# Excess Molar Enthalpies of Benzyl Alcohol + Alkanols ( $C_1$ - $C_6$ ) and Their Correlations at 298.15 K and Ambient Pressure

Hossein A. Zarei\*

Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

Excess molar enthalpies,  $H_{m}^{E}$ , for the binary mixtures of benzyl alcohol + methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, and hexan-1-ol were measured over the entire range of composition at 298.15 K and ambient pressure using a Parr 1455 solution calorimeter. From the experimental results the excess partial molar enthalpies,  $H_{i}^{E}$ , and excess partial molar enthalpies at infinite dilution,  $H_{i}^{E,\infty}$ , were calculated. While the excess molar enthalpies are negative for the methanol mixture, those for ethanol, propan-1-ol, butan-1-ol, pentan-1-ol mixtures are positive over the entire range of composition of benzyl alcohol. The experimental data were correlated by the Redlich–Kister equation and the two thermodynamics models (Wilson and nonrandom two-liquid, NRTL).

### Introduction

The purpose of this excess molar enthalpy study is to provide information about molecular interactions in the liquid state. Benzyl alcohol and alkanol are widely used solvents in chemical industry. Benzyl alcohol has been used as a good solvent in chemical processes such as extraction distillation.<sup>1,2</sup> We have previously measured the excess molar enthalpies of some organic solvents with alkanols.<sup>3–8</sup> In continuation of our earlier work we present experimental data on excess molar enthalpies,  $H_{\rm m}^{\rm E}$ , for benzyl alcohol + methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, and hexan-1-ol over the entire range of composition at 298.15 K and ambient pressure. From the experimental results the excess partial molar enthalpies,  $H_i^{\rm E}$ , and excess partial molar enthalpies at infinite dilution,  $H_i^{\mathrm{E},\infty}$ , were calculated. These data help to obtain some insight into the intermolecular interactions, particular hydrogen bonding properties, between the benzyl alcohol and an alcohol with a different extent of chain length.

## **Experimental Section**

*Materials.* The solvents used in this study, suppliers, and purities are listed in Table 1. These liquids were used without further purification with the exception of hexan-1-ol, which was purified by the standard method of Perrin and Armarego.<sup>9</sup> The purities of the solvents were also checked by their densities and refractive indices, and comparisons with literature values<sup>10,11</sup> are shown in Table 1.

**Densities.** The densities of pure components,  $\rho$ , were determined at 298.15 K by means of an Anton Paar DMA 4500 oscillating U-tube density meter, provided with automatic viscosity correction. The temperature in the cell was regulated to  $\pm 0.01$  K with a solid state thermostat. Before measurements, the apparatus was calibrated using double-distilled fresh water and dry air. The uncertainty in the density was  $\pm 1 \cdot 10^{-5}$  g·cm<sup>-3</sup>.

*Refractive Index Measurements.* Refractive indices were measured at 298.15 K using a thermostatted Abbe refractometer. Water was circulated into the prism of the refractometer by a

| Fable 1.   | Sources,  | Purity | Grades, | Densities,  | ρ, | and | Refractive |
|------------|-----------|--------|---------|-------------|----|-----|------------|
| Indices, n | D, of the | Pure C | ompone  | nts at 298. | 15 | K   |            |

|                |        |        | <i>ρ</i> /(g· | $cm^{-3}$ )    | n <sub>D</sub> |         |
|----------------|--------|--------|---------------|----------------|----------------|---------|
| component      | source | purity | exptl         | lit.           | exptl          | lit.11  |
| benzyl alcohol | Merck  | 0.99   | 1.04199       | 1.041610       | 1.5381         | 1.53837 |
| methanol       | Merck  | 0.995  | 0.78650       | $0.78664^{11}$ | 1.3266         | 1.3265  |
| ethanol        | Merck  | 0.998  | 0.78515       | $0.78504^{11}$ | 1.3595         | 1.3594  |
| propan-1-ol    | Merck  | 0.998  | 0.79951       | $0.79975^{11}$ | 1.3833         | 1.3837  |
| butan-1-ol     | Merck  | 0.998  | 0.80575       | $0.80575^{11}$ | 1.3974         | 1.3973  |
| pentan-1-ol    | Fluka  | 0.99   | 0.81088       | $0.81080^{11}$ | 1.4088         | 1.4079  |
| hexan-1-ol     | Merck  | 0.99   | 0.81520       | $0.81534^{11}$ | 1.4165         | 1.4161  |

circulation pump connected to an external thermostatted water bath. The uncertainty of the refractive index is in the order of  $\pm$  0.0002 units, and for the temperature it was  $\pm$  0.1 K.

Calorimetric Measurements. A Parr 1455 solution calorimeter was used to measure the excess molar enthalpies,  $H_{\rm m}^{\rm E}$ . The measurements were carried out in an isolated room at 298 K and ambient pressure. In the measurement of excess enthalpies, the known weight of 100 mL of component A is taken into Dewar vessel, and about 20 mL of component B is weighted in a sealed glass rotating cell. Both of the components are kept in thermal contact with each other in the Dewar mixing chamber at 298.15 K. After attaining the thermal equilibrium component B in the rotating cell is mixed with component A in the Dewar vessel by pushing the glass rod. These experiments were continued until the concentration reached 50 to 60 in volume fraction. This procedure was repeated by taking component A as component B and component B as component A. Details of the equipment and its operation procedure have been described previously.<sup>6,7</sup> The miscibility of the components was tested prior to calorimetric measurements, and the two components were found to be completely miscible over the whole concentration range. The temperature in calorimetric measurement can be read to an uncertainty of  $\pm 2 \cdot 10^{-3}$  K.

Mole fractions of mixtures were determined by mass using a digital balance (model: Mettler AB 204-N) with an uncertainty of  $\pm 1 \cdot 10^{-4}$  g. The uncertainty in the mole fraction is estimated to be lower than  $\pm 2 \cdot 10^{-4}$ . The estimated relative uncertainty in the excess enthalpy measurements is  $\pm 1 \cdot 10^{-2}$  of the determined value.

<sup>\*</sup> Corresponding author. E-mail: zareih@basu.ac.ir.

|        | $H_{ m m}^{ m E}$                               | $H_2^{\rm E}$                                   | $H_1^{ m E}$                                    |                        | $H_{\mathrm{m}}^{\mathrm{E}}$ | $H_2^{\rm E}$                                   | $H_1^{\rm E}$                                   |
|--------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------|-------------------------------|-------------------------------------------------|-------------------------------------------------|
| $x_1$  | $\overline{\mathbf{J} \cdot \mathbf{mol}^{-1}}$ | $\overline{\mathbf{J} \cdot \mathbf{mol}^{-1}}$ | $\overline{\mathbf{J} \cdot \mathbf{mol}^{-1}}$ | $x_1$                  | $\overline{J \cdot mol^{-1}}$ | $\overline{\mathbf{J} \cdot \mathbf{mol}^{-1}}$ | $\overline{\mathbf{J} \cdot \mathrm{mol}^{-1}}$ |
|        |                                                 |                                                 | Benzyl Alcohol (                                | (1) + Methanol (2)     |                               |                                                 |                                                 |
| 0.0000 |                                                 | 0                                               | -140.3                                          | 0.4995                 | -140.8                        | -69.6                                           | -208.7                                          |
| 0.0700 | -15.2                                           | 3.7                                             | -249.5                                          | 0.5964                 | -144.5                        | -150.4                                          | -142.4                                          |
| 0.1388 | -33.4                                           | 10.4                                            | -309.6                                          | 0.6972                 | -135.8                        | -262.6                                          | -81.3                                           |
| 0.2057 | -57.0                                           | 15.0                                            | -332.6                                          | 0.7998                 | -108.1                        | -401.0                                          | -34.8                                           |
| 0.2728 | -79.2                                           | 13.6                                            | -328.9                                          | 0.9028                 | -61.5                         | -555.3                                          | -7.8                                            |
| 0.3404 | -100.6                                          | 3.0                                             | -305.5                                          | 1.0000                 |                               | -703.9                                          | 0                                               |
| 0.3992 | -119.8                                          | -15.4                                           | -274.4                                          |                        |                               |                                                 |                                                 |
|        |                                                 |                                                 | Benzyl Alcohol                                  | (1) + Ethanol $(2)$    |                               |                                                 |                                                 |
| 0.0000 |                                                 | 0                                               | 1113.4                                          | 0.4855                 | 223.2                         | 243.0                                           | 197.6                                           |
| 0.0746 | 73.4                                            | 9.3                                             | 864.7                                           | 0.5857                 | 207.9                         | 333.6                                           | 118.9                                           |
| 0.1514 | 130.6                                           | 33.9                                            | 669.6                                           | 0.6883                 | 176.7                         | 437.5                                           | 59.5                                            |
| 0.2275 | 171.4                                           | 68.6                                            | 520.1                                           | 0.7915                 | 129.3                         | 545.2                                           | 21.3                                            |
| 0.3029 | 198.4                                           | 110.9                                           | 402.4                                           | 0.8949                 | 71.7                          | 638.8                                           | 3.5                                             |
| 0.3785 | 214.4                                           | 160.5                                           | 306.3                                           | 1                      |                               | 688.7                                           | 0                                               |
|        |                                                 |                                                 | Benzyl Alcohol (1                               | ) + Propan-1-ol(2)     |                               |                                                 |                                                 |
| 0      |                                                 | 0                                               | 522.4                                           | 0.5993                 | 107.2                         | 207.7                                           | 40.1                                            |
| 0.0984 | 48.6                                            | 4.5                                             | 443.1                                           | 0.6983                 | 86.7                          | 250.3                                           | 16.7                                            |
| 0.1964 | 84.7                                            | 22.5                                            | 340.7                                           | 0.7996                 | 61.4                          | 282.9                                           | 5.6                                             |
| 0.2873 | 106.5                                           | 52.7                                            | 246.0                                           | 0.8988                 | 32.3                          | 306.3                                           | 13                                              |
| 0.3999 | 123.6                                           | 104.6                                           | 146.6                                           | 1                      | 0210                          | 331.9                                           | 0                                               |
| 0.4987 | 119.0                                           | 156.5                                           | 82.6                                            | -                      |                               | 00119                                           | Ū.                                              |
|        |                                                 |                                                 | Benzyl Alcohol (                                | 1) + Butan - 1 - ol(2) |                               |                                                 |                                                 |
| 0      |                                                 | 0                                               | 937.8                                           | 0.6029                 | 212.1                         | 357.2                                           | 117.8                                           |
| 0 0976 | 84.9                                            | 8 <sub>6</sub>                                  | 775 5                                           | 0.7039                 | 179.0                         | 466.3                                           | 59.7                                            |
| 0.1973 | 148.9                                           | 37.7                                            | 607.8                                           | 0.8026                 | 132.8                         | 574.3                                           | 24.1                                            |
| 0.2950 | 196.1                                           | 87.7                                            | 454.8                                           | 0.9017                 | 72.6                          | 680.9                                           | 5.4                                             |
| 0.3960 | 221.1                                           | 160.2                                           | 317.4                                           | 1                      | 72.0                          | 783.8                                           | 0                                               |
| 0.4931 | 231.1                                           | 246.3                                           | 209.7                                           | -                      |                               | 10010                                           | Ū.                                              |
|        |                                                 |                                                 | Benzyl Alcohol (1                               | ) $+$ Pentan-1-ol (2)  |                               |                                                 |                                                 |
| 0      |                                                 | 0                                               | 938.3                                           | 0.5999                 | 271.2                         | 403.3                                           | 186.5                                           |
| 0 1044 | 95 7                                            | 49                                              | 869.7                                           | 0.6988                 | 240.9                         | 548.8                                           | 107.9                                           |
| 0.1968 | 168.5                                           | 27.8                                            | 743.9                                           | 0.7995                 | 185.7                         | 720.0                                           | 50.6                                            |
| 0.1900 | 226.0                                           | 76.1                                            | 594.9                                           | 0.8992                 | 105.7                         | 927.2                                           | 14.2                                            |
| 0.3864 | 265.5                                           | 153.0                                           | 444.8                                           | 1                      | 105.7                         | 1204.5                                          | 0                                               |
| 0.4838 | 284.8                                           | 255.4                                           | 311.8                                           | 1                      |                               | 1204.5                                          | 0                                               |
|        |                                                 |                                                 | Benzyl Alcohol (1                               | ) + Hexan-1-ol(2)      |                               |                                                 |                                                 |
| 0      |                                                 | 0                                               | 1121.3                                          | 0 5980                 | 342.2                         | 453.6                                           | 266.6                                           |
| 0.0954 | 104.5                                           | 4.9                                             | 1041.7                                          | 0.6996                 | 309.7                         | 645.2                                           | 163.2                                           |
| 0 1959 | 198.1                                           | 31.7                                            | 888.4                                           | 0.8022                 | 241.1                         | 896.5                                           | 80.4                                            |
| 0.2910 | 270.8                                           | 85.8                                            | 721.6                                           | 0.8986                 | 145.4                         | 1218.2                                          | 24.5                                            |
| 0.3901 | 324.2                                           | 173.1                                           | 552.9                                           | 1                      | 110.1                         | 1701.0                                          | 0                                               |
| 0.5072 | 343.8                                           | 314.9                                           | 378.8                                           |                        |                               | 1,0110                                          | č                                               |
|        |                                                 |                                                 |                                                 |                        |                               |                                                 |                                                 |

Table 2. Excess Molar Enthalpies,  $H_m^E$ , and Excess Partial Molar Enthalpies for the Binary Mixtures of Benzyl Alcohol (1) + Alkan-1-ols (2) at 298.15 K

#### **Results and Discussion**

The experimental excess molar enthalpies at 298.15 K of the binary mixtures of benzyl alcohol + alkan-1-ols  $(C_1-C_6)$  are listed in Table 2 as a function of the mole fraction  $(x_1)$  of the benzyl alcohol. The experimental results are presented in Figure 1.

The excess molar enthalpies are positive over the entire range of composition for all mixtures except in the system of benzyl alcohol + methanol, for which  $H_m^E$  is negative. This indicates that benzyl alcohol interacts more strongly with methanol than with other alkanols. The  $H_m^E$  values at  $x_1 = 0.5$  are in the order methanol < propan-1-ol < ethanol < butan-1-ol < pentan-1-ol < hexan-1-ol. The  $H_m^E$  values increase as the chain length of the alkan-1-ol is increased, except for ethanol which is more positive than propan-1-ol. The heat of mixing of these systems may be influenced by factors such as (i) absorption of heat due to dissociation of self-associated benzyl alcohol or alkanols and (ii) liberation of heat as a result of possible hydrogen bonding interaction between benzyl alcohol and alkanols. The actual value of  $H_m^E$  would depend upon the relative strength of the two opposing effects. The excess molar enthalpies were correlated by the Redlich-Kister equation and two kinds of local composition models. The Wilson and nonrandom two-liquid (NRTL) models can be used to predict the ternary data using interaction parameters obtained from the binary data.

*Redlich–Kister Equation.* The excess molar enthalpies were correlated by the Redlich–Kister<sup>12</sup> equation:

$$H_{\rm m}^{\rm E}/{\rm J} \cdot {\rm mol}^{-1} = x_1 x_2 \sum_{\rm r=1}^{\rm E} A_{\rm r} (x_1 - x_2)^{r-1} \tag{1}$$

where  $x_1$  is the mole fraction of benzyl alcohol and  $A_r$  represents the adjustable parameters. The parameters in eq 1 were estimated by the least-squared fit method, and in each case the optimum number of coefficients is ascertained from the examination of the variation in the standard deviation,  $\sigma(H_m^E)$ , as given by:

$$\sigma(H_{\rm m}^{\rm E})/{\rm J} \cdot {\rm mol}^{-1} = \left[\sum_{k=1}^{n} \left\{H_{\rm m,cal}^{\rm E} - H_{\rm m,exp}^{\rm E}\right\}_{k}^{2}/(n-p)\right]^{1/2}$$
(2)

where *n* is the number of experimental points and *p* is the number of adjustable parameters  $A_r$ . The adjustable



**Figure 1.** Experimental excess molar enthalpies of benzyl alcohol (1) + alkan-1-ols (2) at 298.15 K:  $\blacktriangle$ , methanol;  $\bigtriangledown$ , ethanol;  $\blacksquare$ , propan-1-ol;  $\diamondsuit$ , butan-1-ol;  $\times$ , pentan-1-ol; +, hexan-1-ol. Solid lines were calculated with eq 1 at ambient pressure.

parameters  $A_r$  and the standard deviation  $\sigma$  are given in Table 3.

*Wilson Model.* The model proposed by Wilson<sup>13</sup> is based on the concept of local composition. The explicit form of excess molar enthalpies of binary mixtures developed through Wilson's model is

$$H_{\rm m}^{\rm E}/{\rm J} \cdot {\rm mol}^{-1} = x_1 x_2 \left( \frac{\lambda_{12} \Lambda_{12}}{x_1 + \Lambda_{12} x_2} + \frac{\lambda_{21} \Lambda_{21}}{\Lambda_{21} x_1 + x_2} \right) \quad (3)$$

where  $\Lambda_{12} = (V_2/V_1) \exp(-\lambda_{12}/RT)$  and  $\Lambda_{21} = (V_1/V_2) \exp(-\lambda_{21}/RT)$ ;  $\lambda_{12}$  and  $\lambda_{21}$  are model parameters; and  $V_i$  is molar volume.

The adjustable parameters  $\lambda_{21}$  and  $\lambda_{12}$  in the Wilson equation were obtained by a nonlinear least-squares fit and along with the standard deviation,  $\sigma(H_m^E)$ , are given in Table 4.

**NRTL Equation.** Renon and Prausnitz<sup>14</sup> modified Wilson's model for local mole fraction by introducing the constant  $\alpha_{ij}$  to account for the nonrandomness of liquid solutions. The nonrandomness parameter,  $\alpha_{ij}$ , is an empirical constant. According to the modification the explicit form of excess molar enthalpies is

$$\mathcal{H}_{m}^{E}/J \cdot mol^{-1} = -x_{1}x_{2} \\
\left[\frac{Z_{1}N_{1}\alpha_{12}\Delta g_{21} - \Delta g_{21}G_{21}N_{1} - Z_{1}x_{2}G_{21}\alpha_{12}\Delta g_{21}}{N_{1}^{2}} + \frac{Z_{2}N_{2}\alpha_{12}\Delta g_{12} - \Delta g_{12}G_{12}N_{2} - Z_{2}x_{1}G_{12}\alpha_{12}\Delta g_{12}}{N_{2}^{2}}\right] \quad (4)$$

where  $G_{21} = \exp(-\alpha_{12}\Delta g_{21}/RT)$ ,  $N_1 = x_1 + x_2G_{21}N_2 = x_2 + x_1G_{12}$ ,  $G_{12} = \exp(-\alpha_{12}\Delta g_{12}/RT)$ ,  $Z_1 = (\Delta g_{21}/RT)G_{21}$ , and  $Z_2 = (\Delta g_{12}/RT)G_{12}$ ;  $\Delta g_{12}$  and  $\Delta g_{21}$  are the two adjustable parameters remaining, because the nonrandomness parameter,  $\alpha_{ij}$ , was taken to be constant for each binary mixture. The adjustable parameters ( $\Delta g_{21}, \Delta g_{12}$ ) and the randomness parameter ( $\alpha_{ij}$ ) in the NRTL equation were obtained by a nonlinear least-squares fit and along with the standard deviation,  $\sigma(H_{\rm m}^{\rm E})$ , are given in Table 4.

Analyses of experimental data of all binary systems using the Wilson and NRTL models show that both models were generally satisfactory.

The excess partial molar enthalpies,  $H_i^E$ , can be determined from excess molar enthalpy data using:

$$H_i^{\mathrm{E}}/\mathrm{J} \cdot \mathrm{mol}^{-1} = H_{\mathrm{m}}^{\mathrm{E}} + (1 - x_i)(\partial H_{\mathrm{m}}^{\mathrm{E}}/\partial x_i)_{T,P}$$
(5)

where  $(\partial H_{\rm m}^{\rm E}/\partial x_i)_{T,P}$  is calculated from eq 1 using the parameters in Table 3.

The excess partial molar enthalpy at infinite dilution  $H_i^{E,\infty}$  can be determined from the following equation:

$$H_i^{\mathrm{E},\infty}/\mathrm{J}\cdot\mathrm{mol}^{-1} = (\partial H_{\mathrm{m}}^{\mathrm{E}}/\partial x_i)_{x_i=0,T,P}$$
(6)

The excess partial molar enthalpy at infinite dilution,  $H_i^{\text{E},\infty}$ , appears to be of particular interest. The properties of the solute at infinite dilution reflect, at least to a good approximation, how the solute interacts with the solvent. The values of  $H_i^{\text{E}}$  and  $H_i^{\text{E},\infty}$ 

Table 3. Redlich–Kister Equation Fitting Coefficients,  $A_r$ , in Equation 1 and Standard Deviation,  $\sigma(H_m^E)$ , in Equation 2 for Benzyl Alcohol (1) + Alkan-1-ols (2) at 298.15 K

Ì

| system                                   | $A_1$    | $A_2$    | $A_3$   | $A_4$   | $\frac{\sigma(H_{\rm m}^{\rm E})}{{\rm J}\cdot{\rm mol}^{-1}}$ |
|------------------------------------------|----------|----------|---------|---------|----------------------------------------------------------------|
| benzyl alcohol $(1)$ + methanol $(2)$    | -556.554 | -276.921 | 134.459 | -4.885  | 1.2                                                            |
| benzyl alcohol $(1)$ + ethanol $(2)$     | 880.382  | -140.835 | 20.668  | -71.510 | 1.4                                                            |
| benzyl alcohol $(1)$ + propan-1-ol $(2)$ | 478.105  | -150.589 | -50.965 | 55.317  | 1.4                                                            |
| benzyl alcohol $(1)$ + butan-1-ol $(2)$  | 911.702  | -99.829  | -50.901 | 22.878  | 1.8                                                            |
| benzyl alcohol $(1)$ + pentan-1-ol $(2)$ | 1133.130 | 35.134   | -61.730 | 97.956  | 1.4                                                            |
| benzyl alcohol $(1)$ + hexan-1-ol $(2)$  | 1387.080 | 167.185  | 24.083  | 122.658 | 2.3                                                            |

Table 4. Parameters  $\lambda_{21}$ ,  $\lambda_{12}$ ,  $\Delta g_{21}$ ,  $\Delta g_{12}$ ,  $\Delta g_{12}$ , and  $\alpha_{12} = \alpha_{21}$  Used in Equations 3 and 4 for Calculating  $H_m^E$  Derived at 298.15 K

|                                          | $\lambda_{21}$ $\lambda_{12}$ $\Delta g_{21}$ $\Delta g_{12}$ |          |          | $\sigma/(J \cdot mol^{-1})$ |        |      |      |
|------------------------------------------|---------------------------------------------------------------|----------|----------|-----------------------------|--------|------|------|
| system                                   | $J \cdot mol^{-1}$                                            |          |          | $\alpha_{ij}$               | Wilson | NRTL |      |
| benzyl alcohol $(1)$ + methanol $(2)$    | 1394.86                                                       | -2234.08 | -707.469 | 461.08                      | 1.0    | 3.0  | 11.2 |
| benzyl alcohol $(1)$ + ethanol $(2)$     | 631.955                                                       | 216.302  | 920.077  | 169.094                     | 0.6    | 1.6  | 1.6  |
| benzyl alcohol $(1)$ + propan-1-ol $(2)$ | 40.4436                                                       | 574.89   | 2675.91  | -1789.87                    | 0.1    | 3.5  | 2.8  |
| benzyl alcohol $(1)$ + butan-1-ol $(2)$  | 392.95                                                        | 634.081  | 910.97   | 93.524                      | 0.3    | 2.9  | 2.6  |
| benzyl alcohol $(1)$ + pentan-1-ol $(2)$ | 754.219                                                       | 544.352  | -126.54  | 132.31                      | 0.1    | 3.6  | 3.1  |
| benzyl alcohol $(1)$ + hexan-1-ol $(2)$  | 1064.96                                                       | 659.975  | 213.19   | 1422.44                     | 0.2    | 3.1  | 2.8  |

are given in Table 2. The  $H_1^E$  and  $H_2^E$  of methanol are negative and for other alkanols are positive over the entire range of benzyl alcohol composition.

#### Acknowledgment

The author would like to thank the Bu-Ali Sina University for providing the necessary facilities to carry out the research.

# Literature Cited

- Solimo, H. N.; Gramajo de Doz, M. B. Liquid-Liquid Equilibrium, Densities, Viscosities, Refractive Indices, and Excess Properties of the Ternary System Water + 4-Hydroxy-4-methyl-2-pentanone + Benzyl Alcohol at 298.15 K. J. Chem. Eng. Data 1995, 40, 563–566.
- (2) Solimo, H. N.; Gramajo de Doz, M. B. Influence of temperature on the liquid-to-liquid extraction of 4-hydroxy-4-methyl-2-pentanone from aqueous solutions with benzyl alcohol. *Fluid Phase Equilib.* **1995**, *107*, 213–227.
- (3) Zarei, H. A. Excess molar enthalpies of 1,2-propanediol plus alkan-1-ols (C<sub>1</sub>-C<sub>6</sub>) and their correlations at 298.15 K and ambient pressure (81.5 kPa). J. Chem. Eng. Data 2006, 51, 1597–1601.
- (4) Zarei, H. A.; Iloukhani, H. Excess molar enthalpies of methyl isobutyl ketone (MIBK) with alkan-1-ols (C<sub>1</sub>−C<sub>6</sub>) and their correlations at 298.15 K. *Thermochim. Acta* **2005**, 427, 201–206.
- (5) Iloukhani, H.; Zarei, H. A. Excess molar enthalpies of amides plus some alkan-2-ols at 298.15 K. *Phys. Chem. Liq.* 2004, 42, 75–79.

- (6) Zarei, H. A.; Iloukhani, H. Excess molar enthalpies of formamide plus some alkan-1-ols (C<sub>1</sub>-C<sub>6</sub>) and their correlations at 298.15 K. *Thermochim. Acta* 2003, 405, 123–128.
- (7) Iloukhani, H.; Zarei, H. A. Excess molar enthalpies of *N*,*N*-dimethylformamide plus alkan-1-ols (C<sub>1</sub>-C<sub>6</sub>) at 298.15 K. J. Chem. Eng. Data 2002, 47, 195–197.
- (8) Iloukhani, H.; Zarei, H. A. Excess thermodynamic properties of binary liquid mixtures containing *N*,*N*-dimethylacetamide with some alkan-1-ols (C<sub>1</sub>-C<sub>6</sub>) at 298.15 K. *Phys. Chem. Liq.* **2002**, *40*, 449–455.
- (9) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1970.
- (10) Xia, Z.; Zhi-Wu, Y.; Rui, Z.; Yun, L. Excess Molar Enthalpies for Binary Mixtures of Benzyl Alcohol and Heptanone Isomers at Different Temperatures. J. Chem. Eng. Data 2001, 46, 1258–1260.
- (11) Riddick, J. A.; Bunger, W. B. Organic Solvents, 3rd ed.; Wiley-Interscience: New York, 1970.
- (12) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (13) Wilson, G. M. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127– 130.
- (14) Renon, H.; Prausnitz, J. M. Local Composition in Thermodynamic Excess Function for Liquid Mixtures. AIChE J. 1968, 14, 135–144.

Received for review January 28, 2010. Accepted June 9, 2010.

JE100095P