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The value of excluded volume taken by van der Waals as the quadruple molecular volume was a subject of
discussion for a long time. The enigma of the van der Waals equation of state consists in the fact that it
yields a correct result only with an incorrect excluded volume. The paradox has been recently resolved in
the author’s general theory of an equation of state based on the excluded volume. A short outline of the
theory is given with the derivation of the van der Waals equation as corresponding to a linear dependence
of the exclusion factor on the packing fraction. The generation of other equations of state is exhibited by
example of a system of hard spheres. The novel theory is shown to be potentially important for mixtures
with large molecular size ratios.

Introduction

As recently as a quarter of a century ago, I was engaged in
editing the Russian language version of the book “Molecular
Theory of Capillarity”1 in close and nice collaboration with the
authors, Sir John Rowlinson and Professor Ben Widom. Special
attention was then paid to the theory of van der Waals whose
works seemed to be of great academic interest for Sir John still
earlier.2,3 At the beginning of the new millennium, I came in
touch with the van der Waals equation of state when creating
a general theory of equation of state based on excluded
volume.4-7 Concerning van der Waals, two consequences of
the theory were of significance: (a) a new and simple way of
derivation of the van der Waals equation of state and (b) a clue
to a historical enigma contained in the van der Waals equation
and related to the excluded volume. Both the aspects seem to
be worthy of discussion in the Festschrift devoted to Sir John
S. Rowlinson.

Close to 1660, the first equation of state, known as the
Boyle-Mariotte law, established the inverse proportionality
between the pressure, p, and the volume, V, of a gas

pV ) a constant (1)

In 1738, Daniel Bernoulli was the first to state that pressure
cannot be proportional to density at high pressures and to
introduce a volume correction to eq 1. In his famous “Hydro-
dynamica” (written during his work at the St. Petersburg
Academy of Sciences), he derived, on the basis of kinetic theory
of fluids, an equation of state as8

π ) 1 - m1/3

s - m1/3s2/3
P (2)

where π and P are the final and initial values of the gas pressure
when changing the gas volume; s is the volume ratio for the
two states; and m is the minimal possible volume (when
the gas molecules are in contact with each other) divided by
the initial volume. Setting mf 0 changes eq 2 to eq 1. So, the
idea of taking into account the own volume of molecules in an
equation of state seems to be very old. In the 19th century, a

number of authors introduced volume corrections into an
equation of state before van der Waals (the list of them was
compiled by Clausius9), but only the van der Waals equation
of state predicted a phase transition.10

The classical format of the van der Waals equation of state
is

(p + a

V2)(V - b) ) kBT (3)

where V is volume per molecule; a and b are constants; kB is
the Boltzmann constant; and T is temperature. van der Waals
put the constant b (earlier termed as “covolume”) to be equal
to four times the molecular volume of a gas in question. Taking
this into account, we can rewrite eq 3 as

p )
kBT

V - 4V0
- a

V2
(4)

where V0 is the intrinsic volume of a single molecule. Concerning
his equation of state, van der Waals was anxious to make it
more accurate and to explain the coefficient 4 in eq 4. He
believed the first problem could be resolved by considering b
in eq 3 not as a constant, but as a certain function of density.
He tried to find this function but did not succeed in his efforts.
Nevertheless, there was a useful consequence of that work as
the initiation of computing virial coefficients (which has been
in progress up to the present time).

The justification of coefficient 4 was a real headache for van
der Waals. By physical meaning, the term 4V0 should be an
excluded volume, but the latter is equal to 8V0. Indeed, if we
imagine that a spherical particle of radius r and volume V0 )
(4/3)πr3 ceases its movement in a gas and becomes resting, this
makes the part of the space of volume

Vex ) 4
3

π(r + r1)
3 ) (V0

1/3 + V1
1/3)3 (5)

inaccessible for the centers of particles of radius r1 and volume
V1 (Figure 1). This is just the excluded volume, and we have
Vex ) 8V0 at r1 ) r. Following this logic, one should replace
coefficient 4 in eq 4 by 8. However, this would make eq 4
incorrect in the sense that eq 4 would not reproduce properly
the second virial coefficient B2 ) 4V0 - a/kT. Thus, it resulted
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that the equation of state should include incorrect excluded
volume to be correct as a whole, and this was a paradoxical
enigma. van der Waals tried to resolve the paradox by arguing
that always two particles participate in a collision, and for this
reason, 8 should be divided by 2. Looking too artificial, this
statement did not explain why and how the excluded volume
could be related to the number of colliding particles.

In any case, van der Waals’ argument was completely ruined
by Planck11 who derived a correct equation of state with the
correct excluded volume. His equation of state for a monatomic
gas is

p ) -
kBT

�
ln(1 - �

V ) - R
V2

(6)

where the constant R is obviously identical with a in eq 4.
Expressing his and van der Waals’ equations as a power series
in 1/V, Planck found his constant � to be twice as large as that
of van der Waals, i.e., � ) 8V0. With this value, meaning that
� is just the excluded volume, eq 6 becomes

p ) -
kBT

8V0
ln(1 -

8V0

V ) - R
V2

(7)

For better comparison, it is convenient to rewrite eqs 4 and 7
in dimensionless forms as

p̃ ) �
1 - 4�

- ã�2 (van der Waals) (8)

p̃ ) - ln(1 - 8�)
8

- ã�2 (Planck) (9)

where p̃ ≡ pV0/kBT, � ≡ V0/V is the packing fraction, and ã ≡
a/kBTV0 ) R/kBTV0 is a dimensionless form for the attractive
constant.

Both eqs 8 and 9 yield the proper values for the first and
second coefficients of the virial expansion

p̃ ) � + (4 - ã)�2 + · · · (10)

and Planck modestly wrote that he only confirmed the van der
Waals equation. Strictly speaking, however, eqs 8 and 9 are
different relationships, and the first question to be put is: which
of the equations is more accurate? Using the virial equation of
state, one can easily determine the van der Waals equation as
a more exact relationship. This makes the enigma of this
equation still less understandable. Indeed, how it can happen
that an equation with an incorrect excluded volume is more
accurate than an equation with the correct one? This enigma
was a challenge for theory for many years after van der Waals
and has been relatively recently resolved within the frames of
the above-mentioned general theory of equation of state based

on excluded volume.4-7 So, to proceed to further discussion,
we have to outline the theory itself.

Master Equation

The central idea of the theory is the derivation of a master
equation as a rigorous relationship capable of generating
equations of state. The starting point is an abecedarian expres-
sion for chemical potential given by statistical mechanics

µi ) µi
0 + kBT ln(ciΛi

3) (11)

where µi and µi
0 are the chemical potentials of a moving and

resting molecule of the ith species in a given multicomponent
system; ci and Λi are the concentration (the molecular number
density) and thermal de Broglie wavelength of the ith species,
respectively. A molecule with resting center of mass behaves,
in all other respects, in an ordinary way and, naturally, interacts
with other (both moving and resting) molecules of the system,
so that the activity coefficient term kBT ln fi has been
incorporated in µi

0. Because of the last quantity, operating
thermodynamically with eq 11 requires the knowledge of not
only ordinary thermodynamics but also the thermodynamics of
systems with resting molecules. Such thermodynamics is
formulated quite similarly and with same the relationships4 but
with different numerical values of quantities. For example,
ordinary thermodynamics relates chemical potential to pressure
(at fixed temperature and composition) as

dµi ) Vidp (12)

where Vi is the partial molecular volume of the ith species. For
a molecule with resting center of mass, we have a similar
relationship

dµi
0 ) Vi

0dp (13)

A partial molecular volume is defined as a change of the
system volume necessary for restoring the initial value of
pressure after adding a single molecule of a given species to
the system. Since a resting molecule does not contribute to the
kinetic part of pressure, a change in volume to restore the initial
pressure after adding a resting molecule should be different from
that after adding a moving molecule, i.e., Vi

0 * Vi. Depending
on the play of interactions, the partial molecular volume of a
resting molecule can be of any sign but is positive and reduced
to the excluded volume in the absence of long-range forces.
So, a rigorous thermodynamic definition of the excluded volume
Vi

ex for the ith species can be formulated as

Vi
ex ≡ Vi

0|no long-range forces (14)

Returning now to eq 11, we differentiate it at fixed temper-
ature and composition and substitute eq 13 to obtain

dµi ) Vi
0dp + kTd ln ci (15)

(Λi
3 is eliminated as a function of merely temperature). At fixed

temperature and composition, the Gibbs-Duhem equation reads

dp ) ∑
i

cidµi (16)

and, after substituting eq 15, can be written in the form

dp
dc

)
kBT

1 - cV0
(17)

where c ≡ ∑ici is the total concentration of all species in the
system; V0 ≡ ∑ixiVi

0 is the average (with respect to various

Figure 1. Resting particle (in black) creating the excluded volume
(shadowed) with respect to a moving particle.
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species) value of the partial molecular volume of a resting
molecule; and xi is the mole fraction of the ith species (a given
fixed quantity in our consideration).

For the part of pressure p′ originating from short-range
(repulsive) forces (when the partial molecular volume is replaced
by the excluded volume), we can rewrite eq 17 as

dp'
dc

)
kBT

1 - cVex
(18)

where Vex ≡ ∑ixiVi
ex is the average excluded volume per

molecule. The integration of eq 18 yields

p' ) kBT∫0

c dc

1 - cVex
(19)

which shows that Vex(c) is the only function that is needed for
finding p′. Then the total pressure is

p ) kBT∫0

c dc

1 - cVex
+ p′′ (20)

where p′′ is the long-range part of pressure. If, in particular,
the van der Waals approach is used for p′′, eq 20 takes the form

p ) kBT∫0

c dc

1 - cVex
- ∑

i,k

aikcick (21)

Equation 20 is just the master equation of the excluded
volume theory of a three-dimensional equation of state. Pro-
ceeding to the above dimensionless variables, eqs 20 and 21
become

p̃ ) ∫0

� d�
1 - �f

+ p̃′′ (22)

p̃ ) ∫0

� d�
1 - �f

- ∑
i,k

ãik�i�k (23)

where � ≡ ∑i�i is the total packing fraction of all species; f ≡
Vex/V0 is the exclusion factor; and ãik ≡ aikV0/kBTVi0Vk0 is a
dimensionless form for the van der Waals attraction constant
(V0 ≡ ∑ixiVi0 being the average molecular volume).

In a similar way, one can construct the master equation for
two-dimensional pressure Π by replacing molecular volume V0

with molecular parking area a0, excluded volume Vex with
excluded area aex, bulk concentration c with surface concentra-
tion Γ, etc. However, this changeover is not so trivial as it can
seem to be. For a surface monolayer with anisometric molecules
(which is typical, e.g., for surfactant monolayers), the equation
of state looks even more complicated than in the three-
dimensional case because parking area and excluded area are
dependent not only on molecular size but also on molecular
orientation. As a consequence, a rigorous theory of the equation
of state for a surface monolayer should be formulated within
the frames of a three-dimensional approach6 by introducing
molecular size hi in the normal direction and the quantity

h ≡ ∑
i

xihi (24)

as the average monolayer thickness. The resulting master
equation for a surface monolayer is

Π ) kBT∫0

Γ 1 - d ln h/d ln Γ
1 - Γaex

dΓ + Π′′ (25)

and requires, for its integration, the knowledge of two functions:
aex(Γ) and h(Γ). The second function refers to the problem of
an orientation equation of state and is interesting itself.

Since variables h and Γ change in the same direction (surface
molecules become more and more “standing” as surface
concentration increases), we have d ln h/d ln Γ > 0. If this
derivative is sufficiently large (and remembering that the long-
range part of two-dimensional pressure Π′′ is negative), the
whole right-hand side of eq 25 can become negative to cause
the condition dΠ/dΓ < 0, which means instability and a two-
dimensional phase transition. Thus, we see that, still without
an equation of state, the master equation itself predicts the
possibility of a two-dimensional phase transition induced by
surface orientation. If only molecules of high symmetry are
contained in a surface monolayer and the effect of orientation
is absent, we have d ln h/d ln Γ ) 0, and eq 25 is reduced to

Π ) kBT∫0

Γ dΓ
1 - Γaex

+ Π′′ (26)

which is the master equation for the pure two-dimensional case
and a direct analogy of eq 20.

Returning now to the three-dimensional case, we will consider
in detail the exclusion factor to exhibit an advantage of the
excluded volume approach in the theory of equation of state.

Exclusion Factor

Equation 5 operates with free molecules in the absence of
clusterization when the system under consideration is a rarified
gas. Denoting for this case the excluded volume as V0

ex and the
exclusion factor value as f0, we have, according to eq 5, f0 ≡
V0

ex/V0 ) 8 not only for a one-component system but also for a
mixture provided molecules of different species are equal in
size. If, however, molecules of different species are different
in size, f0 is an object for computation. The computational
scheme is a simple generalization of eq 5

f0 )
V0

ex

V0
)

∑
i,k

xixk(Vi0
1/3 + Vk0

1/3)3

∑
i

xiVi0

(27)

Comparing eq 27 with similar formulas for the second virial
coefficient confirms that f0 is equal to the reduplicate dimension-
less second virial coefficient b2 ≡ B2/V0 for a mixture of hard
spheres. Thus, finding f0 is practically reduced to finding the
second virial coefficient b2 whose computational technique has
been well developed and makes no problems. Generally, one
can say f0 depends both on composition and on molecular size
difference and is smaller for a mixture than for pure components.
For a binary mixture, the dependence of f0 on the mole fraction
x is characterized by a minimum whose deepness increases with
the molecular size difference. The limiting minimum value is
2 + 6x so that f0 > 2 in any case.5

We now turn to the central problem of an equation of state,
the dependence of fex on density at given composition and
molecular size difference, which is caused by clusterization.
Taking the second form of eq 5 (which is applicable even to
nonspherical particles provided they are similar in shape), the
excluded volume Vex created by a cluster of volume Vc with
respect to a single molecule of the kth species of volume Vk0 is

Vex ) (Vc
1/3 + Vk0

1/3)3 (28)

If the cluster totally contains n molecules of various species,
the average volume per molecule in the cluster is Vc ≡ Vc/n to
modify eq 28 to
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Vk
ex ) [(nVc)

1/3 + Vk0
1/3]3 (29)

The average excluded volume created by the cluster with respect
to all species is

Vex ) ∑
k

xk[(nVc)
1/3 + Vk0

1/3]3 (30)

or, if taken per one particle

Vex ) Vex/n ) ∑
k

xk[Vc
1/3 + (Vk0/n)1/3]3 (31)

Correspondingly, the exclusion factor is expressed as

f ) Vex

V0
) ∑

k

xk[(Vc/V0)
1/3 + (Vk0/nV0)

1/3]3 (32)

Both V0 and Vc are average quantities. However, V0 depends only
on composition, whereas volume Vc depends, in addition, on
the cluster size because of surface effects and takes a constant
value (let it be Vjc) only in the macroscopic limit n f ∞ (at a
fixed composition). Correspondingly, the exclusion factor tends
to the limit Vjc/V0, and we may write the general condition

f0 g f g Vjc/V0 (33)

for a multicomponent system. Generally, the ratio Vjc/V0 is
determined by the type of packing of molecules in a cluster.
Since hard spheres are unable to fill the space without cavities,
the ratio Vjc/V0 for hard spheres is larger than unity, although it
can approach unity due to filling cavities between larger spheres
by smaller ones.

In the case of a one-component system, eq 32 takes the form

f ) [(Vc/V0)
1/3 + n-1/3]3 (34)

and the condition expressed in eq 33 becomes

8 g f g Vjc/V0 (35)

Applied to hard spheres, eq 35 yields

8 g f g 6/π ≈ 1.91 (cubic packing) (36)

8 g f g 6/π√2 ≈ 1.35 (hexagonal packing) (37)

Here we see a remarkable property of the exclusion factor,
changing within a very narrow range when pressure varies from
zero to infinity. One may say the change of the exclusion factor
is practically negligible as compared with the change of pressure.
This property is especially useful for constructing an equation
of state in the situation when the problem of finding an exact
function fex(c) has not yet been solved. We will illustrate this
with some examples.

Generation of Equations of State

Let us now see how eq 22 or 23 can generate equations of
state. Since we deal with the short-range part of pressure (which
we denoted as p′ in eq 18), we here retain only the first part of
eq 22 or 23 as

p̃′ ) ∫0

� d�
1 - �f

(38)

To take the integral in eq 38, one has to know the f(�) function.
This function has not yet been found in theory, but we showed
above that the exclusion factor f is capable of variation only
within a narrow range of several units. This allows us to hope
that simple assumptions or a single fitting parameter in case of
need can secure the useful work of eq 38 unless an exact form
of f(�) is found.

Zero Approximation. Since, as was stated above, the relative
change in f is negligible as compared with a change in pressure,
the simplest assumption that we can make is setting f a constant.
Then, eq 38 yields

p̃′ ) - ln(1 - �f)
f

(39)

We qualify this case as the zero approximation. With a specified
value of f, eq 39 can be valid, within a small region of �, for
an arbitrary part of the isotherm including a condensed state of
matter. In the particular case of a rarified gas, we have to set f
) f0, and eq 39 becomes

p̃′ ) -
ln(1 - �f0)

f0
(40)

where f0 is calculated according to eq 27. Substituting eq 40 in
eq 23 leads to the relationship

p̃ ) -
ln(1 - �f0)

f0
- ∑

i,k

ãik�i�k (41)

that can be called the generalized Planck equation of state for
a multicomponent gaseous mixture. In the particular one-
component case with f0 ) 8, eq 41 changes to the classical
Planck equation for a monatomic gas (cf. eq 9). We now can
say the Planck equation corresponds to the zero approximation
of the excluded volume theory of an equation of state. Since a
logarithm can exist only for positive quantities, eq 41 loses its
physical sense beyond the range � < 1/f0 or � < 1/8 for the
one-component case. The practical range is much narrower for
eq 41 because the exclusion factor value in this equation refers
to the limiting case of a rarified gas. For this reason, any attempt
of using the Planck equation for predicting a phase transition
looks unjustified.

First Approximation. Let us now consider f as a variable
quantity depending on � and take the state of a rarified gas
with the exclusion factor value f0 for the initial state. Since the
simplest form is a linear dependence, we may write, as the first
approximation

f ) f0 - k� (42)

where k is a positive constant. The sign “minus” in eq 42
corresponds to the estimations given in eqs 35 to 37 and shows
that the exclusion factor decreases with increasing packing
fraction. Putting eq 42 in eq 38 yields

p̃′ ) ∫0

� d�
1 - f0� + k�2

(43)

The form of a function resulting from the integration in eq 43
depends on an ascribed value of the coefficient k and can include
cumbersome relationships. The excluded volume theory of an
equation of state selects a simplest solution at every stage (this
principle is known in science as Ockham’s razor). In the case
of eq 43, the simplest result corresponds to the value
k ) (f0/2)2 to give

p̃′ ) �
1 - (f0/2)�

(44)

Substituting eq 44 into eq 23 results in the relationship

p̃ ) �
1 - (f0/2)�

- ∑
i,k

ãik�i�k (45)

which can be called the generalized van der Waals equation of
state for a fluid mixture. Passing to the one-component case
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and setting f0 ) 8, eq 45 is reduced to the classical van der
Waals equation (eq 8). To secure a positive value for pressure,
eq 45 cannot be used beyond the range � < 2/f0 even for the
case of hard spheres, which makes � < 1/4 for a one-component
system. So we see that the van der Waals equation is not only
more exact and stands higher in the hierarchy of approximations
but also possesses a wider action range as compared with the
Planck equation.

The above derivation discloses the historical enigma of the
van der Waals equation. We now can explain it as follows. (a)
It is true that parameter b in eq 3 originates from the excluded
volume, but b itself is not the excluded volume. The constancy
of b does not mean that the excluded volume is constant. (b)
The van der Waals equation accounts for the dependence of
the excluded volume on the fluid density, and just this
dependence causes b to be different from the excluded volume.
(c) The particular value b ) 4 corresponds to the linear
dependence of the exclusion factor on the packing fraction.

Second Approximation. Although the aim of the article, the
explanation of the historical enigma of the van der Waals
equation, has been attained, we continue our consideration to
complete the outline of the theory. To choose a function f(�)
for the second approximation, we should have a general
conception of this dependence. This can be easily attained with
an example of equal hard spheres from the dimensionless virial
expansion p̃ ) ∑ig1bi�i as4

f(�) ) ∑
ig2

ibi�
i-1/�(1 + ∑

ig2

ibi�
i-1) (46)

Truncating the virial expansion after the first ten terms and using
the numerical values for the first ten dimensionless virial
coefficients,4 we obtain the f(�) dependence as a slightly
concave descending curve (Figure 2). To reflect the concavity,
we modify eq 42 as

f )
f0 - k1�
1 + k2�

(47)

The coefficients k1 and k2 should satisfy the requirements f )
f0 and df/d� ) -K at � ) 0 where K ) 4b2

2 - 3b3 according
to eq 46. We then have k1 ) K - f0k2 so that only one of the
two coefficients k1 and k2 can vary independently. After
substituting eq 47 in eq 38, the simplest result of integration
corresponds to the values k1 ) (f0 - K1/2)2 and k ≡ k2 ) 2K1/2

- f0 and looks as5

p̃′ ) (1 + k
�) �

1 - ��
+ k

�2
ln(1 - ��) (48)

where � ≡ (f0 - k)/2. The constants k and � are related to the
second and third dimensionless virial coefficients as follows

k ) 2b2[2(1 -
3b3

4b2
2)1/2

- 1] (49)

� ) 2b2[1 - (1 -
3b3

4b2
2)1/2] (50)

Equation 48 represents the second approximation of the
excluded volume theory of an equation of state. For a one-
component system, we have f0 ) 8 and K ) 34. Using these
values represents eq 48 in the numerical form

p̃′ ) 2.688
�

1 - 2.169�
+ 0.778 ln(1 - 2.169�)

(51)

with the allowable action range � < 0.461. Comparing this with
the ranges for eqs 40 and 44, we see that ascending in the
hierarchy of approximations not only makes an equation of state
more accurate but also widens its applicability range. Figure 2
shows the behavior of the exclusion factor in the case of the
Planck equation (the zero approximation of the excluded volume
theory of an equation of state), van der Waals equation (the
first approximation), and eq 51 (the second approximation) as
compared with the above-mentioned function f(�) corresponding
to the virial equation of state for hard spheres (almost the same
function corresponds to the Carnahan-Starling equation that
originates from the virial equation of state). Curve 3 is seen to
be very close to curve 4, which shows the advantage of eq 51.
However, all three equations of state refer to relatively low-
density systems of hard spheres and cannot be applied to the
entire density range.

Higher Approximations for the Entire Density Range. In
the above approach, we stuck to the virial expansion to estimate
numerical values of coefficients. This method, however, is
inapplicable to dense systems. In this case, a precise computer
simulation database can be an alternative to the virial expansion.
The excluded volume theory of an equation of state gives the
following expression for the compressibility factor Z ≡ p̃′/� of
a system of mixed hard spheres or disks

Z(n) ) 1

(1 - k�)n-1{1 +
f0 - 2k(n - 1)

(n - 1)(n - 2)k2�
×

[(1 - k�)n-1 - 1 + (n - 1)k�]} (n > 2) (52)

where n is the approximation number and k is a free parameter.
Equation 52 yields proper values for the first and second virial
coefficients irrespective of the value of k so that k can be easily
used as a fitting parameter for the entire density range. Good
results were obtained using the databases by Alder and Wain-
wright12 and by Erpenbeck and Wood13 for hard spheres and
the database of Erpenbeck and Luban14 for hard disks, and a
number of famous equations of state were reproduced with the
aid of eq 52 ascending to a very precise relationship in the
seventh approximation (with the coefficient of determination
up to 0.999998).6,7 Of course, the usage of a fitting procedure
does not beautify a theory. However, if we remember that
modern equations of state can include ten or more fitting
parameters, the use of a single fitting parameter to cover almost

Figure 2. Dependence of the exclusion factor f on the packing fraction �
in the case of the Planck equation (the upper solid line), the van der Waals
equation (the upper dash line), eq 51 (the lower solid line), and the virial
equation of state for hard spheres with ten first terms retained (the lower
dash line).
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ideally 14 database points is unique and gives evidence of the
high quality of an equation of state itself.

Concerning a system of hard spheres of equal size, eq 52 is
capable of exhibiting a higher accuracy than the Carnahan-
Starling equation, but this advantage cannot be of significance
because the Carnahan-Starling equation is already very accurate
itself. We have another situation for hard-sphere mixtures.
Mansoori et al.15 generalized the Carnahan-Starling equation
for an arbitrary mixture of hard spheres as

Z )
1 + � + �2 - 3�(y1 + y2�) - y3�

3

(1 - �)3
(53)

where coefficients y1, y2, and y3 were given as functions of the
diameters di and mole fractions xi of hard spheres. Equation 53
was found to be in excellent agreement with results of Monte
Carlo simulation of equimolar binary mixtures of hard spheres
at d2/d1 ) 1.1 and d2/d1 ) 5/3.15 However, a subsequent test
by Jackson, Rowlinson, and van Swol16 showed significant
deviations at high densities and large size ratios (up to 20). It
is of note that the concentration range is also important for such
tests. Similarly to the second and third virial coefficients,
coefficients y1, y2, and y3 in eq 53 are sensitive to concentration
in a binary system with a large size ratio, especially at a small
concentration of a species with a larger molecular size. Figure
3 exhibits the existence of sharp maxima of coefficients y1 and
y2 at a small concentration of component 2 in a binary mixture
of hard spheres at d2/d1 ) 5. In this concentration range, positive
values of y1 and y2 are considerably larger than at the equimolar

composition and can spoil the dependence Z on � up to the
reversal in sign, which makes eq 53 out of physical sense.

The database by Enciso et al.17 for a binary mixture of hard
spheres with d2/d1 ) 5 and x2 ) 0.064 makes a good testing
ground for equations of state. In spite of a small mole fraction
of larger spheres, the properties of the system differ significantly
from those of a pure component. For example, the dimensionless
second and third virial coefficients are b2 ≈ 2.07 as compared
with 4 and b3 ≈ 3.77 as compared with 10 for spheres of equal
size.18,19 For the above reason, eq 53 does not work in this case.
However, eq 52 encounters no problems. Preliminarily, we can
use the above values of b2 and b3 for constructing the zero (the
generalized Planck equation), first (the generalized van der
Waals equation), and second (eqs 48-50) approximations of
the excluded volume theory of an equation of state. The result
is shown in Figure 4, and we see that already the second
approximation corresponds reasonably well to the database of
Enciso et al. that refers to a sufficiently low concentration range.
As for eq 52, it produces the best result in the fourth
approximation as18,19

Z(4) ≈ 1 - 1.283� + 0.478�2

(1 - 1.117�)3
(54)

which is a high-precision equation of state with respect to the
database (the coefficient of determination is 0.999677, and the
average deviation is 0.26 %). Of course, it would be interesting
to test eq 52 for a binary system with the molecular size ratio
20, but the computer simulation database obtained by Jackson,
Rowlinson, and van Swol16 was not published in a numerical
form.

Conclusion

The excluded volume theory of an equation of state supplies
a detailed explanation of the historical enigma of the van der
Waals equation of state. The central point of understanding is
the proof of the fact that the constancy of van der Waals’
constant b does not mean the constancy of the excluded volume.
The particular constant value b ) 4V0 has been also proved as
corresponding to the linear dependence of the exclusion factor
on the packing fraction.

The theory itself needs further development to be complete.
In fact, the dependence of the clasterization degree on the fluid
density is required. This is a global problem of the whole theory
of fluids, which remains unsolved up to the present time in spite
of the efforts of many investigators. However, even in its present
form, the excluded volume theory of an equation of state can
be useful for finding numerical equations of state for mixtures
of hard spheres with a significant size difference.

One more idea was suggested by the reviewer of this article
and concerns the estimation of an asymmetry of the phase
coexistence curve near the critical point. The method was
proposed by Wang and Anisimov and tested with the use of
various equations of state.20 However, since the estimation
requires only derivatives of the chemical potential with respect
to density and temperature (not the chemical potential value
itself), it would be more rational and rigorous to use directly
the above master equation (eq 17). In an important case of week
interactions and a large molecular size, eq 17 is substituted by
eq 18 with the excluded volume. This makes the excluded
volume a quantity directly contributing to the binodal asymmetry
in fluid criticality.
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