Conductance Studies of NaCl, KCl, NaBr, NaI, NaBPh₄, Bu₄NI, and NaClO₄ in Water + 2-Butoxyethanol Mixtures at T = 298.15 K

Agnieszka Boruń, Anna Florczak, and Adam Bald*

University of Łódź, Department of Physical Chemistry of Solutions, 90-236 Łódź Pomorska 163, Poland

The electrical conductances of solutions of sodium chloride (NaCl), potassium chloride (KCl), sodium bromide (NaBr), sodium iodide (NaI), sodium tetraphenylborate (NaBPh₄), tetrabutylammonium iodide (Bu₄NI), and sodium perchlorate (NaClO₄) in water (1) + 2-butoxyethanol (2) mixtures containing (0.01, 0.025, 0.05, 0.075, 0.10, 0.15, and 0.20) mole fractions of 2-butoxyethanol have been measured at T = 298.15 K. The conductance data have been analyzed by the Fuoss–Justice equation. The individual limiting ionic conductivities of Na⁺, K⁺, Bu₄N⁺, BPh₄⁻, I⁻, Cl⁻, Br⁻, and ClO₄⁻ ions have been determined using the Fuoss–Hirsch assumption. The dependencies of the limiting molar conductances, Λ_0 , and Walden products, $\Lambda_0\eta$, versus mixed solvent composition have been discussed.

Introduction

Alkoxyethanols and their aqueous mixtures are extensively studied by many research centers. They are commonly used in industry and modern technologies. These amphiphile molecules are known as surfactants. As it is known, in water-rich mixtures, 2-butoxyethanol molecules (BE) exist in molecular dispersion in water, and the further growth of the 2-butoxyethanol content causes a radical change of the mixture structure and then the formation of micelle-like aggregates.^{1–6}

The thermodynamic and transport properties of aqueous solutions of 2-butoxyethanol have been studied recently by various physicochemical techniques. Therefore, in the literature, we can find the data of densities, relative permittivities, refractive indices, viscosities, surface tension, ultrasonic speeds, excess molar volumes and enthalpies.^{6–12} Because of the nonexistence of the conductometric data in the literature currently available, the present paper presents the electrical conductances of NaCl, KCl, NaBr, NaI, NaBPh₄, Bu₄NI, and NaClO₄ in water-rich (1) 2-butoxyethanol (2) mixtures, which have been measured as a function of the mole fraction at 298.15 K and atmospheric pressure. In earlier papers,^{13,14} we have reported the results of the conductance measurements of these salt solutions in water + 2-methoxyethanol and water + 2-ethoxyethanol systems. The same measurements have been also made in water + 2-butoxyethanol mixtures, but only for NaCl and NaI solutions.¹⁵

Experimental Section

Chemicals. 2-Butoxyethanol (ethylene glycol monobutyl ether) supplied by Fluka (puriss p.a. with a mass fraction purity > 0.995) was dried over freshly activated molecular sieves of type 4A (Sigma) for several days before use, and next it was distilled under vacuum in a dry nitrogen atmosphere. The measured density, viscosity, and refractive index of the pure solvent at T = 298.15 K agreed with those values published in the literature (Table 1).

The salts were of puriss grade and were used without further purification (with the exception of Bu_4NI). Sodium chloride (Merck) was dried at T = 373.15 K. Potassium chloride, sodium

bromide, and sodium iodide were from Merck and were dried in vacuo at T = 353.15 K. Sodium tetraphenylborate (Fluka) and sodium perchlorate (Aldrich) were dried in vacuo at T = 353.15 K. Tetrabutylammonium iodide was of Aldrich purum grade and was purified by recrystallization from acetone and dried in vacuo at T = 333.15 K.

Double-distilled, deionized, and degassed water with a specific conductance better than $0.5 \cdot 10^{-6} \, \text{S} \cdot \text{cm}^{-1}$ was used for the preparation of the mixed solvents. All of the solutions were prepared by mass using an analytical balance (Sartorius RC 210D) with an uncertainty of $\pm 1 \cdot 10^{-5}$ g. The uncertainty of the composition of the mixtures was 0.0001 in mole fraction.

Measurements. The details of the experimental procedure for conductometric and viscosimetric measurements were described in our previous papers.^{16,17} Conductance measurements were

Table 1. Experimental and Literature Densities, ρ , Viscosities, η , and Refractive Indices, n_D , of 2-Butoxyethanol at T = 298.15 K

1	0	1	1				
g•c	m^{-3}	mP	'a•s	n _D			
exptl	lit.	exptl	lit.	exptl	lit.		
0.896058	$\begin{array}{c} 0.89602^{a}\\ 0.89581^{e}\\ 0.89597^{g}\\ 0.8962^{b}\\ 0.89625^{c} \end{array}$	2.7956	2.786 ^b 3.15 ^c	1.4172	1.4176 ^{<i>c,d</i>} 1.4173 ^{<i>f</i>}		

^a Ref 26. ^b Ref 28. ^c Ref 29. ^d Ref 8. ^e Ref 1. ^f Ref 9. ^g Ref 27.

Table 2. Densities, ρ , Viscosities, η , and Relative Permittivities, ϵ_r , of Water (1) + 2-Butoxyethanol (2) Mixtures at T = 298.15 K

<i>x</i> ₂	$\frac{\rho}{\mathrm{g}\cdot\mathrm{cm}^3}$	$\frac{\eta}{\text{mPa}\cdot\text{s}}$	$\epsilon_{ m r}^{~a}$
0.0100	0.995114	1.1217	74.74
0.0250	0.990681	1.5199	68.67
0.0500	0.980926	2.1954	58.85
0.0750	0.972624	2.7634	50.77
0.1000	0.965618	3.1828	44.78
0.1500	0.954656	3.7113	36.81
0.2000	0.946363	4.0140	30.40

^a Ref 7.

^{*} Corresponding author. E-mail: laurent@uni.lodz.pl.

 Table 3. Molar Conductances, A, and Corresponding Molarities, c, for NaCl, KCl, NaBr, NaI, NaBPh₄, Bu₄NI, and NaClO₄ in Water (1) +

 2-Butoxyethanol (2) Mixtures at T = 298.15 K

<i>x</i> ₂ =	= 0.0100	<i>x</i> ₂ =	= 0.0250	<i>x</i> ₂ =	= 0.0500	<i>x</i> ₂ :	= 0.0750	<i>x</i> ₂ =	= 0.1000	$x_2 = 0.1500$		$x_2 = 0.2000$	
$c \cdot 10^{4}$	Λ	c•104	Λ	c•10 ⁴	Λ	c•10 ⁴	Λ	$c \cdot 10^{4}$	Λ	c•104	Λ	c•10 ⁴	Λ
mol•dm ⁻³	$S \cdot cm^2 \cdot mol^{-1}$	mol•dm ⁻³	$S \cdot cm^2 \cdot mol^{-1}$	mol•dm ⁻³	$S \cdot cm^2 \cdot mol^{-1}$	mol•dm ⁻	3 S·cm ² ·mol ⁻¹	mol·dm ⁻³	S•cm ² •mol ⁻¹	mol·dm ⁻³	$S \cdot cm^2 \cdot mol^{-1}$	mol·dm ⁻³	$S \cdot cm^2 \cdot mol^{-1}$
$\begin{array}{c} 8.402 \\ 15.255 \\ 22.674 \\ 30.495 \\ 46.605 \\ 61.681 \\ 74.882 \\ 89.722 \\ 104.01 \\ 116.50 \\ 130.79 \end{array}$	103.94 103.04 102.29 101.66 100.57 99.74 99.09 98.42 97.84 97.84 97.36 96.83	$\begin{array}{c} 9.121\\ 17.354\\ 24.201\\ 31.992\\ 47.310\\ 61.585\\ 76.295\\ 90.803\\ 106.69\\ 119.38\\ 133.44 \end{array}$	86.28 85.38 84.82 84.30 83.42 82.79 82.21 81.67 81.13 80.73 80.31	5.122 8.548 16.898 23.052 30.944 46.480 61.405 75.753 89.988 103.97 116.78 130.50	69.93 69.51 68.58 68.26 67.76 66.95 66.32 65.81 65.35 64.94 64.59 64.32	17.864 24.834 31.864 45.833 63.127 76.564 90.402 104.74 117.53 129.95	NaCl 56.46 55.97 54.91 54.25 53.82 53.42 53.42 53.05 52.75 52.47	$\begin{array}{c} 10.775\\ 18.592\\ 26.082\\ 33.801\\ 47.271\\ 63.259\\ 76.680\\ 89.786\\ 104.96\\ 118.41\\ 129.80 \end{array}$	$\begin{array}{c} 47.85\\ 47.14\\ 46.63\\ 46.20\\ 45.58\\ 44.99\\ 44.59\\ 44.59\\ 44.21\\ 43.83\\ 43.53\\ 43.53\\ 43.29\end{array}$	9.971 16.244 23.533 30.667 44.474 58.649 71.595 84.953 97.764 109.83 122.14	$\begin{array}{c} 35.68\\ 35.03\\ 34.47\\ 34.02\\ 33.33\\ 32.77\\ 32.34\\ 31.95\\ 31.63\\ 31.35\\ 31.09 \end{array}$	$\begin{array}{c} 10.862\\ 18.522\\ 25.024\\ 32.179\\ 45.301\\ 59.153\\ 72.451\\ 84.814\\ 96.588\\ 109.63\\ 121.78\end{array}$	$\begin{array}{c} 28.08\\ 27.28\\ 26.78\\ 26.32\\ 25.66\\ 25.10\\ 24.65\\ 24.30\\ 23.99\\ 23.69\\ 23.44 \end{array}$
8.665	122.47	9.753	101.98	8,583	82.00	21.108	KCI 66.12	7.099	55.73	8.774	40.26	12.025	30.71
15.916 31.421 46.966 61.779 76.429 91.143 105.78 119.47	121.61 120.21 119.15 118.43 117.81 117.24 116.74 116.29	17.923 34.814 49.038 64.174 77.752 92.285 106.88 120.09 133.35	101.24 100.06 99.34 98.74 98.26 97.80 97.39 97.04 96.71	15.907 24.868 31.687 46.824 64.100 77.069 91.412 105.55 118.32 132.51	81.13 80.31 79.80 78.81 77.26 76.63 76.03 75.52 75.00	31.851 44.013 56.890 73.113 88.116 102.21 118.55 132.24 143.61	65.45 64.86 64.34 63.79 63.36 62.99 62.60 62.32 62.13	16.322 23.197 30.230 45.026 59.264 73.031 88.166 102.26 114.70 127.86	54.76 54.25 53.79 53.02 52.41 51.90 51.42 51.02 50.70 50.38	$\begin{array}{c} 16.693\\ 23.866\\ 30.860\\ 46.139\\ 61.071\\ 75.326\\ 89.301\\ 104.35\\ 117.25\\ 129.62\\ 143.76\\ 156.48 \end{array}$	$\begin{array}{c} 39.46\\ 38.86\\ 38.33\\ 37.45\\ 36.77\\ 35.67\\ 35.68\\ 34.80\\ 34.46\\ 34.10\\ 33.80\\ \end{array}$	$\begin{array}{c} 20.628\\ 26.415\\ 35.065\\ 47.676\\ 61.888\\ 75.456\\ 88.837\\ 102.00\\ 115.92\\ 126.63\\ 138.76\\ 150.77 \end{array}$	29.91 29.48 28.92 28.25 27.64 27.14 26.71 26.34 25.99 25.74 25.48 25.24
9 549	105.06	11.616	86.22	11 769	69.24	11.038	NaBr 57 22	11 831	47.96	9 307	36.46	10 879	28.90
9.349 17.739 24.478 31.246 48.551 65.732 79.497 95.156 111.12 124.08 138.32	103.04 103.41 102.88 101.76 100.95 100.35 99.73 99.13 98.69 98.22	11.010 20.929 26.540 34.114 50.044 67.678 81.981 96.728 113.30 127.50 140.67	85.24 85.34 84.92 84.44 83.59 82.89 82.38 81.89 81.40 81.00 80.65	11.769 19.119 26.515 34.966 50.110 65.333 80.777 94.814 111.67 125.94 138.66	$\begin{array}{c} 68.24 \\ 68.61 \\ 68.14 \\ 67.70 \\ 67.06 \\ 66.54 \\ 66.08 \\ 65.70 \\ 65.30 \\ 64.98 \\ 64.71 \end{array}$	11.038 18.186 25.636 48.086 62.377 77.598 91.260 105.29 119.11 131.91	56.60 56.11 55.24 54.80 54.41 54.10 53.82 53.57 53.35	11.31 18.085 25.226 33.489 47.462 62.281 76.486 90.163 104.53 116.50 129.52	$\begin{array}{c} 47.90\\ 47.41\\ 47.06\\ 46.67\\ 46.14\\ 45.70\\ 45.34\\ 45.04\\ 44.75\\ 44.53\\ 44.32\end{array}$	$\begin{array}{c} 9.307\\ 17.758\\ 23.638\\ 31.599\\ 45.086\\ 58.822\\ 72.609\\ 85.834\\ 101.96\\ 112.45\\ 126.04 \end{array}$	30.40 35.67 35.27 34.83 34.24 33.39 33.06 32.72 32.52 32.52 32.29	10.679 18.679 25.102 33.348 45.814 59.688 73.228 86.048 99.210 111.29 123.67	28.30 28.16 27.71 27.24 26.67 26.17 25.78 25.45 25.15 24.91 24.68
6.277	102.18	4.884	82.06	4.452	64.71	5.239	NaI 53.14	6.496	44.78	10.903	34.02	8.707	27.93
12.234 19.196 27.021 35.404 51.553 65.864 79.854 95.568 109.99 122.74 136.76	101.21 100.33 99.53 98.77 97.50 96.52 95.64 94.70 93.90 93.23 92.51	10.368 18.827 26.047 34.928 49.889 63.583 78.645 94.570 109.08 122.20 136.03	81.31 80.51 79.92 79.31 78.44 77.74 77.04 76.35 75.76 75.26 74.76	10.131 17.775 25.481 33.366 48.442 70.267 78.640 92.161 105.06 118.62 132.77	64.06 63.50 63.04 62.64 62.00 61.25 60.99 60.60 60.25 59.90 59.54	10.759 18.946 26.038 33.042 48.866 62.671 77.211 91.365 104.05 117.57 130.95 144.93	52.66 52.14 51.79 51.50 50.96 50.57 50.21 49.89 49.62 49.36 49.11 48.87	$\begin{array}{c} 11.357\\ 11.357\\ 18.978\\ 26.523\\ 33.916\\ 49.238\\ 64.028\\ 78.198\\ 92.114\\ 105.45\\ 119.48\\ 131.27\\ 145.16\\ 156.83\\ \end{array}$	$\begin{array}{c} 44.45\\ 44.03\\ 43.69\\ 43.41\\ 42.94\\ 42.57\\ 42.26\\ 41.99\\ 41.74\\ 41.49\\ 41.32\\ 41.11\\ 40.95\end{array}$	18.028 25.291 32.693 46.674 61.123 75.388 87.902 100.54 113.61 126.00 137.67 149.92	33.64 33.33 33.07 32.66 32.32 32.04 31.83 31.64 31.46 31.30 31.16 31.03	12.640 19.366 25.704 33.381 46.470 60.626 74.964 86.441 99.856 112.75 123.92	27.67 27.29 27.00 26.71 26.29 25.94 25.63 25.42 25.20 25.02 24.87
8.918	54.87			8.861	31.67	N 9.104	aBPh ₄ 26.88	13.453	23.23	13.829	18.48	13.378	15.74
13.431 16.890 25.204 32.782 39.803 47.660 54.760 61.614 68.856 75.198 82.239	54.54 54.28 53.79 53.46 53.19 52.93 52.71 52.49 52.32 52.16 51.96			$\begin{array}{c} 12.005\\ 16.496\\ 24.538\\ 32.664\\ 39.809\\ 47.770\\ 55.351\\ 62.070\\ 69.743\\ 76.510\\ 82.995 \end{array}$	31.58 31.47 31.36 31.23 31.13 31.05 30.97 30.91 30.85 30.79 30.75	13.059 17.026 23.967 31.886 39.417 45.830 52.895 60.016 66.239 73.165 79.476 85.251	$\begin{array}{c} 26.81\\ 26.73\\ 26.64\\ 26.55\\ 26.48\\ 26.43\\ 26.37\\ 26.32\\ 26.28\\ 26.24\\ 26.20\\ 26.17\\ \end{array}$	17.680 24.307 32.359 39.169 46.099 53.052 59.701 66.225 73.837 80.077 86.318	23.16 23.06 22.97 22.91 22.85 22.80 22.75 22.71 22.67 22.63 22.60	17.923 24.297 31.793 38.949 45.456 52.318 59.021 65.175 72.014 78.519 83.677	18.41 18.33 18.24 18.17 18.11 18.06 18.01 17.97 17.92 17.88 17.86	17.071 24.302 31.655 38.548 44.943 52.233 58.502 64.580 71.351 77.151 83.067	$\begin{array}{c} 15.65\\ 15.56\\ 15.45\\ 15.37\\ 15.31\\ 15.21\\ 15.16\\ 15.14\\ 15.08\\ 15.05\\ 15.01\end{array}$
4.128	76.24	3.996	58.83	6.249	44.97	6.715	Bu ₄ NI 37.10	7.020	32.05	9.224	25.47	10.723	21.50
6.368 8.971 11.807 17.306 22.198 27.157 32.144 36.933 41.388 46.190	75.75 75.28 74.85 74.12 73.58 73.07 72.62 72.17 71.80 71.42	$\begin{array}{c} 6.586\\ 8.989\\ 11.672\\ 17.243\\ 22.517\\ 27.575\\ 32.499\\ 37.226\\ 41.928\\ 46.700\\ 51.272\\ 55.591\end{array}$	58.47 58.14 57.80 56.73 56.31 55.93 55.59 55.27 54.96 54.67 54.41	9.042 11.750 16.685 21.642 26.644 31.412 36.061 41.115 45.344	44.65 44.37 43.92 43.52 43.14 42.51 42.51 42.21 41.96	8.988 11.766 16.618 21.842 26.688 31.242 36.193 40.685 44.929 49.238 53.702	36.89 36.65 36.25 35.86 35.55 35.29 35.03 34.79 34.56 34.28 34.14	9.372 12.116 16.873 21.589 26.917 31.385 36.150 40.389 44.842 49.505 54.304	31.83 31.59 31.21 30.86 30.51 30.23 29.95 29.72 29.49 29.27 29.05	11.903 16.279 21.222 26.016 30.244 34.743 39.152 43.193 47.417 51.769	25.25 24.90 24.55 24.25 24.00 23.76 23.54 23.34 23.16 22.97	15.333 20.231 25.011 29.542 34.927 39.275 43.397 48.825 52.888	21.12 20.75 20.44 20.17 19.88 19.66 19.48 19.24 19.08

Table 3. Continued

$x_2 =$	0.0100	$x_2 =$	0.0250	$x_2 =$	0.0500	<i>x</i> ₂ =	= 0.0750	$x_2 =$	0.1000	$x_2 = 0.1500$		$x_2 = 0.2000$	
$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	c•10 ⁴	Λ	$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	$c \cdot 10^{4}$	Λ	c•10 ⁴	Λ
mol•dm ⁻³	$\overline{S \cdot cm^2 \cdot mol^{-1}}$	$mol \cdot dm^{-3}$	$\overline{S \cdot cm^2 \cdot mol^{-1}}$	$\overline{mol \cdot dm^{-3}}$	$S \cdot cm^2 \cdot mol^{-1}$	$mol \cdot dm^{-3}$	$S \cdot cm^2 \cdot mol^{-1}$	$\overline{\text{mol} \cdot \text{dm}^{-3}}$	$S \cdot cm^2 \cdot mol^{-1}$	$\overline{\text{mol} \cdot \text{dm}^{-3}}$	$\overline{S \cdot cm^2 \cdot mol^{-1}}$	$mol \cdot dm^{-3}$	$\overline{S \cdot cm^2 \cdot mol^{-1}}$
						N	aClO ₄						
5.909	95.62	9.038	74.51	16.692	56.73	11.140	46.96	19.323	39.65	7.964	31.53	7.096	26.57
11.133	94.90	11.881	74.27	24.844	56.40	17.884	46.68	26.729	39.40	12.872	31.31	13.727	26.23
18.855	94.15	19.487	73.72	31.402	56.18	26.418	46.41	34.640	39.22	20.506	31.00	20.686	25.91
26.257	93.60	27.115	73.34	46.560	55.76	35.435	46.18	47.498	38.95	27.815	30.76	28.856	25.61
34.699	93.01	36.052	73.00	60.706	55.45	47.623	45.92	61.870	38.72	34.951	30.58	42.205	25.22
49.655	92.13	50.173	72.47	74.335	55.18	61.973	45.67	76.149	38.51	48.782	30.27	55.386	24.92
63.329	91.48	65.590	72.00	88.840	54.93	77.036	45.44	89.458	38.34	61.737	30.04	69.780	24.66
77.579	90.88	79.689	71.64	103.41	54.70	89.117	45.28	102.37	38.18	75.456	29.83	82.413	24.46
93.097	90.27	94.124	71.31	116.70	54.50	104.00	45.10	115.99	38.05	88.733	29.66	95.554	24.27
		107.39	71.02	128.95	54.33	116.61	44.97	127.87	37.94	101.88	29.51	107.99	24.11
		121.29	70.76	142.80	54.15	132.04	44.81	140.13	37.83	113.97	29.39	120.00	23.98
		134.74	70.53					152.77	37.72	126.08	29.27	131.53	23.86
												144.04	23.74

Table 4. Limiting Molar Conductances, Λ_0 , Association Constants, K_A , Parameters, R, and Walden Products, $\Lambda_0\eta$, for NaCl, KCl, NaBr, NaI, NaBPh₄, Bu₄NI, and NaClO₄ in Water (1) + 2-Butoxyethanol (2) Mixtures at T = 298.15 K^{*a*}

	$\Lambda_{ m o}$	K _A	R	$\Lambda_{ m o}\eta$ · 10^{-2}	$\Lambda_{ m o}$	K _A	R	$\Lambda_{0}\eta \cdot 10^{-2}$
<i>x</i> ₂	$S \cdot cm^2 \cdot mol^{-1}$	$dm^3 \cdot mol^{-1}$	Å	$\mathbf{S} \cdot \mathbf{cm}^2 \cdot \mathbf{mol}^{-1} \cdot \mathbf{mPa} \cdot \mathbf{s}$	$S \cdot cm^2 \cdot mol^{-1}$	$dm^3 \cdot mol^{-1}$	Å	$S \cdot cm^2 \cdot mol^{-1} \cdot mPa \cdot s$
		NaC	Ľ1			KO	21	
0.0000	126.59			1.127	149.95			1.335
0.0100	106.15 ± 0.01	2.08 ± 0.04	3.8	1.191	124.78 ± 0.05	0.85 ± 0.08	3.7	1.400
0.0250	88.18 ± 0.03	2.26 ± 0.06	4.0	1.340	104.06 ± 0.03	0.73 ± 0.04	3.9	1.582
0.0500	71.10 ± 0.04	2.97 ± 0.10	4.3	1.561	83.95 ± 0.02	5.50 ± 0.04	5.1	1.843
0.0750	58.78 ± 0.02	3.56 ± 0.07	4.5	1.624	68.79 ± 0.03	2.10 ± 0.06	4.4	1.901
0.1000	49.57 ± 0.04	5.51 ± 0.15	4.9	1.578	57.27 ± 0.02	5.43 ± 0.08	5.2	1.823
0.1500	37.42 ± 0.04	11.65 ± 0.27	5.4	1.389	42.25 ± 0.01	19.05 ± 0.05	7.6	1.568
0.2000	30.15 ± 0.04	22.32 ± 0.31	6.0	1.210	33.18 ± 0.01	29.33 ± 0.06	8.1	1.332
		NaE	r			Na	I	
0.0000	128.38			1.143	126.92			1.130
0.0100	107.32 ± 0.04	1.53 ± 0.06	3.8	1.204	104.24 ± 0.02	6.09 ± 0.03	7.8	1.169
0.0250	88.28 ± 0.02	1.61 ± 0.04	3.9	1.342	83.51 ± 0.01	5.29 ± 0.02	7.7	1.269
0.0500	71.08 ± 0.03	1.63 ± 0.07	4.1	1.560	65.80 ± 0.01	4.28 ± 0.03	7.8	1.445
0.0750	58.76 ± 0.02	1.30 ± 0.07	4.5	1.624	54.27 ± 0.01	3.77 ± 0.02	7.6	1.500
0.1000	49.68 ± 0.02	2.52 ± 0.09	4.9	1.581	46.03 ± 0.01	4.39 ± 0.03	8.3	1.465
0.1500	38.03 ± 0.04	7.76 ± 0.27	5.5	1.411	35.60 ± 0.01	5.47 ± 0.04	8.0	1.321
0.2000	30.89 ± 0.03	15.82 ± 0.28	5.9	1.240	29.55 ± 0.02	11.67 ± 0.16	8.5	1.186
		NaBI	Ph ₄			Bu_4	NI	
0.0000	69.98			0.623	96.26			0.857
0.0100	56.63 ± 0.01		5.6	0.635	77.77 ± 0.02	8.49 ± 0.13	4.6	0.872
0.0250	43.52 ± 0.05^{b}			0.661^{b}	60.11 ± 0.01	9.16 ± 0.05	4.6	0.914
0.0500	32.60 ± 0.01		13.2	0.716	46.67 ± 0.01	11.19 ± 0.09	13.3	1.025
0.0750	27.69 ± 0.01		13.5	0.765	38.41 ± 0.02	17.73 ± 0.20	12.8	1.061
0.1000	24.16 ± 0.01		11.8	0.769	33.43 ± 0.01	24.05 ± 0.14	12.6	1.064
0.1500	19.41 ± 0.01		11.9	0.720	27.10 ± 0.01	32.71 ± 0.17	11.9	1.006
0.2000	16.77 ± 0.02		11.2	0.673	23.43 ± 0.01	46.83 ± 0.20	11.9	0.940
		NaCl	O_4					
0.0000	117.35			1.045				
0.0100	97.41 ± 0.01	1.60 ± 0.02	4.1	1.093				
0.0250	76.21 ± 0.01	0.78 ± 0.02	6.0	1.158				
0.0500	58.50 ± 0.01	1.10 ± 0.03	8.8	1.284				
0.0750	48.32 ± 0.01	0.70 ± 0.02	9.1	1.335				
0.1000	41.34 ± 0.01	1.06 ± 0.03	8.6	1.316				
0.1500	32.78 ± 0.01	3.25 ± 0.10	9.0	1.217				
0.2000	28.03 ± 0.01	8.45 ± 0.06	8.7	1.125				

^{*a*} In all cases, $\Delta R = 0.5 \cdot 10^{-8}$ cm. ^{*b*} For NaBPh₄ ($x_2 = 0.025$) the value of $\Lambda_0 \eta$ was interpolated from the dependence $\Lambda_0 \eta = f(f_2)$, and then the value of $\Lambda_0 = \Lambda_0 \eta/\eta$ was calculated.

performed in the solutions containing (0.01, 0.025, 0.05, 0.075, 0.10, 0.15, and 0.20) mole fractions of 2-butoxyethanol (2), usually for (9 to 14) molar concentrations of salts, with the use of a precise component analyzer type 6430B (Wayne-Kerr, UK). All conductance values were the results of an extrapolation to infinite frequency. All data were corrected with the specific conductance of the solvent. The temperature was kept constant within 0.003 K (Ultra thermostat UB 20F with through-flow cooler DLK 25, Lauda, Germany). The uncertainty of the measured values of conductivity was 0.03 %.

Viscosities were measured with a AVS 350 viscosimeter (Schott Geräte, Germany). The viscosimeter filled with the liquid was placed vertically in a glass-sided water thermostat. An electronic stopwatch with a precision of 0.01 s was used for flow time measurements. The temperature was kept constant using a precision thermostat Julabo F32 (Julabo Labortechnik GmbH, Germany). The uncertainty in the viscosity measurements was better than 0.05 %.

Densities were measured with an Anton Paar DMA 5000 oscillating U-tube densimeter equipped with a thermostat with

a temperature stability within ± 0.001 K. The densimeter was calibrated with extra pure water, previously degassed ultrasonically. The uncertainty in the density measurements was $5 \cdot 10^{-6}$ g·cm⁻³.

The refractive indices (Na-D line, at $\lambda = 589$ nm) were measured using an automatic precision refractometer DR 5000 Krüss. The uncertainty in the refractive index measurements was $2 \cdot 10^{-5}$.

Results and Discussion

The densities, dynamic viscosities, and relative permittivities of water (1) + 2-butoxyethanol (2) mixtures are listed in Table 2. Viscosity and density data were interpolated for the full composition on the basis of our experimental data. The relative permittivities were interpolated on the basis of literature data.⁷

The experimental molar conductances, Λ , as a functions of the electrolyte concentration, c, for the investigated salts in the mixed solvent are presented in Table 3.

The conductance data were analyzed using the Fuoss–Justice equation 18,19 in the form

$$\Lambda = \alpha [\Lambda_0 - S(\alpha c)^{1/2} + E(\alpha c) \ln(\alpha c) + J(\alpha c) + J_{3/2}(\alpha c)^{3/2}] \quad (1)$$

together with

$$K_{\rm A} = (1 - \alpha) / (\alpha^2 {\rm cy}_{\pm}^2)$$
 (2)

$$\ln y_{\pm} = -(A\alpha^{1/2}c^{1/2})/(1 + BR\alpha^{1/2}c^{1/2})$$
(3)

In these equations, Λ_0 is the limiting molar conductance; α is the dissociation degree of an electrolyte; K_A is the ionic association constant; R is the distance parameter of the ions; y_{\pm} is the activity coefficient of ions on the molar scale; A and B are the Debye–Hückel equation coefficients. The analytical form of the parameters S, E, J, and $J_{3/2}$ was presented previously.^{20–22} The values of Λ_0 , K_A , and R were obtained using the well-known procedure given by Fuoss.¹⁹

The values of density, dynamic viscosity, and relative permittivity necessary for the calculation are collected in Table 2. The values of Λ_0 , K_A , R, and the Walden products, $\Lambda_0\eta$, for the investigated salts in water (1) + 2-butoxyethanol (2) mixtures are collected in Table 4. The limiting molar conductances for salts in water are the same as in ref 14. The limiting ionic conductanes are taken from ref 23.

As seen from Table 4, the association constant values increase with an increasing amount of 2-butoxyethanol (2) in the mixture, because the relative permittivity of the medium decreases. NaBPh₄ is not associated in the mixed solvent media, and for the remaining salts the association constants are practically negligible. The values of Λ_o decrease intensively during the addition of 2-butoxyethanol (2) to water, as in the case of 2-methoxy- (ME) and 2-ethoxyethanol (EE).^{13,14} In the case of water (1) + 2-butoxyethanol (2) mixtures the values of Λ_o at $x_2 = 0.2$ are the smallest. It can be easily explained taking into account the changes of viscosity in the order: $\rm H_2O$ + $\rm ME$ < $H_2O + EE < H_2O + BE$. From simple hydrodynamic models it follows that the ionic mobility decreases as the viscosity increases. The values of Walden product, $\Lambda_0 \eta$, increase clearly along with an increase in the mole fraction of 2-butoxyethanol (2) in the very dilute region, and after reaching a maximum (at about $x_2 = 0.075 - 0.10$), the values of $\Lambda_0 \eta$ decrease monotonically. It should be noted that the above-mentioned order $(H_2O + ME < H_2O + EE < H_2O + BE)$ also applies to

Figure 1. Walden product, $\Lambda_0\eta$, for some salts as a function of the mole fraction, x_2 , in water (1) + 2-methoxyethanol (2), water (1) + 2-ethoxyethanol (2), and water (1) + 2-butoxyethanol (1) mixtures at 298.15 K: Δ , NaCl; \bigcirc , KCl; \blacksquare , NaI; \cdots , H₂O + ME (ref 13); ---, H₂O + EE (ref 14); -, H₂O + BE (this work).

the changes of the Walden product values, which means that the maximum peaks are the highest in water (1) + 2-butoxyethanol (2) mixtures. A comparison of the Walden product for some salts in water + 2-methoxyethanol, water + 2-ethoxyethanol, and water + 2-butoxyethanol is presented in Figure 1.

The values of Λ_o for NaCl and NaI obtained in this paper are in very good agreement with those values published previously¹⁵ (see Figure 2), and very slight differences between values of $\Lambda_o \eta$ may result from the viscosity data. In this paper, the viscosity measurements were conducted using better equipment.

The single-ion conductances were obtained on the basis of the Fuoss–Hirsch assumption²⁴

$$\lambda_{o}(\mathrm{Bu}_{4}\mathrm{N}^{+}) = \lambda_{o}(\mathrm{BPh}_{4}^{-}) = [\Lambda_{o}(\mathrm{Bu}_{4}\mathrm{NI}) + \Lambda_{o}(\mathrm{NaBPh}_{4}) - \Lambda_{o}(\mathrm{NaI})]/2 \quad (4)$$

The dependencies $\lambda_0^+ = f(x_2)$ and $\lambda_0^- = f(x_2)$ are presented in Figures 3 and 4, respectively. The factors having an influence on these dependencies are the macroscopic viscosity and the effective size of ions. The values of limiting ionic conductances decrease with an increase of the macroscopic viscosities and of the effective ion size. Therefore, it is no wonder that in the case of the large ions (Bu₄N⁺ and BPh₄⁻) the values of λ_0 are the smallest.

The changes of the values of $\lambda_o^{\pm}\eta$ as a function of the mixed solvent composition are independent from the changes of the macroscopic viscosity. Thus, the difference between the values of $\lambda_o^{\pm}\eta$ for different ions may provide information about the differences in the ion-solvent interactions. The dependencies $\lambda_o^{\pm}\eta = f(x_2)$ and $\lambda_o^{-}\eta = f(x_2)$ are presented in Figures 5 and 6, respectively.

As could be expected, the addition of small amounts of 2-butoxyethanol (2) to water (1) leads to an increase of the values of the ionic Walden product for inorganic ions, but they remain almost constant for Bu_4N^+ and BPh_4^- . The big organic

Figure 2. Comparison of the limiting molar conductances, Λ_0 , of (a) NaCl and (b) NaI in water (1) + 2-butoxyethanol (2) mixtures at 298.15 K: ×, ref 15; \blacksquare , this work.

Figure 3. Limiting ionic conductances of the individual cations, λ_o^+ , as a function of the mole fraction, x_2 , in water (1) + 2-butoxyethanol (2) mixtures at 298.15 K: \blacktriangle , K⁺; \blacksquare , Na⁺; \times , Bu₄N⁺.

ions having small surface charge densities are practically unsolvated in the solution. The differences between the changes of ionic Walden products (Figures 5 and 6) may result from the differences in the electronegativity of these ions. In the course of the dependence $\lambda_0^{\pm}\eta = f(x_2)$ for inorganic ions, we can see a maximum, as in the case of aqueous mixtures of 2-methoxy- and 2-ethoxyethanol.^{13,14} The similar behavior of electrolyte solutions in water—alcohol mixtures was explained by Kay on the basis of the assumption of the preferential solvation of ions by the water dipoles ("sorting effect").²⁵ Furthermore, it should be noted that the intensity of the growth of the ionic Walden product values while adding alkoxyethanols to water can be put, for the mixtures examined by us, in the following order: H₂O + ME < H₂O + EE < H₂O + BE.

Conclusions

The electrical conductances of solutions of sodium chloride, potassium chloride, sodium bromide, sodium iodide, sodium

Figure 4. Limiting ionic conductances of the individual anions, λ_0^- , as a function of the mole fraction, x_2 , in water (1) + 2-butoxyethanol (2) mixtures at 298.15 K: \bigcirc , Cl⁻; \blacktriangle , Br⁻; \square , I⁻; \times , BPh₄⁻; \triangle , ClO₄⁻.

Figure 5. Walden product for cations, $\lambda_0^+ \eta$, as a function of the mole fraction, x_2 , in water (1) + 2-butoxyethanol (2) mixtures at 298.15 K: \blacktriangle , K⁺; \blacksquare , Na⁺; ×, Bu₄N⁺.

Figure 6. Walden product for anions, $\lambda_0^- \eta$, as a function of the mole fraction, x_2 , in water (1) + 2-butoxyethanol (2) mixtures at 298.15 K: \bigcirc , Cl⁻; \blacktriangle , Br⁻; \square , I⁻; \times , BPh₄⁻; \triangle , ClO₄⁻.

tetraphenylborate, tetrabutylammonium iodide, and sodium perchlorate have been measured in aqueous 2-butoxyethanol (2) mixtures containing (0.01, 0.025, 0.05, 0.075, 0.10, 0.15, and 0.20) mole fractions of 2-butoxyethanol (2) at T = 298.15 K. The limiting molar conductances, Λ_o , and Walden products, $\Lambda_o\eta$, have been determined. The limiting molar conductances and the limiting ionic conductances decrease along with an increase of 2-butoxyethanol (2) content. The values of the Walden product increase with the increase in the mole fraction of 2-butoxyethanol (2) in the very dilute region and after reaching a maximum decrease monotonically. In the range of composition containing a large amount of water (1), slight additions of 2-butoxyethanol (2) do not cause significant changes in the hydration shells of ions.

Literature Cited

- Douhéret, G.; Pal, A.; Davis, M. I. Ultrasonic speeds and isentropic functions of (a 2-alkoxyethanol + water) at 298.15 K. J. Chem. Thermodyn. 1990, 22, 99–108.
- (2) D'Arrigo, G.; Paparelli, A. Sound propagation in water-ethanol mixtures at low temperatures. I. Ultrasonic velocity. J. Chem. Phys. 1988, 88, 405–415.
- (3) Mallamace, F.; Micali, N.; D'Arrigo, G. Dynamical effects of supramolecular aggregates in water-butoxyethanol mixtures studied by viscosity measurements. *Phys. Rev. A* 1991, 44, 6652–6658.
- (4) D'Arrigo, G.; Mallamace, F.; Micali, N.; Paparelli, A.; Vasi, C. Molecular aggregations in water-2-butoxyethanol mixtures by ultrasonic and Brillouin light-scattering measurements. *Phys. Rev. A* 1991, 44, 2578–2587.
- (5) Kato, S.; Jobe, D.; Rao, N. P.; Ho, C. H.; Verrall, R. E. Ultrasonic relaxation studies of 2-butoxyethanol-water and 2-butoxyethanol-watercetyltrimethylammonium bromide solutions as a function of composition. J. Phys. Chem. 1986, 90, 4167–4174.
- (6) Elizalde, F.; Gracia, J.; Costas, M. Effect of Aggregates in Bulk and Surface Properties. Surface Tension, Foam Stability and Heat Capacities for 2-Butoxyethanol + Water. J. Phys. Chem. 1988, 92, 3565– 3568.
- (7) Douhéret, G.; Pal, A. Dielectric Constants and Densities of Aqueous Mixtures of 2-Alkoxyethanols at 25°C. J. Chem. Eng. Data 1988, 33, 40–43.
- (8) Shindo, Y.; Kusano, K. Densities and Refractive Indices of Aqueous Mixtures of Alkoxy Alcohols. J. Chem. Eng. Data 1979, 24, 106– 110.
- (9) Chu, K.-Y.; Thompson, A. R. Densities and Refractive Indices of Glycol Ether-Water Solutions. J. Chem. Eng. Data 1960, 5, 147–149.
- (10) Davis, M. I.; Molina, M. C.; Douhéret, G. Excess molar volumes and enthalpies of the 2-butoxyethanol + water system at 25°C. *Thermochim. Acta* **1988**, *131*, 153–170.
- (11) Douhéret, G.; Pal, A.; Davies, M. I. Excess Thermodynamic Properties of some 2-Alkoxyethanol-Water Systems. J. Chem. Soc., Faraday Trans. 1 1989, 85, 2723–2736.
- (12) Chiou, D.-R.; Chen, S.-Y.; Chen, L.-J. Density, Viscosity, and Refractive Index for Water + 2-Butoxyethanol and + 2-(2-Butoxyethoxy)ethanol at Various Temperatures. J. Chem. Eng. Data 2010, 55, 1012–1016.
- (13) Boruń, A.; Florczak, A.; Bald, A. Conductance studies of NaCl, KCl, NaBr, NaBPh₄, Bu₄NI and NaClO₄ in water + 2-methoxyethanol mixtures at 298.15 K. J. Mol. Liq. 2009, 149, 74–80.
- (14) Boruń, A.; Florczak, A.; Bald, A. Conductance Studies of NaCl, KCl, NaBr, NaBPh4, and Bu4NI in Water + 2-Ethoxyethanol Mixtures at 298.15 K. J. Chem. Eng. Data 2010, 55, 1252–1257.
- (15) Piekarski, H.; Tkaczyk, M.; Bald, A.; Szejgis, A. Conductivity Study of NaCl and NaI Solutions in Water-2-Butoxyethanol Mixtures at 298.15 K. The Effect of Ion Pairing on the Standard Dissolution Enthalpies of NaCl and NaI. J. Mol. Liq. 1997, 73–74, 209–221.

- (16) Wypych-Stasiewicz, A.; Szejgis, A.; Chmielewska, A.; Bald, A. Conductance Studies of NaBPh₄, NBu₄I, NaI, NaCl, NaBr, NaClO₄ and the Limiting Ionic Conductance in Water + Propan-1-ol Mixtures at 298.15 K. J. Mol. Liq. 2007, 130, 34–37.
- (17) Gregorowicz, J.; Bald, A.; Szejgis, A.; Chmielewska, A. Gibbs Energy of Transfer and Conductivity Properties of NaI Solutions in Mixtures of Water with Butan-1-ol at 298.15 K, and Some Physicochemical Properties of Mixed Solvent. J. Mol. Liq. 2000, 84, 149–160.
- (18) Fuoss, R. M. Paired Ions: Dipolar Pairs as Subset of Diffusion Pairs. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 16–20.
- (19) Fuoss, R. M. Conductance-Concentration Function for the Paired Ion Model. J. Phys. Chem. 1978, 82, 2427–2440.
- (20) Justice, J.-C. An Interpretation for the Distance Parameter of the Fuoss-Onsager Conductance Equation in the Case of Ionic Association. *Electrochim. Acta* 1971, *16*, 701–712.
- (21) Renard, E.; Justice, J.-C. A Comparison of the Conductimetric Behavior of Cesium Chloride in Water-Tetrahydrofuran, Water-Dioxane, and Water-1,2-Dimethoxyethane Mixtures. J. Solution Chem. 1974, 3, 633–647.
- (22) Fuoss, R. M.; Accascina, L. *Electrolytic Conductance*; Interscience: New York, 1959.
- (23) Barthel, J. M. G.; Krienke, H.; Kunz, W. Physical Chemistry of Electrolyte Solutions: modern aspects; Springer: New York, 1998; Vol. 5.
- (24) Fuoss, R. M.; Hirsch, E. Single Ion Conductances in Non-aqueous Solvents. J. Am. Chem. Soc. 1960, 82, 1013–1117.
- (25) Kay, R. L.; Broadwater, T. L. Solvent Structure in Aqueous Mixtures. III. Ionic Conductances in Ethanol-Water Mixtures at 10 and 25°C. J. Solution Chem. 1976, 5, 57–76.
- (26) Rao, N. P.; Verrall, R. E. Ultrasonic velocity, excess adiabatic compressibility, apparent molar volume, and apparent molar compressibility properties of binary liquid mixtures containing 2-butoxyethanol. *Can. J. Chem.* **1987**, *65*, 810–816.
- (27) Tamura, K.; Osaki, A.; Murakami, S.; Ohji, H.; Ogawa, H.; Laurent, B.; Grolier, J.-P. E. Thermodynamic properties of binary mixtures {an alkoxyethanol + n-octane}. Excess molar enthalpies and excess molar heat capacities at 298.15 K. *Fluid Phase Equilib.* **1999**, *156*, 137–147.
- (28) MacNeil, J. H.; Palepu, R. Viscosities and densities of binary liquid mixtures of 2-butoxyethanol with aniline and N-alkylaniline. *Ther*mochim. Acta **1989**, 149, 275–286.
- (29) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Wiley: New York, 1986.

Received for review March 18, 2010. Accepted April 19, 2010. The research was sponsored by the Polish State Committee for Scientific Research (Grant No. 505/669).

JE100259J