.118 6.716 8.500 12.618 14.197 15.177 16.039 16.992 17.933 18.992 20.334 21.433 22.500 23.393 25.197 29.815	ρ/kg·m ⁻³ 618.00 624.09 629.94 635.15 645.95 657.17 675.82	= 330.50 23.657 25.138 26.433 27.636 30.500 33.295 38.114

Table 2. Continued

Table 2. Continued	Continued	2.	Table
--------------------	-----------	----	-------

rubic 2. C	ommucu										
T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa
<pre>p/kg·m⁻³ 309.69 340.13 366.06 393.32 419.50 433.85 445.84 456.95 462.00 464.49 467.37 473.12 484.29 510.17 p/kg·m⁻³ 309.63 340.03 366.75</pre>	3 = 413.10 0.039 0.260 0.568 1.059 1.893 2.472 3.098 3.815 4.275 4.477 5.138 6.098 8.520 3 = 611.40 0.0388 0.257 0.550	$\rho/\text{kg}\cdot\text{m}^{-3}$: 309.70 340.17 368.09 395.06 420.19 425.73 435.70 449.90 454.91 457.05 461.41 464.77 469.71 475.91 $\rho/\text{kg}\cdot\text{m}^{-3}$: 309.71 339.92 366.84	= 496.00 0.039 0.265 0.573 1.069 1.933 2.118 2.697 3.393 3.815 4.020 4.362 4.677 5.020 5.756 = 661.00 0.039 0.251 0.551	ρ/kg·m ⁻³ 309.30 338.82 367.12 392.96 420.16 443.86 450.41 456.61 460.41 464.42 467.98 474.09 487.02 497.65	$= 578.00 \\ 0.0387 \\ 0.245 \\ 0.571 \\ 1.039 \\ 1.874 \\ 3.059 \\ 3.433 \\ 3.795 \\ 4.295 \\ 4.638 \\ 5.118 \\ 5.992 \\ 7.992 \\ 10.295 \\ \end{bmatrix}$	$\rho/\text{kg}\cdot\text{m}^{-3}$ 534.65 559.68 582.49 605.32 618.06 624.40 630.18 633.60 636.05 639.77 643.59 655.71 674.00 $\rho/\text{kg}\cdot\text{m}^{-3}$ 448.09 451.61 455.59	= 413.10 11.578 15.315 19.697 25.000 28.539 30.492 32.539 34.039 35.059 36.354 37.657 41.413 47.215 $= 611.40$ 3.197 3.354 3.854	$\rho/\text{kg}\cdot\text{m}^{-3}$ 487.15 512.07 537.29 561.70 586.72 608.40 618.30 626.15 629.85 633.28 637.18 642.90 654.47 663.77 $\rho/\text{kg}\cdot\text{m}^{-3}$ 443.22 470.02	= 496.00 6.845 10.618 14.736 19.539 26.256 34.952 39.177 42.500 43.795 45.295 47.000 49.578 55.500 60.357 = 661.00 4.736 12.874	$\rho/\text{kg} \cdot \text{m}^{-3}$: 521.50 546.42 569.71 573.17 600.29 603.75 607.56 610.96 613.51 616.99 620.80	= 578.00 16.893 23.893 32.795 44.197 47.295 49.236 51.501 53.118 55.197 57.472 60.254
392.17 419.36 433.00 436.40 440.22 444.25	1.029 1.874 2.315 2.578 2.854 3.078	391.83 418.15 426.79 430.05 433.62 437.86	1.025 1.824 2.197 2.374 2.597 3.578			459.27 462.90 467.76 473.59 485.65	4.559 5.138 6.059 7.216 10.059				
				x =	0.0967 mole f	raction of <i>n</i> -C ₅	H ₁₂				
$\rho/kg \cdot m^-$ 305.25 335.06 360.16 365.75 373.02 379.67 382.22 389.69 401.81 427.15 452.35 478.06 501.66 525.51 549.42 555.19 561.05 563.55 567.43 570.35 573.86	3 = 84.77 0.037 0.203 0.442 0.520 0.651 0.687 0.715 0.831 1.030 1.433 1.893 2.539 3.578 5.020 6.529 6.952 7.303 7.472 7.677 7.834 7.992	$\rho/\text{kg} \cdot \text{m}^{-3} =$ 309.59 340.03 366.47 373.32 376.02 379.14 381.84 384.42 386.71 389.66 392.65 394.65 394.65 397.89 400.05 402.67 405.19 408.08 411.61 416.98 429.74 455.20	$= 127.00 \\ 0.040 \\ 0.245 \\ 0.548 \\ 0.657 \\ 0.696 \\ 0.741 \\ 0.799 \\ 0.831 \\ 0.883 \\ 0.940 \\ 1.000 \\ 1.051 \\ 1.138 \\ 1.197 \\ 1.275 \\ 1.315 \\ 1.393 \\ 1.500 \\ 1.638 \\ 1.933 \\ 2.520$	$\rho/\text{kg} \cdot \text{m}^{-3}$ 309.72 337.86 365.12 392.22 396.66 403.36 408.10 411.14 412.70 416.45 418.17 421.32 422.71 425.25 428.32 430.27 432.85 436.42 438.65 441.80 454.62	$= 169.30 \\ 0.040 \\ 0.215 \\ 0.517 \\ 1.037 \\ 1.157 \\ 1.315 \\ 1.452 \\ 1.559 \\ 1.610 \\ 1.757 \\ 1.795 \\ 1.952 \\ 2.000 \\ 2.118 \\ 2.295 \\ 2.314 \\ 2.371 \\ 2.452 \\ 2.539 \\ 2.657 \\ 3.039 \\ \end{bmatrix}$	ρ/kg·m ⁻³ 579.96 590.71 615.99 638.32 661.19 676.82	= 84.77 8.364 9.000 10.657 12.138 13.618 14.638	$\rho/\text{kg} \cdot \text{m}^{-3}$ 480.77 502.93 525.93 550.41 563.84 567.05 570.05 571.29 575.77 575.71 575.71 575.71 575.763 582.04 583.39 586.80 589.21 597.97 608.73 631.56 643.39 661.40 677.26	$= 127.00 \\ 3.433 \\ 4.539 \\ 6.078 \\ 7.993 \\ 9.216 \\ 9.598 \\ 9.952 \\ 10.078 \\ 10.561 \\ 10.559 \\ 11.020 \\ 11.197 \\ 11.315 \\ 11.657 \\ 12.039 \\ 13.236 \\ 14.492 \\ 16.677 \\ 17.677 \\ 19.051 \\ 20.234 \\ \end{bmatrix}$	ρ/kg·m ⁻³ = 465.76 478.28 503.16 527.40 548.90 562.39 575.85 578.01 580.77 583.16 585.82 586.92 595.43 621.67 642.57	= 169.30 3.511 4.127 5.472 7.031 9.137 10.393 11.559 11.932 12.334 12.696 13.137 13.255 14.334 17.991 20.952
<pre>p/kg·m⁻³ 309.71 338.05 366.41 392.31 417.76 443.71 446.39 447.61 450.44 453.12 454.91 458.11 460.97 463.09 469.13 480.72 505.21 528.66 552.78</pre>	3 = 211.62 0.040 0.221 0.518 1.059 1.795 2.814 2.972 3.019 3.138 3.314 3.393 3.472 3.578 3.677 3.893 4.519 5.893 7.598 9.913	$\rho/\text{kg} \cdot \text{m}^{-3} =$ 309.41 338.04 365.63 390.89 417.79 444.61 446.02 448.95 451.26 453.45 456.18 458.46 460.95 463.36 467.71 470.77 486.52 502.53 531.50	$= 253.94 \\ 0.040 \\ 0.223 \\ 0.519 \\ 1.029 \\ 1.795 \\ 2.933 \\ 3.039 \\ 3.256 \\ 3.413 \\ 3.539 \\ 3.677 \\ 3.795 \\ 3.854 \\ 4.000 \\ 4.177 \\ 4.354 \\ 5.177 \\ 6.196 \\ 8.432 \\ \end{cases}$	$\rho/\text{kg}\cdot\text{m}^{-3}$ 309.25 338.01 365.69 391.98 417.92 444.50 449.47 452.14 454.49 456.97 459.50 462.35 464.90 467.38 469.55 475.61 487.56 510.20 534.61	$= 338.59 \\ 0.040 \\ 0.222 \\ 0.523 \\ 1.029 \\ 1.756 \\ 2.933 \\ 3.295 \\ 3.472 \\ 3.650 \\ 3.814 \\ 4.020 \\ 4.196 \\ 4.334 \\ 4.472 \\ 4.618 \\ 4.972 \\ 5.795 \\ 7.618 \\ 10.059 \\ \end{bmatrix}$	ρ/kg·m ⁻³ 563.97 570.59 573.52 575.15 576.30 577.99 582.67 586.82 600.48 620.69 648.41 674.88	= 211.62 11.295 12.039 12.432 12.598 12.716 12.991 13.491 14.216 16.196 19.598 23.991 28.236	$\rho/\text{kg} \cdot \text{m}^{-3}$ 547.24 548.59 552.15 556.19 557.70 560.61 563.13 565.86 568.15 568.56 568.95 569.24 572.69 574.16 580.54 592.21 618.05 648.08 675.02	$= 253.94 \\ 9.952 \\ 10.157 \\ 10.559 \\ 10.972 \\ 11.157 \\ 11.491 \\ 11.834 \\ 12.255 \\ 12.452 \\ 12.393 \\ 12.452 \\ 12.932 \\ 13.237 \\ 14.000 \\ 15.696 \\ 20.716 \\ 26.314 \\ 31.295 \\ \end{bmatrix}$	$\rho/\text{kg} \cdot \text{m}^{-3} =$ 547.63 550.84 553.36 557.34 566.79 590.74 591.55 604.95 618.41 622.36 629.28 631.09 634.16 642.94 654.82 674.73	= 338.59 11.500 11.834 12.196 12.736 14.196 18.098 18.314 20.736 23.578 24.295 25.393 26.031 26.118 27.598 29.696 32.452 37.236
<pre>p/kg·m⁻³ 309.30 337.87 363.29 392.04 418.15 443.42 449.36 451.67 454.46 456.88 459.52 461.91 465.51 467.52 473.30 485.51 508.71 532.65</pre>	P = 423.24 0.040 0.220 0.511 1.039 1.795 3.000 3.334 3.500 3.657 3.834 4.078 4.275 4.432 4.598 5.039 6.137 8.472 11.354	$\rho/\text{kg} \cdot \text{m}^{-3}$: 308.26 337.92 365.66 392.11 417.72 443.32 445.91 449.15 451.17 453.80 456.07 458.90 461.55 464.03 468.99 481.49 506.77 527.80	= 507.88 0.040 0.221 0.520 1.029 1.814 2.991 3.157 3.393 3.491 3.637 3.814 4.078 4.314 4.472 4.854 6.098 9.295 12.500	$\rho/\text{kg}\cdot\text{m}^{-3}$ 305.37 337.99 365.26 392.13 417.40 431.19 438.49 439.41 443.26 444.82 448.89 450.15 452.69 456.01 457.50 459.65 460.71 462.45	$= 592.53 \\ 0.037 \\ 0.222 \\ 0.517 \\ 1.039 \\ 1.795 \\ 2.373 \\ 2.637 \\ 2.795 \\ 3.000 \\ 3.098 \\ 3.393 \\ 3.432 \\ 3.618 \\ 3.814 \\ 3.932 \\ 4.118 \\ 4.186 \\ 4.472 \\$	$\rho/\text{kg} \cdot \text{m}^{-3}$ 556.17 578.77 579.94 581.02 602.00 613.00 623.45 623.67 625.35 628.37 632.15 635.41 636.43 638.83 643.65 656.82 673.80	= 423.24 14.413 18.354 18.578 18.696 23.432 26.098 28.873 29.000 29.500 30.637 31.578 32.500 32.795 33.598 34.932 38.693 43.618	ρ/kg•m ⁻³ 552.47 578.95 605.27 614.59 616.93 626.50 633.66 649.97 659.18 664.26	= 507.88 16.834 23.137 31.559 35.893 37.000 41.137 43.196 48.000 50.598 52.118	ρ/kg·m ⁻³ : 468.99 482.07 505.84 529.44 552.84 577.90 590.42 600.96 606.90 615.66	= 592.53 5.177 7.472 11.696 17.531 25.236 36.295 43.295 51.000 54.500 60.000

Table 2.	Continued										
T/K	P/MPa	<i>T</i> /K	P/MPa	<i>T</i> /K	P/MPa	<i>T</i> /K	P/MPa	T/K	P/MPa	<i>T</i> /K	P/MPa
ρ/kg•m 307.55 337.99 365.55 392.20 415.25	$a^{-3} = 550.20$ 0.039 0.221 0.519 1.039 1.706	ρ/kg•m ⁻ 308.68 337.85 363.77 389.35 414.86	3 = 677.18 0.040 0.219 0.496 1.000 1.795			ρ/kg·m ⁻ 512.35 534.45 558.55 581.93 606.40	3 = 550.20 11.736 16.696 22.491 30.393 40.775	ρ/kg•m ⁻	3 = 677.18		
439.58 446.00 448.36 450.85	2.814 3.177 3.334 3.578	433.31 437.32 441.52 444.56	2.696 3.196 3.854 5.295			619.04 623.39 626.17 628.82	47.039 48.991 49.334 52.255				
453.15 455.32 457.55 460.22 466.22 488.62	3.775 3.913 4.039 4.334 4.893 7.834	450.16	7.196			631.39 632.52 634.56 636.69 642.87 649.18	53.245 54.509 55.177 55.618 57.893 60.019				
				x	= 0.075 mole f	raction of n-C5	H ₁₂				
ρ/kg•n 307-36	$m^{-3} = 87.14$	ρ/kg•m 309.49	$^{3} = 174.28$	ρ/kg•m ⁻ 307-39	$^{3} = 217.80$	ρ/kg•m ⁻ 500.64	$^{-3} = 87.14$	ρ/kg•m ⁻ 596 55	$^{3} = 174.28$	ρ/kg•m ⁻ 439.49	$^{3} = 217.80$
335.38 362.06 375.50 377.49 378.75 380.29 383.18 386.15 388.18 393.66 406.06 417.84 430.65 442.66 454.19 465.88	0.213 0.486 0.731 0.779 0.781 0.785 0.802 0.835 0.862 0.921 1.309 1.411 1.723 1.905 2.273 2.674	334.05 360.35 373.70 381.05 387.36 388.79 392.55 395.76 400.66 405.95 419.77 442.94 466.29 488.92 552.19 555.87	0.196 0.469 0.695 0.835 0.980 1.021 1.111 1.183 1.289 1.478 1.893 2.501 3.321 4.736 7.512 10.902 10.902	334.49 362.09 375.02 387.36 388.03 391.55 393.46 399.36 406.19 412.65 416.06 418.45 418.86 422.41 425.21 422.41	0.215 0.501 0.726 0.995 1.001 1.098 1.147 1.295 1.472 1.677 1.795 1.859 1.874 2.021 2.108 2.275 2.570	511.93 523.50 535.21 545.97 557.84 568.95 580.95 592.42 594.91 597.43 603.26 613.82 635.42 668.34	5.068 5.864 6.815 7.874 9.136 10.401 11.846 13.300 13.693 13.775 14.098 14.736 16.039 17.893	602.65 607.52 613.31 618.05 626.89 636.46 648.91 674.73	17.899 18.787 19.992 20.559 21.433 22.638 24.039 26.849	442.04 449.65 470.31 493.25 528.14 562.26 584.81 596.19 607.72 613.92 619.81 622.20 625.54 631.10 640.98 651.30 640.98	2.754 2.977 3.788 5.104 7.891 11.471 14.947 17.054 19.312 20.587 21.793 22.189 22.748 23.874 25.002 27.216 27.216
478.22 488.94	3.165 3.692	578.52 590.80	13.898 15.871	436.27 437.21	2.579 2.657					6/6.1/	31.538
ρ/kg•m	$n^{-3} = 261.40$	ρ/kg•m [−]	$^{3} = 348.50$	ρ/kg•m ⁻	$^{3} = 435.70$	ρ/kg•m [−]	$^{3} = 261.40$	ρ/kg•m ⁻	$^{3} = 348.50$	ρ/kg•m ⁻	$^{3} = 435.70$
307.61 334.63	0.037 0.215	307.5 335.26	0.037 0.216	303.46 337.56	0.035 0.231	541.61 569.19	9.287 12.603	543.26 577.86	10.401 15.022	619.93 622.67	27.861 28.783
360.56 387.86	0.497 0.962	360.72 388.18	0.492 0.984	362.51 387.14	0.504 0.981	576.65 590.59	13.698 15.985	612.81 618.54	22.273 23.752	625.95 629.47	29.697 30.433
412.66 438.65	1.675 2.665	413.86 438.16	1.697 2.657	412.54 437.86	1.661 2.664	598.91 604 40	17.566 18 712	624.25 630.61	25.247 26.805	633.06 638.59	31.138 33.157
450.55	3.381	457.42	3.738	450.34	3.281	610.54	19.976	635.97	27.716	650.18	36.854
451.57 453.19	3.391 3.424	458.77 458.81	3.881 3.883	456.83 462.97	3.705 4.241	621.48 625.27	22.405 23.316	641.75 647.35	29.216 30.598	661.82 675.50	40.697 45.049
456.26 461.71	3.511 3.671	461.82 462.65	4.051 4.082	465.17 467.48	4.354 4.527	627.17 633.04	23.735 25.098	664.45	35.157		
467.94	3.986	464.26	4.141	473.36	5.025 5.842	634.50 638.65	25.354				
484.72	4.752	467.73	4.288	509.08	7.752	641.60	26.736				
507.07 508.26	6.177 6.201	472.77 483.81	4.631 5.413	543.21 578.07	11.756 17.703	650.15 670.82	28.236 31.393				
529.90	8.103	508.12	6.893	613.95	26.381	684.20	34.204		3 600 07	a –	3 100.05
ρ/kg•m 309.78	$n^{-3} = 522.90$ 0.041	ρ/kg•m 314.32	$^{\circ} = 609.9^{\circ}/$ 0.044	ρ/kg•m ⁻ 310.61	$^{3} = 188.05$ 0.041	ρ/kg•m ⁻ 547.95	$^{3} = 522.90$ 14.686	ρ/kg•m ⁻ 507.45	$^{\circ} = 609.97$ 9.806	ρ/kg•m ⁻ 458.35	$^{\circ} = 188.05$ 4.334
336.49 362.93	0.245	334.15 362.99	0.232	336.63 362.36	0.247 0.479	583.15 605.73	22.391 29.276	543.15 578.62	17.644 28.736	462.05 474 25	5.177 7.765
389.42	1.035	389.20	1.031	388.46	1.016	612.15	31.802	601.83	29.057	497.40	14.338
438.27	2.663	439.41	2.721	413.51 427.65	2.198	620.27	35.001	625.86	54.436	542.75	33.286
462.77 465.14	4.305 4.374	451.52 458.39	3.377 3.834	434.11 439.88	2.481 2.756	631.49 654.70	40.315 50.452	628.09 629.65	56.477 57.001	579.30 592.82	54.939 62.866
467.79	4.521 4.834	461.09 464.09	4.059 4.481	446.15	3.098	675.51	59.923	632.37 634 58	59.338 61.324		
478.14	5.526	466.46	4.657	452.50	3.393			634.66	61.333		
489.00 511.90	6.585 9.101	472.64 483.61	5.138 6.425	454.85 455.70	3.736			636.94	63.039		
				x	= 0.058 mole f	raction of n-C5	H ₁₂				
ρ/kg•n 200.70	$m^{-3} = 89.21$	ρ/kg•m	$^{3} = 178.42$	ρ/kg•m ⁻	$^{-3} = 267.21$	ρ/kg•m ⁻	$^{-3} = 89.21$	ρ/kg•m ⁻	$^{3} = 178.42$	ρ/kg•m ⁻	$^{3} = 267.21$
340.63	0.049	341.85	0.051	345.65	0.030	564.48	8.255 8.795	546.40 556.59	8.147 9.137	400.15 487.97	4.834
351.48 358.35	0.362 0.431	364.79 370.92	0.514 0.601	366.21 393.05	0.565 1.078	567.80 569.49	8.581 8.669	563.45 569.25	9.795 10.472	512.64 535.78	6.433 8.137
364.89 370.86	0.511	376.21	0.691	397.78 400.87	1.186	571.65 574.73	8.795	570.59 575.10	10.598	558.45 589.45	10.393
374.72	0.631	385.15	0.863	404.56	1.413	577.49	9.314	582.79	12.049	593.96	15.078
379.11 383.87	0.671 0.706	389.39 393.86	0.962 1.079	405.51 412.37	1.452 1.657	583.96 594.55	9.932 10.952	584.71 587.95	12.255 12.795	598.76 603.10	15.795 16.578
388.15 394.44	0.749 0.801	397.39 399.88	1.167 1.255	415.31 420.79	1.755 1.972	613.57 645.13	12.432 14.432	592.07 596.15	13.354 14.059	606.95 613.40	17.393 18.354
407.58	0.938	405.72	1.452	426.05	2.157	645.27 674.83	14.472	599.75 602.75	14.374	617.28	19.078
457.71	2.667	422.41	1.844	433.05	2.314	074.00	13.0/4	607.59	15.893	625.45	20.795
482.46 506.79	3.795 5.295	446.86 473.40	2.452 3.256	437.07 440.96	2.637 2.834			623.30 652.55	18.696 22.874	628.92 632.68	21.492 22.275
530.90 552 59	7.059	496.00	4.374	444.72 447.85	2.972			675.72	26.129	649.95 674 50	26.098 31.326
558.65	7.991	544.16	7.932	454.71	3.334					074.00	51.520

Table 2. Continued	Table	2.	Continued
--------------------	-------	----	-----------

T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa	T/K	P/MPa
ρ/kg•m [−]	$^{3} = 356.80$	$\rho/\text{kg}\cdot\text{m}^{-3}$	= 446.05	$\rho/kg \cdot m^{-3}$	= 535.26	$\rho/\text{kg}\cdot\text{m}^{-3}$	3 = 356.80	$\rho/\text{kg}\cdot\text{m}^{-2}$	3 = 446.05	$\rho/\text{kg}\cdot\text{m}^{-3}$	= 535.26
310.66	0.051	310.63	0.051	310.56	0.050	573.08	13.598	615.51	24.818	586.55 595.27	24.255
365.81	0.565	367.02	0.232	366.62	0.571	601.37	18.501	634.10	30.539	602.02	29.098
391.62	1.059	393.83	1.078	392.97	1.059	611.81	20.393	638.68	32.059	604.66	30.000
417.67	1.854	421.42	1.932	417.67	1.854	614.79	21.078	642.10	33.393	611.73	32.736
431.00	2.393	434.42	2.442	420.27 452.21	3.559	627.26	23.785	650.28	36.874	616.21	34.098
441.40	2.874	451.00	3.452	458.34	4.000	630.85	24.492	651.68	37.137	620.55	36.492
446.61	3.196	461.15	4.216	462.55	4.334	634.96	25.647	661.35	40.893	621.59	37.157
451.15	3.755	467.58	4.618	469.94	4.972	641.04	27.775	074.80	40.233	623.05	37.874
459.79	3.992	468.89	4.736	474.16	5.354	643.13	28.137			628.65	40.598
462.79	4.118	476.87	5.275	478.71	5.736	647.44	29.041			634.04	43.049
403.33	4.932	530.67	10.59	509.35	9.059	653.16	30.716			648.90	50.098
501.86	6.539	554.45	13.196	536.14	12.992	656.34	31.598			660.49	55.295
527.09	8.598	580.00	17.137	555.19	16.354	665.50	36.737			671.17	60.196
331.00	3 570.07	000.50	22.339	577.81	21.654	074.52	34.137	a	604.45		
ρ/kg•m 310.55	$^{\circ} = 5/9.8/$	$\rho/\text{kg}\cdot\text{m}^{-3}$	= 624.45	$\rho/\text{kg}\cdot\text{m}^{-3}$	= /13.68 1 354	$\rho/\text{kg}\cdot\text{m}^{-1}$	r = 5/9.87 5 834	ρ/kg•m · 578 92	r = 624.45 34.893		
339.15	0.253	339.05	0.252	416.50	1.893	485.31	7.000	602.20	48.696		
366.59	0.571	366.65	0.570	427.42	2.334	510.02	10.432	610.83	55.157		
392.86	1.088	392.75	1.885	440.80	3.078	531.66	14.334	617.86	60.696		
441.45	3.137	429.61	2.500	443.71	3.559	579.86	27.039				
451.35	3.854	442.59	3.196	446.29	4.098	602.97	36.598				
453.52	3.972	454.75	3.932	450.45	4.874	625.46	49.393				
456.60	4.186	461.55	4.618	469.20	9.854	628.92	50.696				
458.59	4.275	465.61	5.039	491.62	18.637	631.81	52.834				
459.41	4.363	472.92	5.992	516.15	31.137	632.26	52.932				
461.34	4.415	485.15	11.579	559.80	45.514 60.196	641.40	57.598				
463.87	4.893	533.44	17.637			646.56	60.236				
467.39	5.098	554.95	24.736								
				x =	0.027 mole fr	action of <i>n</i> -C	${}_{5}H_{12}$				
ρ/kg•m⁻	$^{-3} = 94.20$	$\rho/\text{kg}\cdot\text{m}^{-3}$	= 188.40	$\rho/kg \cdot m^{-3}$	= 282.65	$\rho/\text{kg}\cdot\text{m}^-$	$^{3} = 94.20$	$\rho/\text{kg}\cdot\text{m}^{-3}$	3 = 188.40	$\rho/\text{kg}\cdot\text{m}^{-3}$	= 282.65
310.36	0.050	313.93	0.0628	310.28	0.050	559.50	7.393	565.86	8.795	528.95	6.472 8 511
349.29	0.308	351.76	0.336	360.56	0.455	566.65	8.334	597.86	13.098	577.93	11.295
354.15	0.326	356.15	0.372	366.16	0.542	573.92	8.972	603.17	13.893	599.21	14.452
355.19	0.339	357.31	0.384	373.01	0.655	583.09	10.147	611.96	15.295	610.82	16.578
361.32	0.365	365.40	0.494	384.14	0.855	591.61	11.255	618.57	16.549	624.40	19.255
363.35	0.372	371.58	0.588	393.04	1.059	599.49	12.324	620.21	16.991	629.48	20.295
369.35	0.386	373.55	0.612	396.86	1.147	605.19	13.147	623.56	17.559	632.59	21.000
408.40	0.414	383.15	0.030	403.33	1.314	611.53	13.432	628.56	18.098	638.84	21.730
431.36	0.896	396.59	0.855	412.80	1.519	614.31	13.578	632.85	19.539	641.15	22.716
458.61	1.472	421.42	1.137	416.36	1.588	618.56	13.893	637.07	20.373	646.82	25.854
484.05 507.24	3.374	470.32	2.255	433.14	1.991	634.33	14.037	650.09	22.491	673.86	29.696
531.74	4.893	495.52	3.314	459.45	2.736	646.45	15.578	660.15	24.000		
554.65 556.00	6.913	518.22	4.677	485.26	3.736	674.82	16.795	675.43	26.016		
-/1	3 - 276.97	J42.J1	-471.10	507.49	4.075	- /1	3 - 276.97	- /1	- 471 10		
$\rho/\text{kg}\cdot\text{m}$	$^{\circ} = 3/6.8/$	$\rho/\text{kg}\cdot\text{m}^{-3}$	= 4/1.10 0.0581			ρ/kg•m - 574.69	$^{2} = 3/6.8/$	$\rho/\text{kg}\cdot\text{m}$	r = 4/1.10 18 157		
343.35	0.262	341.16	0.245			597.63	15.236	600.95	18.177		
368.16	0.560	367.92	0.541			618.65	19.393	609.40	19.834		
395.32 404.08	1.098	394.81	1.078			520.36	19.696	614.41	20.795		
408.69	1.472	425.60	2.059			624.42	20.557	622.57	22.657		
414.37	1.637	434.16	2.432			630.69	21.854	623.95	22.972		
420.15	2.019	438.71 446 35	2.077			631 29	21.500	020.35 628.06	23.578 24.098		
430.74	2.196	451.47	3.314			632.78	22.216	630.07	24.736		
435.41	2.373	457.46	3.637			535.34	22.736	633.93	26.098		
459.28	2.319	402.77 474.64	5.915 4.472			044.55 651 20	25.295	037.73 642.65	27.500		
477.16	4.039	500.38	6.118			653.69	27.873	656.93	34.157		
502.33	5.432	521.85	7.814			657.56	28.972	674.71	40.657		
553.71	7.452 9.472	544.74 567.95	9.913			0/4.83	33./30	620.77	22.295		
	-										

Tables 3 and 4. Heating the three-phase (LLG) water + n-pentane mixture can lead to three different sequences of phase transitions, depending on the fill coefficient (ratio of the volume of the mixture to the volume of the piezometer at ambient temperature) or the average fill density (ratio of the mass of mixture to the volume of the piezometer at ambient temperature) and the n-pentane concentration in the initial mixture. The "breakpoints" on P-T isochors are the phase boundary data (at the intersection of the phase boundary curve) connected with

liquid—liquid (LL), LG, or LLG phase transitions occurring in a binary water + n-pentane mixture heated in a closed volume. Two peaks or jumps in the isochoric heat capacity are also often found in the system water + n-alkanes mixtures at isochoric heating.^{35–37} The following sequences of the phase transitions are possible in the water + n-pentane mixture when the system is heated isochorically:

1. At the highest average densities and high concentrations of n-pentane, the liquid phase expands on heating and fills the

Figure 7. Measured pressures as a function of temperature along the various isochores for the selected concentration of 0.0967 mole fraction of n-C₃H₁₂. •, 127.00 kg·m⁻³; \bigcirc , 84.77 kg·m⁻³; \triangle , 169.30 kg·m⁻³; \blacktriangle , 211.62 kg·m⁻³; \square , 253.94 kg·m⁻³; \blacksquare , 338.59 kg·m⁻³; \checkmark , 507.88 kg·m⁻³; \bigtriangledown , 423.24 kg·m⁻³; \diamondsuit , 550.20 kg·m⁻³; \diamondsuit , 592.53 kg·m⁻³; \times , 677.18 kg·m⁻³; ----, experimental curves.

Figure 8. Measured pressures as a function of density along the supercritical isotherms for the selected concentration of 0.0967 mole fraction of n-C₅H₁₂. •, 661.19 K; \bigcirc , 673.80 K; \triangle , 648.18 K; \blacktriangle , 638.32 K; ----, smoothed experimental curves.

entire vessel, while the vapor phase disappears. A transition from three phases (LLG) to two phases (LL), (LLG \leftrightarrow LL), occurs, with a break *P*-*T* curve (or drop in heat capacity). A transition from two-phase (LL) equilibria to one-phase (L), (LL \leftrightarrow L), takes place, at further isochoric heating of the mixture at high pressures.

2. At the highest average densities and low concentrations of *n*-pentane, before the thermal expansion causes the liquids to fill the entire volume, the initially immiscible liquid water + *n*-pentane mixture becomes miscible due to the positive temperature coefficient of solubility typical for water + *n*-alkane mixture. In this case, the first phase transition is the miscibility of *n*-pentane in water in equilibrium with its vapor, (LLG \leftrightarrow LG), with a decrease in heat capacity as the number of phase decreases. In this case the isochoric P-T break point is pronounced very slightly (very weak). On further heating of the two-phase (LG) mixture, the expanding liquid fills the entire cell, while the vapor phase disappears. A transition from twophase (LG) to one-phase (L), (LG \leftrightarrow L), takes place, with a break of the P-T curves (decrease in heat capacity).

3. At the lowest average densities, heating increases the vapor density, resulting in disappearance of the liquid phases. A

Figure 9. Comparison of the present measured pressures with the data reported by Abdulagatov et al.^{12,13} along the selected near-critical isotherm (B) and isotherm-isochore (A). \bullet , this work; \bigcirc , Abdulagatov et al.;^{14,15} –, smoothed experimental curves.

Table 3. Liquid–Gas P_S-T_S Phase Boundary Data for the H₂O + $n-C_5H_{12}$ Mixtures Derived from the Break-Point Technique Using the Present *PVTx* Measurements

ction of <i>n</i> -C ₅ H ₁₂ 8.880 11.200 14.334	x = 0.0967 mole = 567.15 577.15	fraction of n -C ₅ H ₁₂ 7.700
8.880 11.200 14.334	567.15 577.15	7.700
11.200 14.334	577.15	10.000
14.334		10.902
	582.82	12.614
17.315	590.20	14.547
18.051	599.51	17.115
23.354	624.82	29.411
30.922	626.47	40.470
44.413	633.15	54.715
61.255		
ction of $n-C_5H_{12}$	x = 0.1185 mole	fraction of <i>n</i> -C ₅ H ₁₂
13.315	564.56	8.836
19.014	573.47	10.801
21.501	592.88	13.912
23.092	606.83	17.574
23.854	612.56	20.247
25.912	619.08	24.000
27.718	622.57	30.066
37.634	628.49	43.900
tion of n -C ₅ H ₁₂	x = 0.058 mole f	raction of $n-C_5H_{12}$
13.693	568.66	8.642
20.233	596.29	14.151
22.116	611.82	18.154
24.814	633.15	25.250
26.780	627.46	27.885
29.820	625.79	39.278
37.780	629.44	51.880
61.000		
	$\begin{array}{c} 14.334\\ 17.315\\ 18.051\\ 23.354\\ 30.922\\ 44.413\\ 61.255\\ \hline\\ \text{ction of } n\text{-}C_5\text{H}_{12}\\ 13.315\\ 19.014\\ 21.501\\ 23.092\\ 23.854\\ 25.912\\ 27.718\\ 37.634\\ \hline\\ \text{ction of } n\text{-}C_5\text{H}_{12}\\ 13.693\\ 20.233\\ 22.116\\ 24.814\\ 26.780\\ 29.820\\ 37.780\\ 61.000\\ \hline\end{array}$	11.200 577.15 14.334 582.82 17.315 590.20 18.051 599.51 23.354 624.82 30.922 626.47 44.413 633.15 61.255 61.255 ction of $n-C_5H_{12}$ $x = 0.1185$ mole for 13.315 564.56 19.014 573.47 21.501 592.88 23.092 606.83 23.854 612.56 25.912 619.08 27.718 622.57 37.634 628.49 tion of $n-C_5H_{12}$ $x = 0.058$ mole for 13.693 568.66 20.233 596.29 22.116 611.82 24.814 633.15 26.780 627.46 29.820 625.79 37.780 629.44 61.000 629.44

Table 4. Measured Values of P-T for the $H_2O + n-C_5H_{12}$ Mixtures along the Three-Phase (LLG) Curve

$T_{ m LLG}/ m K$	P _{LLG} /MPa
412.55	1.704
438.22	2.775
449.63	3.544
460.35	4.352
463.85	4.575

transition takes place from three-phase (LLG) to two-phase equilibria (LG), (LLG \Leftrightarrow LG), again with a break of the *P*-*T* curve (drop in the heat capacity). A transition from two-phase (LG) equilibria to one-phase (G), (LG \Leftrightarrow G), takes place, at further isochoric heating of the mixture with a break of the *P*-*T* curve.

All of these cases have been encountered in our PVTx experiment for water—*n*-pentane mixture and in our previous

Figure 10. Upper $P_S - T_S$ phase boundary curves of the $H_2O + n \cdot C_5H_{12}$ mixtures. $\bullet, x = 0.8620$ mole fraction of water; $\bigcirc, x = 0.9730$ mole fraction of water; $\blacktriangle, x = 0.9250$ mole fraction of water; $\asymp, x = 0.9033$ mole fraction of water; $\blacksquare, x = 0.8815$ mole fraction of water; $\square, x = 0.9420$ mole fraction of water. The solid curves are guides for the eye (smoothed curves).

PVTx and C_V experiments³⁵ for the water–*n*-hexane mixture. The first break point (or C_V jump) marks the disappearance of one of the liquid phases, and the second break (or C_V jump) marks the disappearance of the liquid or vapor phase depending on filling factor.

The filling factor (total density) is a very important for the experimentally observing of break points. For example, when approaching the critical isochore (see Figure 7), it is increasingly difficult to differentiate between the one- and the two-phase regions, while for the isotherms far from the critical region, the break points are very clearly pronounced. Near the critical point the transformation from the one- to two-phase (or from two- to one-phase) regions takes place without sharp changes (breaks) of the slopes of the isochores. Therefore, the isochoric P-Tbreak-point technique is much less sensitive to a phase transition in the critical region because the slopes of the P-T curves change very little due to the small difference between the densities of the phases in equilibrium. Conversely, the quasistatic thermogram method^{38,39} is more sensitive to determine the phase-boundary properties than the P-T break-point technique, because in the critical region the isochoric heat capacity jump is very large (diverges as $\Delta C_V \propto (T - T_C)^{-\alpha}$, where $\alpha =$ 0.11 is the universal critical exponent). At temperatures and pressures far from the critical point, the P-T break-point technique is preferred because the heat-capacity jump ΔC_V is small (therefore, changes in thermogram slopes are also small), while the slopes of the P-T isochores exhibit breaks that are sharp.

The isochore of 270 kg·m⁻³ for the concentration of x = 0.791 mole fraction of *n*-pentane intersects the phase-transition temperature at the UCEP ($T_{UCEP} = 463.85$ K and $P_{UCEP} = 4.575$ MPa), where the three-phase curve LLG intersects the lower L = G critical curve (see Figure 2). Figure 10 shows the (P_{S},T_{S}) data at the LG phase boundary curve obtained on isochores entering the two-phase region. These data are also presented in Table 3. The qualitative comparison between the $T_{S}-P_{S}$ data reported by de Loos et al.⁶ (the reported data presented only graphically) and the present data for three selected concentrations is presented in Figure 11. As Figure 11 shows, in general, the agreement between the present results and the data reported by de Loos et al.⁶ is satisfactory. We determined the phase-

Figure 11. Comparison between the present derived values of liquid–gas phase boundary (T_s, P_s) data and the values reported by de Loos et al.⁶ \bullet , this work; \bigcirc , de Loos et al.⁶ (a) x = 0.862 mole fraction of water (x = 0.859, de Loos et al.⁶); (b) x = 0.9033 mole fraction of water (x = 0.908, de Loos et al.⁶); and (c) x = 0.973 mole fraction of water (x = 0.967, de Loos et al.⁶). The solid curves are guides for the eye (smoothed curves).

Figure 12. Intercept of the two- and one-phase P-T (isochoric break points) for two selected isochores, $\rho = 282.60 \text{ kg} \cdot \text{m}^{-3}$ (left) and $\rho = 376.87 \text{ kg} \cdot \text{m}^{-3}$ (right) at a concentration of x = 0.027 mole fraction of *n*-pentane.

transition pressures and temperatures by "straight" extrapolations of the isochore behavior before and after phase transition occurs. The phase-transition points were determined as the intersection of the three-, two-, and one-phase P-T curves. Figures 12 and 13 show examples of liquid and vapor one-phase, two-phase, and three-phase P-T data along the three selected isochores for two concentrations of 0.027 and 0.8898 mole fraction of *n*-pentane. These figures show a detailed (expanded) view of the P-T curve behavior in the various regions of the phase diagram.

The same procedure was applied for the lower branch of the two-phase (LG) $T_{\rm S}$ - $P_{\rm S}$ phase boundary and three-phase (LLG) curves. Figure 14 shows lower liquid-gas phase boundary

Figure 13. Intercept of the three- and two-phase (left) and two- and onephase (right) P-T isochore, $\rho = 316.5 \text{ kg} \cdot \text{m}^{-3}$ (isochoric break points) for the selected concentration x = 0.8898 mole fraction of *n*-pentane.

Figure 14. Three- and two-phase P-T phase boundary curves for the H₂O + n-C₅H₁₂ mixtures at two selected concentrations. •, x = 0.8898; •, x = 0.8260; ×, lower critical points for these concentrations (this work); O, lower critical point data;⁷ –, experimental smoothed liquid–gas phase boundary curve (this work); -•----, three-phase (LLG) curve;¹⁷ ----, vapor-pressure curve of pure n-C₅H₁₂ (Span and Wagner⁴⁸); CP2, critical point of n-C₅H₁₂; UCEP, upper critical end point (this work).

curves for the $H_2O + C_5H_{12}$ mixture together with the threephase curve derived from the present *PVTx* measurements using the break-point technique. The derived values of T_s and P_s have an uncertainty of about (0.2 to 0.5) K and (0.1 to 0.2) MPa in the range far from the critical point and (1 to 2) K and (0.5 to 1.0) MPa in the critical region, where the location of the break points is unclear, respectively. Because the values of the phasetransition temperatures (T_s) and pressures (P_s) were obtained by graphical—analytical methods as isochoric break points, these data have relatively large uncertainties in comparison with the methods of direct measurements. The uncertainty of the interpolating procedure far from the critical region is negligibly small since the experimental P-T and P-x curves are very simple (almost linear) and can be reproduced analytically with high accuracy.

Critical Curve Data and the Krichevskii Parameter. Using the two-phase T_S-P_S phase boundary data, the values of the critical properties of the binary $H_2O + n-C_5H_{12}$ mixtures were derived. The derived values of the critical parameters of upper and lower critical curves are presented in Table 5 and 6 and

Table 5. Upper Critical Curve of the $H_2O + n-C_5H_{12}$ Mixtures Derived from the Present *PVTx* Measurements

<i>x</i> /mole fraction of n -C ₅ H ₁₂	$T_{\rm C}/{ m K}$	P _C /MPa
0.1185	646.30	75.50
0.0967	629.95	49.70
0.0750	625.50	33.90
0.0580	627.05	27.10
0.0270	632.35	21.78
0.0000	647.10	22.15

Table 6. Lower Critical Curve of the $H_2O + n-C_5H_{12}$ Mixtures Derived from the Present *PVTx* Measurements

x/mole fraction of n -C ₅ H ₁₂	$T_{\rm C}/{ m K}$	P _C /MPa
1.0000	469.90	3.36
0.8898	467.93	3.70
0.8570	466.68	3.90
0.8260	465.45	4.17
0.7970	464.15	4.50
0.7910	463.85	4.57

shown in Figures 3 and 4 in the $T_{\rm C}-P_{\rm C}$, $T_{\rm C}-x$, and $P_{\rm C}-x$ projections together with the reported data. As one can see from these figures, the derived critical temperatures and pressures are in fair agreement with the data reported by other authors. The present result is in satisfactory agreement with the interpolated values calculated from the data by de Loos et al.⁶ and Brunner.⁷ For example, the derived values of the critical pressure ($P_{\rm C} = 75.50$ MPa) and the critical temperature ($T_{\rm C} =$ 646.30 K) for the concentration of x = 0.115 mole fraction of n-C5H12 are in satisfactory (within 1.4 MPa and 0.4 K) agreement with the values 76.90 MPa and 646.7 K, reported by de Loos et al.⁶ for very close (0.118 mole fraction) to the present concentration. Figure 9 shows the present P-x data for the concentration dependence of the measured pressures along the critical isotherm-isochore of pure water together with the previous reported data by Abdulagatov et al.^{14,15} As one can see, the initial slope of the P-x curve ($x \rightarrow 0$, the Krichevskii parameter), derived from the present and reported data, at 139.03 MPa, is in satisfactory agreement with the value of 158.0 MPa derived by Abdulagatov et al.⁴⁰ from the critical curve data. The Krichevskii parameter for this mixture also was reported previously by several authors: Plyasunov and Shock⁴¹ (181 \pm 30 MPa), Plyasunov and Shock⁴² (168 MPa), and Abdulagatov et al.⁴³ (198 \pm 40 MPa) using the critical properties data. Krichevskii⁴⁴ derived the relation between the initial slopes of the critical lines and the derivative $(\partial P/\partial x)_{T_CV_C}^{\infty}$

$$\left(\frac{\partial P}{\partial x}\right)_{V_{\rm C}T_{\rm C}}^{\rm C} = \left[\left(\frac{\mathrm{d}P_{\rm c}}{\mathrm{d}T_{\rm c}}\right)_{\rm CRL}^{\rm C} - \left(\frac{\mathrm{d}P_{\rm S}}{\mathrm{d}T}\right)_{\rm CXC}^{\rm C} \right] \left(\frac{\mathrm{d}T_{\rm c}}{\mathrm{d}x}\right)_{\rm CRL}^{\rm C}$$
(4)

where "CXC" and "CRL" subscripts are related to the vaporpressure and critical line curves, respectively. The regimes of the near-critical dilute solution behavior depend strongly on the signs and magnitudes of the initial slopes of the critical curves of $T_{\rm C}(x)$ and $P_{\rm C}(x)$ and on the slope of the vapor-pressure curve $(dP_{\rm S}/dT)^{\rm C}_{\rm CXC}$ at the critical point of the pure solvent (water), that is, the magnitude and sign of the Krichevskii parameter, $(\partial P/$ $\partial x)_{T_CV_C}^{C}$.⁴⁵ The value of the derivative $(dP_S/dT)_{CXC}^{C} = 0.2682$ $MPa \cdot K^{-1}$ for pure water is calculated with the vapor-pressure equation (IAPWS formulation, Levelt-Sengers⁴⁶), and the slopes of the critical curves $T_{\rm C}(x)$ and $T_{\rm C}-P_{\rm C}$ are from the measured and reported data. The value of $(dP_C/dT_C)_{CRL} = -0.0406$ MPa·K⁻¹ for $H_2O + n$ -C₅ H_{12} at the critical point of pure water is lower than the value of the vapor-pressure curve $(dP_S/dT)_{CXC}^{C}$ for water at the critical point (see Figure 3). Therefore, as one can see from eq 4, the value of the Krichevskii parameter of $H_2O + n - C_5H_{12}$ is positive because the value of the derivative $(dT_C/dx)_{CRL} < 0$ is negative. The value of the derivative $(dT_C/dx)_{CRL} < 0$ $dx_{x=0} = -466.67$ K at infinite dilution ($x \rightarrow 0$) calculated from the present and the reported data were used to determine the value of the Krichevskii parameter for the $H_2O + n-C_5H_{12}$ mixture. Our result for the Krichevskii parameter calculated with eq 4 is (144.11 ± 5) MPa. This means that when exchanging a solvent (water) molecule by one solute $(n-C_5H_{12})$ molecule at constant volume and temperature, the local density of water molecules around the n-C5H12 molecule is decreasing compared with the ideal mixture or bulk density of pure water. Therefore, a dilute $H_2O + n-C_5H_{12}$ mixture is a "repulsive" mixture according to the classification by Levelt-Sengers⁴⁵ and Debenedetti and Mohamed.⁴⁷ The value of the Krichevskii parameter derived from the present and reported critical curve data (144.11 MPa) is excellent agreement with the value (139.03 MPa) derived from the direct P-x measurements along the critical isochore-isotherm of pure water.

Conclusions

New measurements of the PVTx properties of the H₂O + $n-C_5H_{12}$ mixtures were reported along 66 liquid and vapor isochores from (63 to 713) kg \cdot m⁻³ as a function of temperature in the range from (303 to 684) K at pressures up to 63 MPa. These regions include upper and lower branches of the critical curves, the three-phase line, and LG, LL, and GG phase equilibrium curves. The measured data were used to determine the values of the three-phase (LLG) and two-phase (LG) phase boundary properties (T_S, P_S) and the critical parameters (T_C, P_C) of the $H_2O + n-C_5H_{12}$ mixtures. The values of the upper critical point parameters ($T_{\text{UCEP}} = 463.85 \text{ K}$, $P_{\text{UCEP}} = 4.575 \text{ MPa}$, and the concentration x = 0.791 mole fraction of *n*-pentane) are derived from the three-phase (LLG) curve data. The value of the Krichevskii parameter calculated using the critical line data $(144.11 \pm 5 \text{ MPa})$ and the direct P-x data along the critical isochore-isotherm of pure water (139.03 MPa) was obtained.

Acknowledgment

I.M.A. thanks the Thermophysical Properties Division at the National Institute of Standards and Technology for the opportunity to work as a Guest Researcher at NIST during the course of this research.

Literature Cited

- Morrow, N. M. Interface Phenomena in Petroleum Recovery; Dekker: New York, 1991; p 1.
- (2) Siskin, M.; Katritzky, A. R. Reactivity of organic compounds in hot water: geological and technological implications. *Science* 1991, 254, 231–237.
- (3) Weingaertner, H.; Franck, E. U. Supercritical water. Angew. Chem., Int. Ed. 2005, 44, 2672–2692.
- (4) O'Brien, C. P.; Theis, M. C.; Bruce, D. A. Supercritical water oxidation of the PCB congener 2-chlorobiphenil in methanol solutions: a kinetic analysis. *Environ. Sci. Technol.* **2005**, *39*, 6839–6844.
- (5) Eckert, C. A.; Liotta, C. L.; Bush, D.; Brown, J. S.; Hallett, J. P. Sustainable reactions in tunable solvents. J. Phys. Chem. 2004, 108, 18108–180118.
- (6) de Loos, T. W.; van Dorp, J. H.; Lichtenthaler, R. N. Phase equilibria and critical phenomena in fluid (*n*-alkane + water) systems at high pressures and temperatures. *Fluid Phase Equilib.* **1983**, *10*, 279–287.
- (7) Brunner, E. Fluid mixtures at high pressures. IX. Phase separation and critical phenomena in 23 (*n*-alkane + water) mixtures. *J. Chem. Thermodyn.* **1990**, 22, 335–353.
- (8) Connolly, J. F. Solubility of hydrocarbons in water near the critical temperature. J. Chem. Eng. Data 1966, 11, 13–17.
- (9) Roof, J. G. Three-phase critical point in hydrocarbon + water systems. J. Chem. Eng. Data 1970, 15, 301–303.
- (10) Anisimov, M. A.; Sengers, J. V. Critical region. In *Equations of State for Fluids and Fluids Mixtures*; Sengers, J. V., Kayser, R. F., Peters, C. J., White, H. J., Eds.; Elsevier: Amsterdam, 2000; pp 381–434.

- (11) Fisher, M. E. Renormalization of the critical exponents by hidden variables. *Phys. Rev. B* **1968**, *176*, 257–271.
- (12) de Loos, T. W.; Wijen, A. J. M.; Diepen, G. A. M. Phase equilibria and critical phenomena in fluid (propane + water) at high pressures and temperatures. J. Chem. Thermodyn. **1980**, *12*, 193–204.
- (13) Neichel, M.; Franck, E. U. Critical curves and phase equilibria of watern-alkane binary systems to high pressures and temperatures. J. Supercrit. Fluids 1996, 9, 69–74.
- (14) Abdulagatov, I. M.; Bazaev, A. R.; Bazaev, E. A.; Saidakhmedova, M. B.; Ramazanova, A. E. Excess, partial, and apparent molar volumes of *n*-alkanes in near- and supercritical water. *J. Solution Chem.* **1998**, 27, 731–753.
- (15) Abdulagatov, I. M.; Bazaev, A. R.; Bazaev, E. A.; Saidakhmedova, M. B.; Ramazanova, A. E. Volumetric properties of near- and supercritical water-*n*-pentane mixtures: Molar, excess, partial, and apparent volumes. *J. Chem. Eng. Data* **1998**, *43*, 451–458.
- (16) Scheffer, F. E. On mixing in a binary system for which the three phase pressure is greater than the sum of the vapor tensions of the two components. *Proc. Sect. Sci.* **1914**, *17*, 834–839.
- (17) Jou, F. Y.; Mather, A. E. Vapor-liquid-liquid locus of the system pentane + water. J. Chem. Eng. Data 2000, 45, 728–729.
- (18) Gillespie, P. C.; Wilson, G. M. Vapor-liquid and liquid-liquid equilibria: Water-methane, water-carbon dioxide, water-hydrogen sulfide, water-n-pentane, water-methane-n-pentane; Gas Processors Association Research Report RR-48, Project 758-B-77 for Wiltec Res. Co., Inc.: Provo, UT, 1982.
- (19) Wormald, C. J.; Colling, C. N.; Lancaste, N. M.; Sellers, A. J. Excess enthalpy experimental data. Binary mixtures: Water + n-pentane; Water + n-hexane; Water + n-heptane, and Water + n-octane; Research Report, RR-68, University of Bristol, Bristol, U.K., 1983.
- (20) Rasulov, S. M. PVT properties and phase equilibrium in binary water + n-pentane mixture. Russ. J. Phys. Chem. 2009, 83, 756–759.
- (21) Kamilov, I. K.; Stepanov, G. V.; Rasulov, S. M. Liquid-liquid and liquid-gas equilibrium curves and critical lines of water + n-hexane mixture. *High Temp. High Pressures* **1997**, *29*, 491–495.
- (22) Rasulov, S. M.; Isaev, I. A. Phase equilibrium and the critical lines in water + n-pentane and water + n-hexane mixtures. *Russ. High Temp.* 2006, 44, 847–859.
- (23) Rasulov, S. M.; Rasulov, A. R. Liquid-liquid equilibria and PVT properties of binary water-n-hexane mixtures. *Russ. J. Phys. Chem.* 2000, 74, 1613–1615.
- (24) Rasulov, S. M.; Rasulov, A. P. *PVT*-dependence of the water + n-octane-sodium dodecylsulfate microemulsion + n-pentanol for two compositions. *Russ. High Temp.* **2008**, *46*, 953–956.
- (25) Rasulov, A. R.; Rasulov, S. M.; Radzhabova, L. M. In *Thermal properties of n-butanol in the near-critical region*, Proc. 12th Russian Thermophys. Prop. Conf., Moscow, 2008; pp 286–289.
- (26) Wagner, W.; Pruss, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 2002, 31, 387–535.
- (27) Mather, A. E.; Sadus, R. J.; Franck, E. U. Phase equilibria in (water + krypton) at pressures from 31 to 273 MPa and temperatures from 610 to 660 K and in (water + neon) from 45 to 255 MPa and from 660 to 700 K. J. Chem. Thermodyn. **1993**, 25, 771–779.
- (28) Shmonov, V. M.; Sadus, R. J.; Franck, E. U. High-pressure phase equilibria and supercritical *pVT* data of the binary water + methane mixture to 723 K and 200 MPa. *J. Phys. Chem.* **1993**, *97*, 9054–9059.
- (29) Lentz, H. A method of studying the behavior of fluid phases at high pressures and temperatures. *Rev. Sci. Instrum.* **1968**, *40*, 371–372.
- (30) Levelt-Sengers, J. M. H.; Hastings, J. R. Equation of state of ethylene vapor between 223 and 273 K by the Burnett method. *Int. J. Thermophys.* 1981, 2, 269–288.
- (31) Bazaev, A. R.; Abdulagatov, I. M.; Bazaev, E. A.; Abdurashidova, A. A.; Ramazanova, A. E. *PVT* measurements for pure methanol in the near-critical and supercritical regions. *J. Supercrit. Fluids* 2007, 41, 217–226.
- (32) Bach, R. W.; Friedrichs, H. A. *p-V-T* relations for HCl-H₂O mixtures up to 500 °C and 1500 bar. *High Temp. High Pressures* 1977, 9, 305– 312.
- (33) Bazaev, A. R.; Abdulagatov, I. M.; Magee, J. W.; Bazaev, E. A.; Ramazanova, A. E.; Abdurashidova, A. *PVTx* measurements for a H₂O + methanol mixture in the sub-critical and supercritical regions. *Int. J. Thermophys.* 2004, 25, 804–838.
- (34) Polikhronidi, N. G.; Abdulagtaov, I. M.; Batyrova, R. G.; Stepanov, G. V. Experimental study of the *PVTx* properties of aqueous ammonia mixture in the critical and supercritical regions. *Int. J. Refrig.* 2009, 32, 1897–1913.
- (35) Kamilov, I. K.; Stepanov, G. V.; Abdulagatov, I. M.; Rasulov, A. R.; Milikhina, E. M. Liquid-liquid-vapor and liquid-vapor phase transitions in aqueous *n*-hexane mixtures from isochoric heat capacity measurements. *J. Chem. Eng. Data* **2001**, *46*, 1556–1567.
- (36) Kamilov, I. K.; Stepanov, G. V.; Malysheva, L. V.; Rasulov, A. R.; Rasulov, S. M.; Shakhbanov, K. A. Phase equilibrium curves and

critical lines of *n*-hexane-water: liquid-liquid and liquid-gas. *High Temp. High Pressures* **1997**, *29*, 237–246.

- (37) Polikhronidi, N. G.; Stepanov, G. V.; Abdulagatov, I. M.; Batyrova, R. G. Thermodynamic study of the *n*-octane-1-pentanol-sodium dodecyl sulfate solutions in water. *Thermochim. Acta* 2007, 454, 99– 108.
- (38) Abdulagatov, I. M.; Polikhronidi, N. G.; Bruno, T. J.; Batyrova, R. G.; Stepanov, G. V. Measurements of the isochoric heat capacity, the critical point (T_c , ρ_c) and vapor-liquid coexistence curve (T_s , ρ_s) of high-purity toluene near the critical point. *Fluid Phase Equilib.* **2008**, *263*, 71–84.
- (39) Polikhronidi, N. G.; Abdulagatov, I. M.; Batyrova, R. G. Features of isochoric heat capacity measurements near the phase transition points. *Fluid Phase Equilib.* 2002, 201, 269–286.
- (40) Abdulagatov, A. I.; Stepanov, G. V.; Abdulagatov, I. M. Krichevskii parameter and thermodynamic properties infinite dilute aqueous solutions near the critical point of pure water. *Russ. Supercrit. Fluids Theory Pract.* 2007, 2, 20–54.
- (41) Plyasunov, A. V.; Shock, E. L. Estimation of the Krichevskii parameter for aqueous nonelectrolytes. J. Supercrit. Fluids 2001, 20, 91–103.
- (42) Plyasunov, A. V.; Shock, E. L. Prediction of the vapor-liquid distribution constants for volatile nonelectrolytes in water up to its critical temperature. *Geochim. Cosmochim. Acta* 2003, 67, 4981–5009.

- (43) Abdulagatov, A. I.; Stepanov, G. V.; Abdulagatov, I. M. Crossover equation of state and microstructure properties of infinite dilute solutions near the critical point of pure solvent. *Russ. J. Struct. Chem.* 2001, 48, 585–597.
- (44) Krichevskii, I. R. Thermodynamics of critical phenomena in infinitely dilute binary solutions. *Russ. J. Phys. Chem.* **1967**, *41*, 1332–1338.
- (45) Levelt Sengers, J. M. H. Solubility near the sovent's critical point. J. Supercrit. Fluids **1991**, 4, 215–222.
- (46) Levelt-Sengers, J. M. H. Saturated properties of ordinary water substance. In *Physical Chemistry of Aqueous Systems*, Proceedings of the 12th International Conference Properties of Water and Steam, Begell House, NY, 1995; White, H. J., Sengers, J. V., Neumann, D. B., Bellows, J. C., Eds.; pp A143–149.
- (47) Debenedetti, P. G.; Mohamed, R. S. Attractive, weakly attractive and repulsive near-critical systems. *J. Chem. Phys.* **1989**, *90*, 4528.
- (48) Span, R.; Wagner, W. Equation of state for technical applications. II. Results for Nonpolar Fluids. *Int. J. Thermophys.* 2003, 24, 41–109.

Received for review January 21, 2010. Accepted April 28, 2010.

JE100073Y