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The most influential parameters on polymerization of ethene + oct-1-ene using a metallocene catalyst system
are temperature, ethene pressure, and the amount of hydrogen used for polymerization. An implemented
artificial neural network (ANN) is a supervised back-propagation model with different architectures. An
ANN for determining the conditions in the copolymerization of ethene + oct-1-ene using a metallocene
catalyst system to produce a copolymer with specific chains has been implemented. It has been shown that
the proper functioning of the ANN is implemented with satisfactory R values. Therefore, it is concluded
that the ANN developed is an effective tool to determine the conditions of copolymerization of ethene and
oct-1-ene.

Introduction

The ethene + oct-1-ene copolymer is a polymer that can be
synthesized in a wide range by controlling different parameters.
A metallocene catalyst system is the most efficient process to
produce this polymer (see Scheme 1), and they are operative in
all existing industrial plants that are presently used for polyolefin
manufacturing and have the potential to revolutionize the
technology for the production of these polymers.1-5 They show
extreme promise in the production of R-olefins (small plastic
building blocks).

Polyolefins are among the most important modern commodity
polymers. A polyolefin elastomer (or POE) is a relatively new
class of polymers that emerged with recent advances in the
metallocene polymerization catalyst. It represents one of the
fastest growing synthetic polymers. POE’s can be substituted
for a number of generic polymers including ethene propene
rubbers (EPR or EPDM), ethene vinyl acetate (EVA), styrene-
block copolymers (SBCs), and polyvinyl chloride (PVC).

POEs are compatible with most olefinic materials, are an
excellent impact modifier for plastics, and offer unique perfor-
mance capabilities for compounded products. Polyethene and
polypropene are today the most major tonnage plastic materials
worldwide. These two resins accounted for over 40 % of all
plastic sales in 1988. The industrial capacity for the production
of polyethene and polypropene in 1990 was ∼45 million tons.6,7

The main question about industrial synthesis of these
polymers is finding the optimal conditions to obtain a copolymer
with the desired hydrocarbon chain.1 This problem would
normally be solved by means of trial-and-error experiments,
which entail a great loss of money, resources, and time. An
alternative system could be the performance of an analysis of
the parameters that control the process. Therefore, it is our
intention to demonstrate through this study the suitability of

using artificial neural networks (ANNs) to determine these
copolymerization parameters.

ANNs are a complete statistical tool for data analysis.8 The
ANN origin dates back to the middle of the last century when
an interdisciplinary group of biologists, psychologists, and
engineers with an interest in understanding the functioning of
the human brain was created.9 The ANNs try to reproduce
artificially the human ability of taking decisions simulating
human brain’s basic unit, the neuron, and the interconnections
between neurons that allow them to work together and save
the experience information.10 ANNs, hence, are black-box
models with a high capability to simulate dynamic nonlinear
systems. The original artificial neuron is the threshold logic unit
proposed in the first part of the last century,11 but in recent
years, ANNs have been extended successfully to very different
fields, from hydrology to finances.12 Neural networks have also
been used in aerobiological studies to achieve predicting models
to improve the daily pollen concentration forecast.13,14

An ANN is a mathematical tool which tries to represent low-
level intelligence in natural organisms, and it is a flexible
structure, capable of making a nonlinear mapping between input
and output spaces.15 We could define an ANN as a system for
the treatment of information whose basic processing unit is
inspired in the main human brain cell. ANNs were originally
an abstract simulation of the biological brain systems, composed
of an assembly of units called “neurons” (or “nodes”) connected
between them. An artificial neuron, also called semilinear unit,
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Nv neuron, binary neuron, or McCulloch-Pitts neuron, is an
abstraction of biological neurons and the basic unit in an ANN.
The artificial neuron receives one or more inputs (representing
the one or more dendrites) and sums them to produce an output
(synapse). Usually the sums of each node are weighted, and
the sum is passed through a nonlinear function known as an
activation or transfer function. The canonical form of transfer
functions is the sigmoid, but they may also take the form of
other nonlinear functions, piecewise linear functions, or step
functions. Generally, transfer functions are monotonically
increasing. Unlike the simulation modeling, these systems
require prior knowledge of the relationship between parameters.
The advantage of ANNs consists of their ability to learn from
real cases and relearn when new data are input into the system.
They are particularly useful in managing different aspects of
engineering and science.16-26 In chemistry, they can be used
to solve different types of problems: the classification of objects,
the modeling of functional relationships, the storage and retrieval
of information, and the representation of large amounts of
data.27,28 This potential suggests many possibilities for the
processing of chemical data, and already applications cover a
wide area.29-38

Materials and Methods

Data Set. Parameters used in the ANNs are shown in Table
1. All experiments were carried out with the Me2Si(2-Me-4,5

BenzInd)2ZrCl2 catalyst, silica-supported monoamine oxidase
(MAO), tetraethylammonium (TEA) activator, ethene monomer,
and 1-octene comonomer. Runs shown here were carried out
in a randomized fashion. C indicates a center-point replicate.

Hardware. The equipment used was an Intel Core 2 Quad
with 4 GB of RAM, using Xen virtual machines to achieve
higher simulation performance.

Software. For the implementation of ANNs was used EasyNN
plus V. 12.0, which is a commercial software package provided
by Neural Planner Software Ltd. All of the component parts
are implemented as C++ reusable classes to simplify future
development.

The functioning of the neural network could be described as
follows: each neuron from the primary layer collects the data
of the input variables and presents them according to an input
vector

xp ) (x1
p, x2

p, ..., xN
p )T (1)

This input vector spreads toward the intermediate layer by
means of the following propagation rule

si
p ) ∑

j)1

N

wjixj
p + bi (2)

where N is the number of the network input neurons, wji is the
weight value of the connection between the neuron j from the

Table 1. Factor Design Levels: Temperature (T), Pressure (P), Volume Hydrogen (H), Comonomer Ethene Ratio (CER), and Activator Support
Ratio (ASR) and Responses for the Experiments: Activity (A), Homopolymer (H), Copolymer (C), Overall 1-Octene Content in the Copolymer
(OCC), Average Number of Crystallization Temperatures from the Homopolymer (Hc), Copolymer (Cc), Molecular Weight (Mw), and
Polydispersity Index (PDI)

factor design levela responses

experiment no.b T/°C P/MPa H/mL CER ASR A/(kg of PE) · (mol of cat ·h)-1 H/%c C/%c OCC/%d Hc/Tne Cc/Tne Mw/g ·mol-1 f PDIf

1g 313.16 0.6897 0 0.07 15 2.107 100 0 0.41 80.03 354,900 2.95
2 343.16 0.6897 0 0.07 5.335 8.448 100 0 1 76.11 114,000 2.66
3 313.16 1.3793 0 0.07 5.335 6.713 100 0 0.29 80.94 373,200 3.77
4 343.16 1.3793 0 0.07 15 10.880 100 0 0.87 77.06 213,800 2.17
5 313.16 0.6897 50 0.07 5.335 392 67.8 32.2 2.21 76.27 51.26 26,000 2.32
6 343.16 0.6897 50 0.07 15 1.589 87.2 12.8 2.11 72.26 47.36 33,600 1.79
7 313.16 1.3793 50 0.07 15 2.381 75.8 24.2 1.58 79.25 50.46 41,800 4.73
8 343.16 1.3793 50 0.07 5.335 5.040 100 0 0.93 75.8 49,300 2.55
9 313.16 0.6897 0 0.21 5.335 15.387 19.5 80.5 5.71 75.56 75.74 153,200 2.48
10 343.16 0.6897 0 0.21 15 5.440 10.5 89.5 3.98 74.67 55.02 57,500 2
11 313.16 1.3793 0 0.21 15 10.880 52 48 3.02 78.15 48.78 427,600 2.25
12 343.16 1.3793 0 0.21 5.335 26.560 16.1 83.9 3.5 70.97 58.73 463,800 2.53
13 313.16 0.6897 50 0.21 15 1.387 7.5 92.5 7.06 74.47 37.95 32,400 2.15
14 343.16 0.6897 50 0.21 5.335 3 4.9 95.1 5.89 72.43 44.2 47,000 1.94
15 313.16 1.3793 50 0.21 5.335 6.320 55.9 44.1 2.78 78.91 46.57 46,600 3.53
16g 343.16 1.3793 50 0.21 15 5.520 14.2 85.8 3.93 75.37 54.71 64,100 2.02
17 328.16 1.0345 25 0.14 10.1675 5.216 62.3 37.7 1.91 77.18 58.88 67,100 2.78
18g 328.16 1.0345 25 0.14 10.1675 5.824 72.2 27.8 1.59 77.3 59.56 64,300 2.77
19 328.16 1.0345 25 0.14 10.1675 3.740 66.8 33.2 1.79 77.05 59.01 76,500 2.69
20 298.16 1.0345 25 0.14 10.1675 1.296 74.1 26 1.29 81.01 55.12 13,800 3.04
21 358.16 1.0345 25 0.14 10.1675 26.560 100 0 2.3 67.29 104,500 2.69
22 328.16 0.3448 25 0.14 10.1675 427 11.1 88.9 3.88 75.8 55.43 32,700 2.1
23 328.16 1.3793 25 0.14 10.1675 6.640 66.8 33.3 1.86 77.52 57.07 88,000 2.6
24 328.16 1.0345 0 0.14 10.1675 15.160 62.2 37.8 1.74 75.95 63.82 280,900 2.99
25 328.16 1.0345 75 0.14 10.1675 1.156 42.3 57.7 2.8 74.31 57.41 105,100 3.85
26 328.16 1.0345 25 0 10.1675 4.267 100 0 0.36 79.9 63,500 6.11
27 328.16 1.0345 25 0.28 10.1675 13.200 7 93 6.64 76.27 40.72 95,000 2.05
28 328.16 1.0345 25 0.14 0.5025 42.480 34.7 65.3 2.35 78.36 61.73 204,300 6.93
29 328.16 1.0345 25 0.14 19.8325 1.680 78.8 21.2 1.15 79.24 60.54 63,100 2.48
30 328.16 1.0345 25 0.14 10.1675 4.640 56.2 43.8 1.77 78.63 61.39 95,800 2.72
31g 328.16 1.0345 25 0.14 10.1675 5.200 78.4 21.6 1.23 78.75 60.27 71,800 3.08
32 328.16 1.0345 25 0.14 10.1675 83.3 16.7 1.38 77.6 54.71 55,800 2.61

a As determined by 2V
v
-1 factorial design. b Experiments were carried out with the Me2Si(2-Me-4,5 BenzInd)2ZrCl2 catalyst, silica-supported MAO,

the TEA activator, ethene monomer, and oct-1-ene comonomer. Runs shown here were carried out in a randomized fashion. C indicates a center-point
replicate. c Estimated from the areas in the CRYSTAF profiles determined to be the homopolymer and copolymer. d Estimated from the CRYSTAF
profile with a calibration curve relating the 1-octene content and Tc. e Average number of crystallization temperatures from the homopolymer and
copolymer regions in the CRYSTAF profiles. f As determined by gas particle chromatography (GPC) with narrow polystyrene standards and the
universal calibration curve. g Indicates the cases that have been reserved for the validation of the implemented ANNs.
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input layer and the neuron i from the intermediate layer, and bi

is the value of the “bias” associated to the neuron i. If it is
assumed that the activation state of the neuron i is the function
of the network input vector, then the network output derives
from:

yi
p ) Fi(si

p) (3)

Similarly, for any neuron k from the output layer, the
equations that determine its activation state are:

sk
p ) ∑

i)1

L

wikyi
p + bk (4)

yk
p ) Fk(sk

p) (5)

where L is the neuron number of the intermediate layer, wik is
the weight value of the connection between the neuron i from
the intermediate layer and the neuron k from the output layer,
and bk is the value of the “bias” associated with the neuron k.
The term of error for the output neuron is calculated by means
of the following equation

Ep ) 1
2 ∑

k)1

M

(dk
p - yk

p)2 (6)

and if it adjusts to the previously established value, the training
of the neural network finishes here. On the contrary, if it does
not adjust to the previously established margins of error, the
process would be repeated until reaching the desired error value.

The activation equation used in this article is the sigmoid or
logistic.

Fk(sk
p) ) 1

1 + e-sk
p

(7)

A back-propagation rule (BP), which is a typical gradient-
based learning algorithm, was used as the learning rule in the
present work.

∆pwik ) -η ∂Ep

∂wik
) η(dk

p - yk
p)Fk′(sk

p)yi
p ) ηδk

pyi
p (8)

This learning rule presents an important limitation, which is
the large number of input cases for the training process, but for
our study, a large amount of cases were available. This
application could be interpreted as an ANN constituted by a
primary neural layer (where the data of the input variables would
be collected), an output neural layer (where the collected value
would be obtained), and one or various intermediate layers
(where the convergence work of the neural network would be
facilitated) (see Figure 1).

The architecture of ANN is denoted as the following code:

Nin - [Nh1 - Nh2 - Nh3]e - Nout (9)

where Nin and Nout are the number of neurons in the input layer
and output layer, respectively, Nh1, Nh2, and Nh3 are the number
of neurons in the first, second, and third intermediate layers,
respectively, and e is the number of hidden layers.

Results and Discussion

Modelization. Different ANN architectures have been studied
to find the best neural modelization, which determined the best
conditions of ethene + oct-1-ene copolymerization.

The number of neurons in the first layer was seven: activity,
homopolymer, copolymer, overall oct-1-ene content in the
copolymer, homopolymer Tn, Mw, and polydispersity index. The
number of neurons in the intermediate layer was tested between
n/2 + 1 and 2n + 1, while the number of intermediate layers
was tested between 1 and 3. The number of neurons in the final
layers was five (temperature, pressure, hydrogen, comonomer
ethene ratio, and activator support ratio).

Figure 1. Diagram of perceptron network constituted by a n-neuron input
layer, a hidden four-neuron layer, and a m-output neuron. W represents the
weight among the various neurons from each layer. Xn are the data of the
input variables, and Ym represent the output data.

Table 2. Adjustments for the Predicted Values of Temperature (T),
Pressure (P), Volume Hydrogen (H), Comonomer Ethene Ratio
(CER), and Activator Support Ratio (ASR) after the Training of
Different ANN Architectures (Coefficient of Determination R)

architecture T P H CER ASR

7-[3-2]2-5 0.2823 0.6593 0.5248 0.6974 0.3639
7-[3]1-5 0.8665 0.5455 0.8449 0.7935 0.3265
7-[4]1-5 0.7854 0.7386 0.8148 0.7908 0.599
7-[11-6]2-5 0.9988 0.9999 0.9971 0.9992 0.9975
7-[15]1-5 0.9987 0.9914 0.9975 0.9947 0.9511

Table 3. Adjustments for the Predicted Values of Temperature (T),
Pressure (P), Volume Hydrogen (H), Comonomer Ethene Ratio
(CER), and Activator Support Ratio (ASR) after Validation of
Different ANN Architectures (Coefficient of Determination R)

architecture T P H CER ASR

7-[3-2]2-5 0.5633 0.9392 0.6643 0.6888 0.7701
7-[3]1-5 0.7188 0.4938 0.9379 0.7521 0.7854
7-[4]1-5 0.231 0.2872 0.5639 0.7657 0.7209
7-[11-6]2-5 0.0476 0.8165 0.1023 0.9884 0.9102
7-[15]1-5 0.0934 0.8056 0.1971 0.8841 0.0263

Table 4. Adjustments for the Predicted Values of Temperature (T),
Pressure (P), Volume Hydrogen (H), Comonomer Ethene Ratio
(CER), and Activator Support Ratio (ASR) for Training and
Validation Phase for the Best Architecture 7-[15]1-1 (Coefficient of
Determination R)

T/K P/MPa H/mL CER ASR

Training
R 1 0.9824 0.9991 0.9988 0.9962
RMSE 0.1077 0.0749 1.3320 0.0038 0.6591

Validation
R 0.9951 0.9970 0.9995 0.8557 0.9937
RMSE 5.3646 0.0531 1.2175 0.0344 0.6458
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Table 5. Experimental Values (Denoted by R Subscript) versus Predicted Values (Denoted by P Subscript) of Temperature (T), Pressure (P),
Volume Hydrogen (H), Comonomer Ethene Ratio (CER), and Activator Support Ratio (ASR) Calculated by ANNs for Training and Validation
Data

training phase validation phase

TR/K TP/K RMSE TR/K TP/K RMSE TR/K TP/K RMSE
343.16 343.14 0.02 328.16 327.89 0.27 313.16 321.63 8.47
313.16 313.16 0.00 328.16 328.56 0.40 343.16 336.61 6.55
343.16 343.17 0.01 298.16 298.36 0.20 328.16 328.77 0.61
313.16 313.16 0.00 358.16 358.07 0.09 328.16 327.84 0.32
343.16 343.16 0.00 328.16 328.17 0.01
313.16 313.16 0.00 328.16 327.97 0.19
343.16 343.17 0.01 328.16 328.17 0.01
313.16 313.16 0.00 328.16 328.17 0.01
343.16 343.16 0.00 328.16 328.17 0.01
313.16 313.16 0.00 328.16 328.16 0.00
343.16 343.16 0.00 328.16 328.16 0.00
313.16 313.16 0.00 328.16 328.14 0.02
343.16 343.16 0.00 328.16 328.24 0.08
313.16 313.17 0.01 328.16 328.16 0.00

PR/MPa PP/MPa RMSE PR/MPa PP/MPa RMSE PR/MPa PP/MPa RMSE

0.6897 0.8943 0.2046 1.0345 1.0988 0.0643 0.6897 0.7906 0.1009
1.3793 1.3696 0.0097 1.0345 1.1510 0.1166 1.3793 1.3749 0.0044
1.3793 1.3773 0.0020 1.0345 1.0892 0.0547 1.0345 1.0658 0.0313
0.6897 0.7513 0.0617 1.0345 1.0925 0.0580 1.0345 1.0435 0.0090
0.6897 0.8444 0.1548 0.3448 0.3455 0.0007
1.3793 1.3715 0.0078 1.3793 1.3261 0.0532
1.3793 1.3777 0.0016 1.0345 1.0647 0.0302
0.6897 0.8029 0.1132 1.0345 1.0862 0.0517
0.6897 0.8686 0.1790 1.0345 1.0526 0.0181
1.3793 1.3790 0.0003 1.0345 1.0479 0.0134
1.3793 1.3785 0.0008 1.0345 1.0530 0.0186
0.6897 0.7660 0.0763 1.0345 1.0449 0.0104
0.6897 0.7617 0.0721 1.0345 1.0433 0.0088
1.3793 1.3793 0.0000 1.0345 1.0368 0.0023

HR/mL HP/mL RMSE HR/mL HP/mL RMSE HR/mL HP/mL RMSE

0 0.57 0.57 25 26.44 1.44 0 0 0
0 0 0 25 25.78 0.78 50 52.04 2.04
0 0.03 0.03 25 25.67 0.67 25 26.31 1.31

50 53.74 3.74 25 25.40 0.40 25 24.85 0.15
50 51.93 1.93 25 25.56 0.56
50 52.70 2.70 25 25.10 0.10
50 53.46 3.46 0 0 0.00
0 0.37 0.37 75 74.72 0.28
0 0.88 0.88 25 25.16 0.16
0 0 0 25 25.21 0.21
0 0 0 25 25.10 0.10

50 51.50 1.50 25 25.17 0.17
50 51.32 1.32 25 25.13 0.13
50 51.92 1.92 25 25.06 0.06

CERR CERP RMSE CERR CERP RMSE CERR CERP RMSE

0.07 0.07 0 0.14 0.14 0 0.07 0.14 0.07
0.07 0.08 0.01 0.14 0.14 0 0.21 0.21 0
0.07 0.07 0 0.14 0.14 0 0.14 0.14 0
0.07 0.07 0 0.14 0.14 0 0.14 0.15 0.01
0.07 0.07 0 0.14 0.14 0
0.07 0.08 0.01 0.14 0.14 0
0.07 0.07 0 0.14 0.14 0
0.21 0.22 0.01 0.14 0.14 0
0.21 0.22 0.01 0 0 0
0.21 0.21 0 0.28 0.28 0
0.21 0.21 0 0.14 0.14 0
0.21 0.22 0.01 0.14 0.14 0
0.21 0.21 0 0.14 0.14 0
0.21 0.21 0 0.14 0.14 0

ASRR ASRP RMSE ASRR ASRP RMSE ASRR ASRP RMSE

5.34 4.24 1.10 10.17 9.58 0.59 15.00 13.88 1.12
5.34 4.48 0.86 10.17 9.77 0.40 15.00 14.59 0.41

15 13.96 1.04 10.17 9.74 0.43 10.17 9.66 0.51
5.34 4.66 0.68 10.17 9.75 0.42 10.17 10.17 0

15 13.91 1.09 10.17 9.83 0.34
15 14.15 0.85 10.17 9.94 0.23
5.34 4.29 1.05 10.17 9.98 0.19
5.34 4.21 1.13 10.17 10.00 0.17

15 14.10 0.90 10.17 10.02 0.15
15 14.13 0.87 10.17 10.05 0.12
5.34 4.66 0.68 0.5 0.59 0.09

15 14.31 0.69 19.83 19.61 0.22
5.34 4.55 0.79 10.17 10.13 0.04
5.34 4.93 0.41 10.17 10.16 0.01

Journal of Chemical & Engineering Data, Vol. 55, No. 9, 2010 3545



For the training of the various ANNs 28 experimental data
points calculated by Shan et al.38,39 were used. The other four
cases, not used in the training stage, were reserved for the
validations of the ANNs. Table 2 shows the regression adjust-
ments (R) for some of the various architectures studied.

Once the different ANNs were trained, we proceeded to the study
of their functioning by using the four cases previously reserved.
Table 3 represents the regression adjustments (R) for some of the
various architectures studied.

Taking into account the training results for each implemented
ANN and the R values for validating cases, we had found a
nonsatisfactory fit. This fact is due to the large number of output
variables. To solve this problem, we decide to implement five new
ANNs with seven neurons in the first layer; activity, homopolymer,
copolymer, overall oct-1-ene content in the copolymer, homopoly-
mer, Mw, and polydispersity index. The number of neurons in the
intermediate layer was tested between n/2 + 1 and 2n + 1, while
the number of intermediate layers was tested between 1 and 3.
The number of neurons in the final layer was one for each ANN;
temperature, pressure, hydrogen, comonomer ethene ratio, and
activator support ratio.

Once the different ANNs were trained, we proceeded to the
study of their functioning by using the 4 cases previously
reserved.

Selected Architecture. Taking into account the regression
adjustment values (R), it has been decided that the most
favorable architectures for the prediction of suitable conditions
of temperature, ethene pressure, hydrogen amount, comonomer
ethene ratio, and activator support ratio used that determine the
copolymerization are the typologies 7-[15]1-1. Table 4 shows
R values for training and validation set for the different ANNs.
Table 5 shows experimental values (denoted by R subscript)
versus predicted values (denoted by P subscript) of temperature
(T), pressure (P), volume hydrogen (H), comonomer ethene ratio
(CER), and activator support ratio (ASR) calculated by ANNs
for training and validation data.

As shown in Figures 2 to 6, the linear adjustments of the
training values are very satisfactory. The high R values
demonstrate the good correlation existing between experimental
values and predicted values by the ANN for training. To know
the error committed by the ANN for each of the output variables,
it has been calculated or quantified in terms of root-mean-square
error (RMSE) for the three variables. Values obtained were
0.1077, 0.0749, 1.3320, 0.0038, and 0.6591, respectively, which
denotes the proper training of the ANN in question.

As mentioned before, the four reserved cases were used to verify
the functioning of the ANN after carrying out its proper training.
R values obtained for each of the output variables were 0.9951,

0.9970, 0.9995, 0.8557, and 0.9937, respectively (Figure 2 to 6).
The RMSE for the five output variables were also calculated,
presenting the values of 5.3646, 0.0531, 1.2175, 0.0344, and
0.6458, respectively, which denotes the proper training of the ANN
in question. The importance of the variables selected for the ANN
has been determined. This value is the sum of the weights of the
input neurons to all intermediate neurons (Table 6).

Conclusions

Results obtained show a high coefficient of linear regression
between the values predicted by the ANN for the training cases in
comparison with the real values of temperature, pressure, the
amount of hydrogen, comonomer ethene ratio, and activator support
ratio (Table 4). The accuracy of the neural network developed was
tested with four cases of data, which was not taken into account
to establish the aforementioned models.

Figure 2. Experimental values of temperature (TR) versus predicted values (TP)
for O, training data; and b, validation data; calculated by ANN 7-[15]1-1.

Figure 3. Experimental values of pressure (PR) versus predicted values (PP) for
O, training data; and b, validation data; calculated by ANN 7-[15]1-1.

Figure 4. Experimental values of volume of hydrogen (HR) versus predicted values
(HP) for O, training data; and b, validation data; calculated by ANN 7-[15]1-1.

Figure 5. Experimental values of comonomer/ethene ratio (CERR) versus
predicted values (CERP) for O, training data; and b, validation data;
calculated by ANN 7-[15]1-1.
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Neural networks provided us a good tool to predict ideal
conditions of copolymerization and thus could help the automation
of appropriate conditions for the copolymerization. Furthermore,
the ANN implemented here should be optimized according to
known copolymerization new parameters to extend its use to
another type of copolymerization.
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Figure 6. Experimental values of activator/support ratio (ASRR) versus
predicted values (ASRP) for O, training data; and b, validation data;
calculated by ANN 7-[15]1-1.

Table 6. Importance of Variables Considered for the Best
Typologies (7-[15]1-1) for Input Variables of Temperature (T),
Pressure (P), Volume Hydrogen (H), Comonomer Ethene Ratio
(CER), and Activator Support Ratio (ASR)

output variables

input variables T P H CER ASR

homopolymer/Tn 41.30 129.96 81.94 55.49 67.54
overall oct-1-ene content

in the copolymer/%
41.06 131.98 72.23 32.57 66.64

Mw/g ·mol-1 40.22 123.98 72.57 17.90 71.52
homopolymer/% 35.33 85.92 65.78 31.67 50.52
polydispersity index 31.20 142.04 65.32 37.83 102.45
copolymer/% 29.79 63.63 47.08 32.84 60.86
activity/(kg of PE) ·

(mol of cat ·h)-1
10.48 68.14 28.59 22.49 26.67
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